
1/10

Gootkit: the cautious Trojan
securelist.com/gootkit-the-cautious-trojan/102731/

Authors

 Anton Kuzmenko

https://securelist.com/gootkit-the-cautious-trojan/102731/
https://securelist.com/author/antonkuzmenko/


2/10

Gootkit is complex multi-stage banking malware that was discovered for the first time by Doctor Web in 2014. Initially it
was distributed via spam and exploits kits such as Spelevo and RIG. In conjunction with spam campaigns, the
adversaries later switched to compromised websites where the visitors are tricked into downloading the malware.

Gootkit is capable of stealing data from the browser, performing man-in-the-browser attacks, keylogging, taking
screenshots and lots of other malicious actions. Its loader performs various virtual machine and sandbox checks and uses
sophisticated persistence algorithms. In 2019, Gootkit stopped operating after it experienced a data leak, but has been
active again since November 2020.

Gootkit’s victims are mainly located in EU countries such as Germany and Italy. In this article we analyze a recent sample
of Gootkit.

Technical Details

Gootkit consists of a (down)loader component written in C++ and the main body written in JS and interpreted by Node.js.
The main body is a modular framework, containing registration, spyware, VMX detection and other modules.

Loader

The sample (MD5 97713132e4ea03422d3915bab1c42074) is packed by a custom-made multi-stage packer which
decrypts the final payload step by step. The last stage is a shellcode that decrypts the original loader executable and
maps it into memory. After mapping, the original entry point is called. Hence, we can easily unpack the original executable
and analyze it. We detect the Gootkit loader with the verdicts listed in the table below.

MD5 SHA-1 Verdict

97713132e4ea03422d3915bab1c42074 a90c6e7c5650e73ceb0b329fa8c78045632100ee Trojan-
Downloader.Win32.Injecter

27626f2c3667fab9e103f32e2af11e84 6e9e30c699c7111089fe364ce47f1dc05c8bc703 HEUR:Trojan.Win32.Generic

Most of the strings are encrypted using XOR encryption and are decrypted at runtime. No other techniques are used to
complicate static analysis.

String decryption

https://www.zdnet.com/article/gootkit-malware-crew-left-their-database-exposed-online-without-a-password/
https://www.bleepingcomputer.com/news/security/gootkit-malware-returns-to-life-alongside-revil-ransomware/
https://opentip.kaspersky.com/97713132e4ea03422d3915bab1c42074/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/97713132e4ea03422d3915bab1c42074/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/27626f2c3667fab9e103f32e2af11e84/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/06/03123325/Gootkit_banking_malware_01.png


3/10

However, to make dynamic analysis more difficult, the Gootkit loader employs lots of different methods to detect virtual
environments or debuggers. If any of the virtual machine checks succeed, the loader enters an infinite loop.

Sample name check

Full list of VM detection techniques used by the malware:

Check Prohibited
value

CRC32 of sample name 0xBC136B46,
0xD84A20AC,
0xEED889C4,
0x58636143,
0xC0F26006,
0x8606BEDD,
0xE8CBAB78,
0x2AB6E04A,
0x31E6D1EA

GetModuleHandle dbghelp.dll,
sbiedll.dll

GetUserName CurrentUser,
Sandbox

GetComputerName SANDBOX,
7SILVIA

HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\SystemBiosVersion FTNT1,
INTEL-
604000,
SMCI, QEMU,
VBOX,
BOCHS, AMI,
SONI

HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\VideoBiosVersion VirtualBox

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/06/03123349/Gootkit_banking_malware_02.png


4/10

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\SystemBiosVersion 55274-640-
2673064-
23950 (Joe
Sandbox),
76487-644-
3177037-
23510
(CWSandbox),
76487-337-
8429955-
22614 (Anubis
Sandbox)

HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System\CentralProcess\0\ProcessorNameString Xeon

_MEMORYSTATUSEX. ullTotalPhys Less than
2100000000

UuidCreateSequential (this function is based on computer MAC address so return value is used to
determine whether trojan is running in sandbox or not)

0xF01FAF00
(Dell Inc.),
0x505600
(VMWare,
Inc.),
0x8002700
(PCS System
Technology
GmbH),
0xC2900
VMWare,
Inc.), 0x56900
(VMWare,
Inc.), 0x3FF00
(Microsoft),
0x1C4200
(Parallels),
0x163E00 
(XenSource)

CRC32 of running process names 0xAEA3ED09,
0x2993125A,
0x3D75A3FF,
0x662D9D39,
0x922DF04,
0xC84F40F0,
0xDCFC6E80

Execution flow

When the sample starts, it checks the command line arguments. The available arguments are listed below:

Argument Description

–client no handler

–server no handler

–reinstall iterate over running processes (where process is a loop variable) and kill all processes where process.pid
is not equal to current process PID and process.name equals current filename. After that, copy self and
run via CreateProcessW

–service set environment variable USERNAME_REQUIRED=TRUE

–test stop execution

–vwxyz download main body from C&C



5/10

After the command line arguments are handled, the sample checks if it’s running inside a virtual machine or being
debugged. If not, it decrypts the configuration and starts four threads.

