PE Reflection: The King is Dead, Long Live the King

bruteratel.com/research/feature-update/2021/06/01/PE-Reflection-Long-Live-The-King/
Chetan Nayak June 1, 2021

Reflective DLL injection remains one of the most used techniques for post-exploitation and to
get your code executed during initial access. The initial release of reflective DLLs by Stephen
Fewer provided a great base for a lot of offensive devs to build their tools which can be
executed in memory. Later came in PowerShell and C# reflection which use CLR DLLs to
execute managed byte code in memory. C# and PowerShell reflection are both subject to
AMSI scan which perform string based detections on the byte code, which is not a lot
different from your usual Yara rule detection. Reflective DLLs however provide a different
gateway which at a lower level allows you to customize how the payload gets executed in
memory. Most EDRs in the past 3-4 years have upgraded their capabilities to detect the
default process injection techniques which utilize Stephen Fewer’s reflective loader along
with his Remote Process Execution technique using the CreateRemoteThread API.

To keep the detection false postivies to a minimum, most EDRs hook VirtualAlloc,
VirtualALlocEx, WriteProcessMemory, CreateRemoteThread, QueueUserAPC,
MapViewOfSection and a few more to hunt for consecutive API calls and known malicious
string scans in the RWX memory regions. But in the end, these are legitimate windows APIs,
and it becomes hard to categorize every such API call as malicious since it might lead to a
lot of false positives. Thus EDRs end up scanning the newly created Executable memory
block in the remote process which has PAGE_EXECUTE_READWRITE permissions.
Attackers realized this and started changing the memory permission to
PAGE_EXECUTE_READ for reflective DLLs and PAGE_EXECUTE for shellcode injections.
But this still leaves out a possibility of detection because of the new RWX artefact which get’s
created by the loader after the injection.

The below image shows the default injection of Stephen Fewer with RWX modified to RX.
You can see that even if you configure RX, the loader of Stephen Fewer still calls VitualAlloc
with RWX, WriteProcessmemory after re-basing the PE and then calls the DIIMain function
as a function pointer.

1/5

https://bruteratel.com/research/feature-update/2021/06/01/PE-Reflection-Long-Live-The-King/
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection/blob/master/dll/src/ReflectiveLoader.c

The above logic can be verified from this line of Stephen fewer’s loader. This basically

means that even if you allocate RX as the region for your initial loader code, your loader
when executed, will rebase itself to a new region with VirtualAlloc(RWX), load all the PE
Sections and then call the DIIMain entrypoint. Any EDR which hooks
VirtualAlloc/VirtualAllocEx can scan the process memory for this RWX section, and it can
quickly identify that this is an injected DLL and quickly block it from it's execution. Most
payloads including the ones from Metasploit and other C2s do not provide any functionality
for this section to be modified. Now, if you try to modify this part of the code and replace the
RWX with first RW and then RX, then the dlimain execution will crash returning you an
ACCESS_VIOLATION error. This is because several different sections of the PE, require
different types of permissions. If you provide RWX to every PE section, it will work, but if you
provide only RX, then it won’t work because some PE sections require you to have the
section as writable. If the section isn’t writable, the DIIMain won’t be able to write any static
variables to the required section or erase or reallocate new data in those parts of the section.

However, those of you who have spent time reversing the DoublePulsar userland shellcode
like me, would have noticed that these payloads tend to reallocate the PE file a bit more than
Stephen Fewer’s default reflective loader. So, unlike Stephen’s loader which allocates the
whole memory block to a single page of memory using VirtualAllocEx, we can simply
distribute the sections of PE to different locations. Each of these sections will have different
permissions. So basically, before we copy the PE sections to the new rebased-address, we
will validate the IMAGE_SECTION_HEADER'’s Characteristics attribute with the respective
permissions using the ‘AND’ operation which will check the binary bit if set or not, and then
we will allocate every piece of the PE section to a new page in memory. By doing this, every
page will have its own permission and we will never require a full RWX region. We can split
each section as follows.

