
1/5

Chetan Nayak June 1, 2021

PE Reflection: The King is Dead, Long Live the King
bruteratel.com/research/feature-update/2021/06/01/PE-Reflection-Long-Live-The-King/

Reflective DLL injection remains one of the most used techniques for post-exploitation and to
get your code executed during initial access. The initial release of reflective DLLs by Stephen
Fewer provided a great base for a lot of offensive devs to build their tools which can be
executed in memory. Later came in PowerShell and C# reflection which use CLR DLLs to
execute managed byte code in memory. C# and PowerShell reflection are both subject to
AMSI scan which perform string based detections on the byte code, which is not a lot
different from your usual Yara rule detection. Reflective DLLs however provide a different
gateway which at a lower level allows you to customize how the payload gets executed in
memory. Most EDRs in the past 3-4 years have upgraded their capabilities to detect the
default process injection techniques which utilize Stephen Fewer’s reflective loader along
with his Remote Process Execution technique using the CreateRemoteThread API.

To keep the detection false postivies to a minimum, most EDRs hook VirtualAlloc,
VirtualALlocEx, WriteProcessMemory, CreateRemoteThread, QueueUserAPC,
MapViewOfSection and a few more to hunt for consecutive API calls and known malicious
string scans in the RWX memory regions. But in the end, these are legitimate windows APIs,
and it becomes hard to categorize every such API call as malicious since it might lead to a
lot of false positives. Thus EDRs end up scanning the newly created Executable memory
block in the remote process which has PAGE_EXECUTE_READWRITE permissions.
Attackers realized this and started changing the memory permission to
PAGE_EXECUTE_READ for reflective DLLs and PAGE_EXECUTE for shellcode injections.
But this still leaves out a possibility of detection because of the new RWX artefact which get’s
created by the loader after the injection.

The below image shows the default injection of Stephen Fewer with RWX modified to RX.
You can see that even if you configure RX, the loader of Stephen Fewer still calls VitualAlloc
with RWX, WriteProcessmemory after re-basing the PE and then calls the DllMain function
as a function pointer.

https://bruteratel.com/research/feature-update/2021/06/01/PE-Reflection-Long-Live-The-King/
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection/blob/master/dll/src/ReflectiveLoader.c

2/5

The above logic can be verified from this line of Stephen fewer’s loader. This basically
means that even if you allocate RX as the region for your initial loader code, your loader
when executed, will rebase itself to a new region with VirtualAlloc(RWX), load all the PE
Sections and then call the DllMain entrypoint. Any EDR which hooks
VirtualAlloc/VirtualAllocEx can scan the process memory for this RWX section, and it can
quickly identify that this is an injected DLL and quickly block it from it’s execution. Most
payloads including the ones from Metasploit and other C2s do not provide any functionality
for this section to be modified. Now, if you try to modify this part of the code and replace the
RWX with first RW and then RX, then the dllmain execution will crash returning you an
ACCESS_VIOLATION error. This is because several different sections of the PE, require
different types of permissions. If you provide RWX to every PE section, it will work, but if you
provide only RX, then it won’t work because some PE sections require you to have the
section as writable. If the section isn’t writable, the DllMain won’t be able to write any static
variables to the required section or erase or reallocate new data in those parts of the section.

However, those of you who have spent time reversing the DoublePulsar userland shellcode
like me, would have noticed that these payloads tend to reallocate the PE file a bit more than
Stephen Fewer’s default reflective loader. So, unlike Stephen’s loader which allocates the
whole memory block to a single page of memory using VirtualAllocEx, we can simply
distribute the sections of PE to different locations. Each of these sections will have different
permissions. So basically, before we copy the PE sections to the new rebased-address, we
will validate the IMAGE_SECTION_HEADER’s Characteristics attribute with the respective
permissions using the ‘AND’ operation which will check the binary bit if set or not, and then
we will allocate every piece of the PE section to a new page in memory. By doing this, every
page will have its own permission and we will never require a full RWX region. We can split
each section as follows.

