
1/16

June 3, 2021

SharpPanda: Chinese APT Group Targets Southeast
Asian Government With Previously Unknown Backdoor

research.checkpoint.com/2021/chinese-apt-group-targets-southeast-asian-government-with-previously-unknown-
backdoor/

June 3, 2021

Introduction

Check Point Research identified an ongoing surveillance operation targeting a Southeast
Asian government. The attackers use spear-phishing to gain initial access and leverage old
Microsoft Office vulnerabilities together with the chain of in-memory loaders to attempt and
install a previously unknown backdoor on victim’s machines.

Our investigation shows the operation was carried out by what we believe is a Chinese APT
group that has been testing and refining the tools in its arsenal for at least 3 years.

While some initial artifacts of this attack have already been analyzed by VinCSS, in this
report we will reveal the full infection chain used in this attack and provide a full analysis of
the TTPs used throughout this campaign as well as the new tools uncovered during the
research. We will also explore the evolution of the actor’s tools since they have been first
seen in the wild.

https://research.checkpoint.com/2021/chinese-apt-group-targets-southeast-asian-government-with-previously-unknown-backdoor/
https://blog.vincss.net/2021/05/re022-phan-1-phan-tich-nhanh-mau-ma-doc-gia-mao-cong-van-cua-uy-ban-kiem-tra-tw-VietNam.html


2/16

 
Infection Chain

The investigation starts from the campaign of malicious DOCX documents that are sent to
different employees of a government entity in Southeast Asia. In some cases, the emails are
spoofed to look like they were from other government-related entities. The attachments to
these emails are weaponized copies of legitimate looking official documents and use the
remote template technique to pull the next stage from the attacker’s server.

Figure 1: Examples of lure documents sent to the victims

Each document downloads a template from a different URL but with a similar pattern, with
the working folder containing names of brands ( ipad , surface , apple , etc.) to
distinguish between each victim.

Figure 2: External template URL

The remote templates in all the cases are RTF files weaponized using a variant of a tool
named RoyalRoad. This tool allows the attacker to create customized documents with
embedded objects that exploit the Equation Editor vulnerabilities of Microsoft Word. Despite

https://nao-sec.org/2020/01/an-overhead-view-of-the-royal-road.html


3/16

the fact that these vulnerabilities are few years old, they are still used by multiple attack
groups, and especially popular with Chinese APT groups.

The initial documents and RTF files are just the very start of an elaborate multi-stage
infection-chain we will analyze.

Figure 3: Full infection chain

RoyalRoad RTF

As all RoyalRoad RTFs, the next stage RTF document contains encrypted payload and
shellcode.

Figure 4: RTFobj output, exposing OLE objects information

To decrypt the payload from the package, the attacker uses the RC4 algorithm with the key
123456 , and the resulted DLL file is saved as 5.t  in the %Temp%  folder. The shellcode is

also responsible for the persistence mechanism – it creates the scheduled task named



4/16

Windows Update  that should run the exported function StartW  from 5.t  with
rundll32.exe , once a day.

The use of StartW  as exported function, is common with Cobalt Strike DLL’s. The use of
such an export name might indicate that in other cases, the same toolset is used to deliver
Cobalt Strike instead of the payloads we describe below.

 
5.t Downloader

The 5.t  DLL’s original name is Download.dll . It starts with a common anti-sandboxing
technique detecting the acceleration of code execution: it gets the local time before and after
a Sleep function call and checks if the Sleep was skipped.

Then the loader gathers data on the victim’s computer including hostname, OS name and
version, system type (32/64 bit), user name, MAC addresses of the networking adapters. It
also queries WMI for the anti-virus information.

The loader then encrypts the information using the RC4 with the key 123456  and base64
encodes it.

The data is then sent via GET HTTP to:

https://<C&C IP>/<working_folder>/Main.php?Data=<encrypted_data>  with the
User-Agent Microsoft Internet Explorer  and then the loader gets the response from

https://<C&C IP>/<working_folder>/buy/<hostname>.html .

If the threat actor finds the victim machine interesting, the response from the server contains
the next stage executable in encrypted form, in the same way the data is sent to the C&C
server.

To verify the integrity of the received message, the loader uses the FNV-1A64 hash algorithm
to check if the prefix of the decrypted message is A257 , and also calculates the MD5 of the
message to makes sure it’s the same one as specified at the start of the message.

Figure 5: Start of the decrypted response

In the end, the loader loads the decrypted DLL to memory, starts its execution from the
StartW  export function and notifies the server about the result of the operation.