2/5

https://bruteratel.com/images/post_img/2021-06-01-PEReAlloc/stephen_pe_injection.png
https://github.com/stephenfewer/ReflectiveDLLInjection/blob/master/dll/src/ReflectiveLoader.c#L271
https://github.com/stephenfewer/ReflectiveDLLInjection/blob/master/dll/src/ReflectiveLoader.c#L271
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_section_header

numberOfSections = ((PIMAGE_NT_HEADERS)pOldNtHeader)->FileHeader .NumberOfSections;
pSectionHeader = ((ULONG_PTR) & ((PIMAGE_NT_HEADERS)pOldNtHeader)->0OptionalHeader +
((PIMAGE_NT_HEADERS)pOldNtHeader)->FileHeader .SizeOfOptionalHeader);
while (numberOfSections--) {

void* thisSectionVA = (void*) (dllNewBaseAddress +
((PIMAGE_SECTION_HEADER)pSectionHeader)->VirtualAddress);

ULONG_PTR thisSectionVirtualSize = ((PIMAGE_SECTION_HEADER)pSectionHeader)-
>Misc.VirtualSize;

DWORD ulPermissions = 0;

if (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE) {
ulPermissions = PAGE_WRITECOPY;
}
if (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ) {
ulPermissions = PAGE_READONLY;
}
if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {
ulPermissions = PAGE_READWRITE;
}
if (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) {
ulPermissions = PAGE_EXECUTE;
}
if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE)) {
ulPermissions = PAGE_EXECUTE_WRITECOPY;
}
if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {
ulPermissions = PAGE_EXECUTE_READ;
}
if ((((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_EXECUTE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_WRITE) && (((PIMAGE_SECTION_HEADER)pSectionHeader)->Characteristics &
IMAGE_SCN_MEM_READ)) {
ulPermissions = PAGE_EXECUTE_READWRITE;

pVirtualProtect(thisSectionVA, thisSectionVirtualSize, ulPermissions,
&ulPermissions);

pSectionHeader += sizeof (IMAGE_SECTION_HEADER);

3/5

The below screenshot shows the newly rebased PE section which does not have any RWX
regions anymore, and the RX section only contains the executable code i.e. the .fext section
since all other remaining sections are allocated to other regions now.