https://bruteratel.com/images/post_img/2021-06-01-PEReAlloc/stephen_pe_injection.png
https://github.com/stephenfewer/ReflectiveDLLInjection/blob/master/dll/src/ReflectiveLoader.c#L271
https://github.com/stephenfewer/ReflectiveDLLInjection/blob/master/dll/src/ReflectiveLoader.c#L271
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_section_header

3/5

numberOfSections = ((PIMAGE_NT_HEADERS)pOldNtHeader)->FileHeader.NumberOfSections;
pSectionHeader = ((ULONG_PTR) & ((PIMAGE_NT_HEADERS)pOldNtHeader)->OptionalHeader +
((PIMAGE_NT_HEADERS)pOldNtHeader)->FileHeader.SizeOfOptionalHeader);
while (numberOfSections--) {
 void* thisSectionVA = (void*) (dllNewBaseAddress +
((PIMAGE_SECTION_HEADER)pSectionHeader)->VirtualAddress);
 ULONG_PTR thisSectionVirtualSize = ((PIMAGE_SECTION_HEADER)pSectionHeader)-
>Misc.VirtualSize;
 DWORD ulPermissions = 0;

 if (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE) {
 ulPermissions = PAGE_WRITECOPY;
 }
 if (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ) {
 ulPermissions = PAGE_READONLY;
 }
 if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {
 ulPermissions = PAGE_READWRITE;
 }
 if (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) {
 ulPermissions = PAGE_EXECUTE;
 }
 if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE)) {
 ulPermissions = PAGE_EXECUTE_WRITECOPY;
 }
 if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {
 ulPermissions = PAGE_EXECUTE_READ;
 }
 if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {
 ulPermissions = PAGE_EXECUTE_READWRITE;
 }

 pVirtualProtect(thisSectionVA, thisSectionVirtualSize, ulPermissions,
&ulPermissions);

 pSectionHeader += sizeof(IMAGE_SECTION_HEADER);
}

4/5

The below screenshot shows the newly rebased PE section which does not have any RWX
regions anymore, and the RX section only contains the executable code i.e. the .text section
since all other remaining sections are allocated to other regions now.

One important note before we execute our main payload, is to cleanup any existing artefacts
left from our previously allocated (RX) region. This can be done using a simple struct
containing the pointer to the start of our initial RX region (thread) and the parameters passed
to the thread and then forwarding it to Dllmain for cleanup using VirtualFree. This can be
done using the below code in DllMain. This basically erases the whole history of who actually
created the new rebased regions and executed DllMain.

#include "badger.h"

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD dwReason, LPVOID lpReserved)
{
 BOOL bReturnValue = TRUE;
 switch (dwReason)
 {
 case DLL_PROCESS_ATTACH: {
 struct DLL_SWEEPER *dllSweeper = (struct DLL_SWEEPER*)lpReserved;
 CHAR* newlpParam = NULL;

 task_crealloc(&newlpParam, (CHAR*)dllSweeper->lpParameter);
 VirtualFree((LPVOID)dllSweeper->lpParameter, 0, MEM_RELEASE);
 VirtualFree((LPVOID)dllSweeper->dllInitAddress, 0, MEM_RELEASE);

 badger_main(newlpParam);
 break;
 }
 case DLL_PROCESS_DETACH:
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 break;
 }
 return bReturnValue;
}

https://bruteratel.com/images/post_img/2021-06-01-PEReAlloc/reflect_pe.png

5/5

Brute Ratel will have this feature in the upcoming version 0.5. It not only relocates the whole
PE section to a new region with dedicated permissions, but also erases the whole PE, it’s
arguments and it’s thread from memory which were created by it’s Parent process during the
initial RX region execution. So, if any EDR or defender tries to find the injected PE in
memory, they won’t find any threads created from external entity. Also, all the memory
sections in the executable will look like garbage because the whole PE will be split into
multiple parts allocated into different places. And for those of you who don’t know, Brute
Ratel’s payloads by default erased the DOS header/PE header and NT header, whenever a
new memory region was allocated since version 0.3.1.