The Loader



5/16

To ensure only one instance of the loader is running, the loader first creates an event named
9DJ8;;L;'4299FDS12JS  and proceeds with the execution if the event did not exist before.

For anti-analysis purposes, the loader functionality is implemented as a shellcode, which is
stored encrypted inside the binary. The loader decrypts the shellcode by XORing it with the
32 byte key:

[0x8a, 0x4e, 0xd1, 0xbb, 0xc4, 0xcc, 0x75, 0x3a, 0x4b, 0x5f, 0xe1, 0x99,
0x3a, 0x4b, 0x5f, 0x61, 0xd1, 0xbb, 0xc4, 0x50, 0xe4, 0x99, 0x3a, 0x4b,

0xe4, 0x99, 0xcc, 0x75, 0x3a, 0xe4, 0x90, 0x8a] ,  then loads the needed libraries
and passes the execution to the shellcode itself.

Figure 6: List of loaded libraries used for by shellcode to dynamically resolve API
functions

Another anti-analysis technique observed being used by the shellcode inside the loader is
dynamic API resolving using the known hash method. This way, the loader is able to not only
hide its main functionality but also avoid static detection of suspicious API calls by
dynamically resolving them instead of using static imports.

The decrypted shellcode contains a configuration that is used to obtain and correctly run the
next stage. It includes the C&C server IP and port, as well as some other values that we will
discuss later.



6/16

Figure 7: Malware configuration

Once initialized, the shellcode sends the CONNECT HTTP/1.1  message to the IP:port from
the configuration and follows up with another message containing the identifier (in our case
admin )  XORed with a hardcoded 48-byte key. The received message is decrypted in the

same way and the shellcode checks if it starts with the magic number: 0x11d4 .  If the
server returns valid data, the loader runs several checks on its PE headers, load the
backdoor to memory and executes an exported function named MainThread .

The loader DLL also contains a PE executable in a resource named TXT .  The executable
is named SurvExe  based on the PDB path left by the attacker:

C:\Users\user\Desktop\0814-surexe\x64\SurvExe\x64\Release\SurvExe.pdb .

This executable is supposed to be responsible for copying the file passed to it as a
parameter to the TEMP  directory with the name OEJFISDOFJDLK . However, the resource is
not used and seems to have been left by the attacker from previous malware versions.

The Backdoor

As we discussed before, at the final stage of the infection chain the malicious loader is
supposed to download, decrypt and load a DLL file into memory. In theory, this plug-in
architecture might be used to download and install any other module in addition to the
backdoor we received.

The backdoor module appears to be a custom and unique malware with the internal name
VictoryDll_x86.dll .

The backdoor capabilities include the ability to:

Delete/Create/Rename/Read/Write Files and get files attributes
Get processes and services information
Get screenshots
Pipe Read/Write – run commands through cmd.exe
Create/Terminate Process
Get TCP/UDP tables
Get CDROM drives data
Get registry keys info
Get titles of all top-level windows
Get victim’s computer information – computer name, user name, gateway address,
adapter data, Windows version (major/minor version and build number) and type of
user
Shutdown PC



7/16

C&C Communication

For the C&C communication, the backdoor uses the same configuration as the one from the
previous step, which contains server IP and port.

First, it sends to the server “Start conversation” ( 0x540 ) message XORed with hard-coded
256-byte key.

Figure 8: “Start conversation” request sent by the backdoor

The server, in turn, returns the “Get Victim Information” ( 0x541 ) message and the new 256-
byte key that will be used for all the subsequent communication. 

Figure 9: Response from C&C server

All the subsequent communication with the C&C server has the following format:

[ Size ] followed by XORed [ TypeID ] and [ Data ] (with 256-byte key).

The full list of commands and different types of messages between the C&C and the
backdoor is provided in Appendix A.



8/16

Some History

Searching for files similar to the final backdoor in the wild, we encountered a set of files that
were submitted to VirusTotal in 2018. The files were named by the author as MClient  and
appear to be part of a project internally called SharpM , according to their PDB paths.
Compilation timestamps also show a similar timeframe between July 2017 and June 2018,
and upon examination of the files, they were found to be older test versions of our
VictoryDll  backdoor and its loaders chain.

The numerous similarities include:

The specific implementation of the main backdoor functionality is identical;

The SurvExe  resource in the loader is very similar to one of the MClient ’s methods
using the same event name pattern. Also, SurvExe  seems to have inherited the
masquerading technique from MClient  – both were internally named svchost.exe .