Thread start routine

Update_from_c2
The first thread that is started tries to download a loader update from <CnC host>/rpersist4/<crc>, where <CnC
host> is a command-and-control server address and <crc> is the CRC32 of the first 0x200 bytes of the current file in
decimal format.
Browser_inj
The thread decrypts two embedded MZPE executables (x64 and x86 DLLs), iterates over the running processes
and tries to inject the decrypted DLLs into the process memory of the designated process using the
NtCreateSection/NtMapViewOfSection API. Matching of the process name is done by calculating the CRC32 value
of the process name. For a list of supported browsers, see the table below.

CRC32 Browser name

0xC84F40F0 Chrome

0x662D9D39 Firefox

0x922DF04 Internet Explorer

0x2993125A Microsoft Edge (MicrosoftEdgeCP.exe)

0x3D75A3FF Opera

0xDCFC6E80 Safari

0xEB71057E unknown

The injected code is called from the main body web injection and traffic sniffing routines to perform a man-in-the-
browser attack. To do so, the code patches standard browser functions responsible for certificate validation to allow
self-signed certificates. As a result, attackers are able to inject custom JS code and modify or redirect traffic.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/06/03133002/Gootkit_banking_malware_03.png
https://encyclopedia.kaspersky.com/glossary/man-in-the-browser-attack/?utm_source=securelist&utm_medium=blog&utm_campaign=termin-explanation


6/10

Persistence_service
If a sample is running under LOCAL_SYSTEM account, the Gootkit persistence mechanism abuses the pending
GPO Windows feature. When a user modifies Pending GPO registry values, he/she has to specify the following
parameters:

count – count of pending GPOs;
path1, path2, … – path to the special .inf file that contains instructions on how to load GPO;
Section1, Section2, … – name of the section from the INF file.

So Gootkit creates an .inf file in the same directory as the sample and writes the following values to the
Software\Microsoft\IEAK\GroupPolicy\PendingGPOs registry key:

count – 0x1
path1 – .inf file location
Section1 – DefaultInstall

INF file content

Now explorer.exe will load the Group Policy Objects (GPO) whenever it is loaded. Gootkit creates a pending GPO
for the Internet Explorer Administration Kit (IEAK), which points directly at the INF file. When explorer.exe is loaded
at runtime, it will execute the [DefaultInstall] inside the created file, which will run the Gootkit executable.

If the sample is running under another account, it creates a service with a random name chosen from
%SystemRoot%, copies itself into the %SystemRoot% folder with the chosen name and deletes itself from the disk.

Stop_switch
The thread looks for a file named uqjckeguhl.tmp in the \AppData\Local\Temp and \Local Settings\Temp folders.
When the file is found, the malware will stop.

Main body download

Before downloading the main body from the C&C, the loader tries to find registry keys with the following format:
HKCU\Software\AppDataLow\<pr_string>_<i>, where i is a number starting from 0 and pr_string is a pseudo-random
string generated when the bot starts. Generation is based on the victim’s PC parameters, so the same value is generated
for the same PC each time.

Each key contains a maximum chunk of 512,000 bytes (500KB) of encrypted data. If the aforementioned keys were
found, their contents will be saved in a newly allocated buffer (used for decryption and decompression). The buffer is then
decrypted using the same function used for decrypting the configuration, after which the buffer is decompressed.

After the unpacking routine, the loader will download the main body from the C&C, calculate its CRC32 and compare it
with the registry payload CRC (if one exists). If the CRCs are different, the loader will execute the newer version
downloaded from the C&C. The C&C server will not send the DLL module without the appropriate UserAgent header that
is hardcoded into the sample. The current hardcoded value is: Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:25.0)
Gecko/21006101 Firefox/25.0.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/06/03133056/Gootkit_banking_malware_04.png


7/10

Decrypt function

Main body

The main body (MD5 20279d99ee402186d1e3a16d6ab9398a, verdict HEUR:Trojan.Win32.Generic) is a Node.js
interpreter with bundled encrypted JS files. On startup, the main body decrypts the JavaScript files using an RC4-like
algorithm with hardcoded keystream.