Processes Services Network _ Disk
Name PID CPU I/Ototel ... Privateb.. Userneme Description
> [E] System Idle Process 0 %05 60kB NTAUTHORITV\SYSTEM | @ rotepad.cxe (2400) Properties - o
[Registry 88 527MB
[csrss.exe 416 1.66 MB Client Server Runtime General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment
[# wininit.exe 49 129M8 Windows Start-Up Ap
[csrss.exe 508 0.0 699MB Client Server Runtime | 713¢ freeregons == Refiesh
:D winlogon.exe 5% 264 M8 Windows Logon Appl | pace address Type Sze Protect.. Use TotalWs Privatews sharesblews Sharedws Locke *
~ T explorer.exe 06 024 743ME BRUTERATEL\vendetta Windows Explorer | s . e o ok ok ke
P SecurityHealthsystray.exe 6796 257MB BRUTERATEL\vendetta Windows Security not [gc144be661000 e — SR S =i
[&] vm3dservice.exe 024 167MB BRUTERATEL\vendetta UMware SVGA Helper P —— e R btack (thresd 3552)
(20 vmtoolsd.exe 7064 017 983B/s 6158MB BRUTERATEL\vendetta VMware Tools CoreSe | oxd3afcecon Private: Commit 12k8 RWAG Stack (thread 8504)
1% ProcessHacker.exe 5940 099 17.59 MB_ BRUTERATEL\vendetta Process Hacker 0x43afc6c000 Private: Commit 12kB RW4G Stack (thread 7372)
v [5 badger.exe 2656 0.16 358 MB_BRUTERATEL\vendetta x43afSecinn Private: Commit 12kB RW+G Stack (thread 7464)
& e 2400 008 167kB/s 595MB BRUTERATEL\vendetta Notepad 0x7ff329502000 Image: Commit 36k RW s\System32ntdl.dl 818 2448 48 48
0x7ff2294ff000 Image: Commit ak8 RW s\system32yntal.dl ak8 448
81 notepad.exe (2400) (Ox - Ox1ddb) - o X 0x7f329229000 Image: Commit 8k8 AW 8k8 8k8
0x7f8230e7000 Image: Commit sks Rw tem32\ser32.dl sks sk8
00000000 B8 6d 0d £9 7f 01 00 <% 4 18 00 00 Of Lf 40 OOf ~ 0x7F328034000 Image: Commit 4k8 RW tem32Ypsapi.dl 4kB 48
oot €53 48 8 4% 88 cc 0x7f1329012000 Image: Commit 2468 RW 5\System32\cbeata ol 2418 20k8 48 48
0x7ff328f68000 Image: Commit 8kB RW indows\System32\kernel32.dll 4kB 4kB
0x7ff928249000 Image: Commit 38kE RW indows\System32'shell 32.dll 8k 28k8
Our rebased Execut3B[az7500 24k RW tem32\combase dl 2448 2448
s tion (text) [% 2827000 8kB RW tem32\SHCore. dil 8kB 8kB
ec - 0x7f928254000 ommil 4kB RW tem32\nsi. dl 4kB 4kB
0x7f92822d000 Image: Commit 16kB RW indows\System32imsctf. dil 16kB 16kB
0x7ff9280f6000 Image: Commit 4k8 RW ws\System32\ws2_32.dl 4kB 4k8
0x7ffa27/04000 Image: Commit aks Rw <\system32imm3z.di aka 48
0x7f527c80000 Image: Commit 4kB RW tem32\gdi32.dil 4kB 4B
0x7f9275d4000 Image: Commit 12kB RW ystem32\oleaut32.dl 12kB 12k8 v
4 1. 0x7ff32769b000 < >
v
Rereod | [e S T =

One important note before we execute our main payload, is to cleanup any existing artefacts
left from our previously allocated (RX) region. This can be done using a simple struct
containing the pointer to the start of our initial RX region (thread) and the parameters passed
to the thread and then forwarding it to DIlmain for cleanup using VirtualFree. This can be
done using the below code in DIIMain. This basically erases the whole history of who actually
created the new rebased regions and executed DlIMain.

#include "badger.h"

BOOL WINAPI D11Main(HINSTANCE hinstDLL, DWORD dwReason, LPVOID lpReserved)
{
BOOL bReturnValue = TRUE;
switch (dwReason)
{
case DLL_PROCESS_ATTACH: {
struct DLL_SWEEPER *dllSweeper = (struct DLL_SWEEPER*)lpReserved;
CHAR* newlpParam = NULL;

task_crealloc(&newlpParam, (CHAR*)dllSweeper->1pParameter);
VirtualFree((LPVOID)d1l1lSweeper->1pParameter, 0, MEM_RELEASE);
VirtualFree((LPVOID)d1l1lSweeper->dllInitAddress, ©, MEM_RELEASE);

badger_main(newlpParam);
break;

}

case DLL_PROCESS_DETACH:

case DLL_THREAD_ATTACH:

case DLL_THREAD_DETACH:
break;

}

return bReturnValue;

4/5

https://bruteratel.com/images/post_img/2021-06-01-PEReAlloc/reflect_pe.png

Brute Ratel will have this feature in the upcoming version 0.5. It not only relocates the whole
PE section to a new region with dedicated permissions, but also erases the whole PE, it's
arguments and it's thread from memory which were created by it's Parent process during the
initial RX region execution. So, if any EDR or defender tries to find the injected PE in
memory, they won't find any threads created from external entity. Also, all the memory
sections in the executable will look like garbage because the whole PE will be split into
multiple parts allocated into different places. And for those of you who don’t know, Brute
Ratel’s payloads by default erased the DOS header/PE header and NT header, whenever a
new memory region was allocated since version 0.3.1.

5/5