Figure 10: SurvExe module code compared to MClient’s code (right)

The connection method has the same format. Moreover, MClient ’s connection XOR
key and VictoryDll ‘s initial XOR key are the same (in fact, VictoryDll ‘s XOR
key is the expansion of this key to 256 bytes):



9/16

Figure 11: MClient’s XOR key compared to VictoryDLL’s XOR key (right)

MClient  contained an additional DLL called AutoStartup_DLL , whose purpose
was to create the scheduled task called Windows Update  – a functionality which in
our campaign was delegated to the RTF exploit.

Same but Different

The backdoor has also undergone some changes in the architecture, functionality and
naming:

Different export function names: in our backdoor, the exported function is named
MainThread  while in all versions of the MClient  variant the export function was

named GetCPUID .
Same configuration fields, but the different obfuscation used. In the later version, the
configuration is a part of the encrypted shellcode inside the loader, whereas in
MClient  the configuration is hardcoded in the backdoor XORed with the byte 0x56

or, in some test versions, not obfuscated at all.
MClient  has an addition al persistence mechanism besides the scheduled task

the VictoryDll  has in its infection chain: in case of low privileges, on Windows 10,
or having Kaspersky installed on the victim’s computer, MClient  adds itself to
SOFTWARE\Microsoft\Windows\CurrentVersion\Run  registry with the name Intel
USB3 Driver .
MClient  versions from 2018 contain the code that bypasses UAC using wusa.exe. In
VictoryDll  this function doesn’t exist anymore; instead of that, the code only tries to

get the user’s privileges by attempting to open the file C:\Windows\l  and checking
the result of this operation.
The MClient  version from January 2018
( aa5458bdfefe2a97611bb0fd9cf155a06f88ef5d ) also contained a keylogger
functionality which has since been removed in the subsequent test versions and not
present in VictoryDll .



10/16

Overall, we can see that in these 3 years, most of the functionality of MClient  and
AutoStartup_DLL  was preserved and split between multiple components – probably to

complicate the analysis and decrease the detection rates at each stage. We may also
assume that there exist other modules based on the code from 2018 that might be installed
by the attacker in the later stages of the attack.

Infrastructure

First stage C&C servers are hosted by 2 different cloud services, located in Asia (Hong Kong
and Malaysia). The backdoor C&C server, 107.148.165[.]151 , is hosted on Zenlayer, a
US-based provider which is widely used for C&C purposes by multiple threat actors.

The threat actor operates the C&C servers in a limited daily window, making it harder to gain
access to the advanced parts of the infection chain. Specifically, it returned the next stage
payloads only during 01:00 – 08:00 UTC on workdays.

At some point in the research, one of the attacker’s servers that served the loader
component had directory listing enabled for a limited time. In addition to that, the Main.php
file was served without processing and revealed a piece of PHP code whose purpose was to
log all the incoming requests with the date, IP address and decrypted data to log.txt

Figure 12: File listing on the server



11/16

Figure 13: Fragment of the simple PHP code that logs the requests, found on the
server

Attribution

We attribute this cluster of activity to a Chinese threat group with medium to high confidence,
based on the following artifacts and indicators:

The RoyalRoad RTF exploit building kit mentioned above, has been reported by
numerous researchers as a tool of choice among Chinese APT groups.

The C&C servers returned payloads only between 01:00 – 08:00 UTC, which we
believe are the working hours in the attackers’ country, therefore the range of possible
origins of this attack is limited.

The C&C servers did not return any payload (even during working hours), specifically
the period between May 1st and 5  – this was when the Labor Day holidays in China
took place.

Some test versions of the backdoor contained internet connectivity check with
www.baidu.com – a leading Chinese website.

Some test versions of the backdoor from 2018 were uploaded to VirusTotal from China.

Figure 14: Submissions for test backdoors
(f8088c15f9ea2a1e167d5fa24b65ec356939ba91 and
7a38ae6df845def6f28a4826290f1726772b247e)

While we could identify overlaps in TTPs with multiple Chinese APT groups, we have been
unable to attribute this set of activities to any known group.

Conclusion

We unveiled the latest activity of what seems to be a long-running Chinese operation that
managed to stay under the radar for more than 3 years. In this campaign, the attackers
utilized the set of Microsoft Office exploits and loaders with anti-analysis and anti-debugging

th

https://publicholidays.cn/2021-dates/
https://www.baidu.com/


12/16

techniques to install a previously unknown backdoor.

Analyzing the backdoor’s code evolution since its first appearance in the wild showed how it
transformed from a single executable to a multi-stage attack, making it harder to detect and
investigate.

Check Point Threat Emulation blocks this attack from the very first step.