Information about the embedded modules is stored in an array of special file structures that have the following format:
BYTE* name_pointer, BYTE* encrypted_data, DWORD data_size, DWORD encr_flag. These structures are used within
the decryption routine that reads data_size bytes starting from encrypted_data. This routine decrypts encrypted_data if
encr_flag is set and writes the result into a file with name *name_pointer. The decryption routine iterates over all entries
in the file information array. Then the decryption execution is transferred to the Node.js interpreter.

File information array

The array contains 124 encrypted files, both Node.js system libraries and open-source packages, and malware modules.
Strangely enough, the JS entry point is a file named malware.js.

Malware.js initializes global bot variables, collects saved cookies (IE, Firefox, Chromium) and iterates over a list of servers
to find an available C&C.

When the malware finds a C&C server, it launches an infinite loop that listens to different internal malware events (some
routines like cookie collection start without C&C request upon bot startup) and sends the collected data to the C&C via
special formatted packets. The malware also listens to the C&C commands and invokes the appropriate handler on each
command. To communicate with the modules, the malware uses following packet types:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/06/03133138/Gootkit_banking_malware_05.png
https://opentip.kaspersky.com/20279d99ee402186d1e3a16d6ab9398a/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/06/03134746/Gootkit_banking_malware_06.png


8/10

Internal name Description

SLAVE_PACKET_API_TAKESCREEN Send screenshot to C&C

SLAVE_PACKET_MAIL Send received email info

SLAVE_PACKET_LOGLINE Send log

SLAVE_PACKET_LSAAUTH Send authentication credentials

SLAVE_PACKET_PAGE_FRAGMENT Send web injects data

SLAVE_PACKET_FORM Send grabbed form data

SLAVE_PACKET_LOCAL_VARS Send local bot variables

SLAVE_PACKET_SECDEVICELOG Send secure device event log

SLAVE_PACKET_KEYLOG Send keylogger data

SLAVE_PACKET_WINSPYLOG Send current active window

There are six types of internal event handlers and corresponding packet formats.

Event handlers

The general packet structure is as follows:

Length + 8 (4 bytes)
Packet magic (0xEDB88320 XOR length+8)
Packet data (different for each package type, serialized using protobuf)
Packet magic

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/06/03134817/Gootkit_banking_malware_07.png


9/10

Packet generation routine

Kaspersky products detect this family as Trojan-Downloader.Win32.Injecter, HEUR:Trojan.Win32.Generic, Trojan-
Downloader.Win32.Gootkit, Trojan-Banker.Win32.Gootkit. All the details, IoCs, MITRE ATT&CK Framework data, Yara
rules and hashes related to this threat are available to the users of our Financial Threat Intelligence services. To learn
more about threat hunting and malware analysis, check out expert training by Kaspersky’s GReAT.

Indicators of compromise

Main body (same since 2019)
 20279d99ee402186d1e3a16d6ab9398

Loader
5249c568fb2746786504b049bbd5d9c8

 97713132e4ea03422d3915bab1c42074
 174A0FED20987D1E2ED5DB9B1019E49B

 27626f2c3667fab9e103f32e2af11e84

Domains and IPs
 kvaladrigrosdrom[.]top

 scellapreambulus[.]top
 lbegardingstorque[.]com

 kerymarynicegross[.]top
 pillygreamstronh[.]com

Financial malware
Malware Descriptions
Malware Technologies
Trojan
Trojan Banker

Authors

 Anton Kuzmenko

Gootkit: the cautious Trojan

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/06/03134837/Gootkit_banking_malware_08.png
https://www.kaspersky.com/enterprise-security/threat-intelligence
https://xtraining.kaspersky.com/?utm_source=securelist&utm_medium=blog&utm_campaign=gl_xtr-generic-leaders_ay0073&utm_content=link&utm_term=gl_securelist_organic_tezngjogj73rli8&redef=1&THRU&reseller=gl_xtr-generic-leaders_acq_ona_smm__onl_b2b_securelist_post_______
https://opentip.kaspersky.com/20279d99ee402186d1e3a16d6ab9398a/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/5249c568fb2746786504b049bbd5d9c8/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/97713132e4ea03422d3915bab1c42074/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/174A0FED20987D1E2ED5DB9B1019E49B/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/27626f2c3667fab9e103f32e2af11e84/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/kvaladrigrosdrom.top/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/scellapreambulus.top/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/lbegardingstorque.com/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/kerymarynicegross.top/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/pillygreamstronh.com/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://securelist.com/tag/financial-malware/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/trojan/
https://securelist.com/tag/trojan-banker/
https://securelist.com/author/antonkuzmenko/


10/10

Your email address will not be published. Required fields are marked *