Appendix A: Backdoor Commands

Message Type Type ID Arguments Source

Send victim’s information 0x2 Info Victim

CDROM drives data 0x4 – / Drives data Both

Get Files data 0x5/0x6 Path / Files data Both

Create Process 0x7 Command Line C&C
server

Rename File 0x8 Old filename, New
filename

C&C
server

Delete File 0x9 Filename C&C
server

Read File 0xa Filename, Offset / File’s
content

Both

Exit Pipe 0xb – C&C
server

Create Pipe 0xc – C&C
server

Write To Pipe 0xd Buffer C&C
server

https://www.checkpoint.com/infinity-vision/zero-day-protection/


13/16

Get Uninstalled software data 0xe – / Software data Both

Get windows text 0xf – / Windows text Both

Get active processes data 0x10 – / Processes data Both

Terminate Process 0x11 Process ID C&C
server

Get screenshot 0x12/0x13 – / Screenshot temp file Both

Get services data 0x14 – / Services data Both

Get TCP/UDP tables 0x15 – / Tables data Both

Get registry key data 0x16 Registry path / Reg data Both

Shutdown 0x17 – C&C
server

Exit process 0x18 – C&C
server

Restart current process 0x19 – C&C
server

Write to file 0x4C7 Filename, Buffer C&C
server

Start Connection 0x540 Zero Byte Victim

Get victim’s information/Update
XOR key

0x541 New XOR key / Victim’s
info

Both

None 0x120E – C&C
server



14/16

Ack 0x129D3 Name (‘admin’ in our
case)

Victim

Appendix B: Indicators of Compromise

Documents

278c4fc89f8e921bc6c7d015e3445a1cc6319a66 
42be0232970d5274c5278de77d172b7594ff6755
f9d958c537b097d45b4fca83048567a52bb597bf
fefec06620f2ef48f24b2106a246813c1b5258f4
548bbf4b79eb5a173741e43aa4ba17b92be8ed3a
417e4274771a9614d49493157761c12e54060588

Executables

03a57262a2f3563cf0faef5cde5656da437d58ce 5.t
388b7130700dcc45a052b8cd447d1eb76c9c2c54 5.t
176a0468dd70abe199483f1af287e5c5e2179b8c 5.t
01e1913b1471e7a1d332bfc8b1e54b88350cb8ad loader
8bad3d47b2fc53dc6f9e48debac9533937c32609 ServExe (x64)
0a588f02e60de547969d000968a458dcdc341312 VictoryDll

C&C servers

45.91.225[.]139
107.148.165[.]151
45.121.146[.]88

Old backdoor versions

MClient:

aa5458bdfefe2a97611bb0fd9cf155a06f88ef5d
 4da26e656ef5554fac83d1e02105fad0d1bd7979
 f8088c15f9ea2a1e167d5fa24b65ec356939ba91
 0726e56885478357de3dce13efff40bfba53ddc2
 7855a30e933e2b5c3db3661075c065af2e40b94e
 696a4df81337e7ecd0ea01ae92d8af3d13855c12
 abaaab07985add1771da0c086553fef3974cf742
 7a38ae6df845def6f28a4826290f1726772b247e

Autostart_DLL:

e16b08947cc772edf36d97403276b14a5ac966d0
 c81ba6c37bc5c9b2cacf0dc53b3105329e6c2ecc
 a96dfbad7d02b7c0e4a0244df30e11f6f6370dde
 6f5315f9dd0db860c18018a961f7929bec642918

Appendix C: MITRE ATT&CK Matrix



15/16

Tactic Technique Technique Name

Initial Access T1566.001 Phishing:
Spearphishing
Attachment

Execution T1204.002 User Execution:
Malicious File

T1203 Exploitation for Client Execution 

T1059.003 Execution Command and Scripting Interpreter:
Windows Command Shell

Persistence T1053 Scheduled Task/Job

Defense
Evasion

T1027 Obfuscated Files or
Information

T1221 Template Injection

Discovery T1082 System Information
Discovery

T1518 Software Discovery

T1057 Process Discovery

T1012 Query Registry

T1007 System Service discovery

T1081 File and Directory Discovery

T1010 Application Window Discovery

Collection T1113 Screen Capture



16/16

T1005 Data from Local System

Command
and Control

T1132 Data Encoding

T1104 Multi-Stage Channels

T1071.001 Application Layer Protocol: Web Protocols

T1573.001 Encrypted Channel: Symmetric Cryptography

Exfiltration T1041 Exfiltration Over C2
Channel

Impact T1529 System
Shutdown/Reboot


