
1/18

Erin Avllazagaj June 1, 2021

Inside commercial malware sandboxes
web.archive.org/web/20210613070852/https://albocoder.github.io/malware/2021/06/01/SandboxStudy.html

Jun 1, 2021

Koro Sensei sandbox

Introduction

In this blog post I will explore the commercial malware sandboxes. It appears malware is
allowed to access the internet in many sandboxes . So with that access I decided to collect
all the environmental features I could think of and send them to my discord channel. Since
Python is the language with the largest library support ever (maybe?) I wrote a python script to
take many environment features through psutil , platform , cpuinfo etc. The whole
python code is here.

Then we use pyinstaller to create a single executable (~10 MB) using a command like this:
pyinstaller --onefile --noupx sandbox-env-stealer.py . Then for the sake of

completeness we compressed the executable in the latest upx and uploaded to VirusTotal. After
a few crashes we ended with 4 samples:

47ed17bdea1dab10fdee…
07a783fc3ae6a065dc0b…
e472c0493a9a35b7975c…
88d38301327da310c5c0… (disregard the file name)

Of course, you can download the data I collected and play for yourself.

Experiment setup

I submitted one of the first samples on 17/03/2020 (because corona lockdown was getting
boring). Then life happened. After deciding to revisit this project I submitted the other 4 samples
around March 2021. I collected the following features (some ommited for brevity):

Windows version + arch
CPU name + core count
local and internet IP address
CPU counters
disk partitions and counters

What did learn?

https://web.archive.org/web/20210613070852/https://albocoder.github.io/malware/2021/06/01/SandboxStudy.html
https://web.archive.org/web/20210613070852/https://gist.github.com/Albocoder/43827f62dceb0970d4810e3719b993d9
https://web.archive.org/web/20210613070852/https://www.virustotal.com/gui/file/47ed17bdea1dab10fdee7f61dff8b8f33ad5d092b3e1e5f0f5a3522a27798183/detection
https://web.archive.org/web/20210613070852/https://www.virustotal.com/gui/file/07a783fc3ae6a065dc0bfad5e8f89ec3ae5be3bb1ec8ada6f774710399f65305/detection
https://web.archive.org/web/20210613070852/https://www.virustotal.com/gui/file/e472c0493a9a35b7975ca2b5acb4663746993c55c6f2d94742d301d88f050e95/detection
https://web.archive.org/web/20210613070852/https://www.virustotal.com/gui/file/88d38301327da310c5c00a0b3ae8209730e033f3c57575a447096d94a647e816/detection
https://web.archive.org/web/20210613070852/https:/albocoder.github.io/assets/misc/sandbox_reports.zip

2/18

OS version

First, I noticed that 78% of all the sandboxes run Windows 7 build 7601 (the most famous
pirated version). That accounts for 40 out of the 51 executions. The table below illustrates
it all. As it seems, the only versions are Windows 7 (build 7600 and 7601) and some flavor of
Windows 10. A malware sample will have a high chance of being run on a real machine if the
detected OS is anything but the following.

OS version # execs

Win 7 build 7601 40

Win 10.0.18362 3

Win 7 build 7600 3

Win 10.0.14393 3

Win 10.0.17134 2

Timeline analysis

In this section I will analyze some runtime features of the sandboxes. Here there are some
interesting features malware authors can use to quickly identify sandboxes. There are also
some lessons I learned from looking at the executions.

First off, I wanted to see how many executions we were getting per malware and how often.
This is particularly important since in our paper we showed that a malware need to run in 3
random environments at least every 3 weeks.

It appears, for the oldest malware sample 10 executions appear on the same day as the
submission, 1 execution 1 day later, 3 executions 33 days later and 2 executions 62 days later.
This means that the sample was deemed interesting 2 months from its first “appearance”.
However, we can’t conclude that this is what happens for all the samples, with different number
of VT engine detections or with more interest from individual AV vendors. For the record, I did
get an execution report back from the first sample just yesterday, after clicking the “reanalyze”
on VT . Either way, the malware was executed about 2 to 3 times every month, which is
close enough to 3 weeks (that we recommend in our paper), but we demonstrated in the paper
that on average 1 week stale of data decreases the detection rate.

Environment analysis

This sections will show some environment features that the malware can read.

The running processes

https://web.archive.org/web/20210613070852/https:/albocoder.github.io/assets/pdf_files/malw_variability.pdf

3/18

A common routine seen on many malware and benign samples is that or iterating the running
processes. I (as in python libraries) use a similar routine to retrieve the running processes. The
table below shows some of the running processes and the number of machines they were seen
to run on. Something interesting we can see here are the “special” programs. In some
machines we see the appearance of bitcoin-qt.exe , infinium.exe etc, while in some
others we see steam.exe , SteamService.exe etc, in some others filezilla.exe or
centralcreditcard.exe . This is usually done to see if the malware is a crypto miner, a

game hack, a file infector or a point-of-sale malware respectively.

Processes

Number
of
machines

... ...

conhost.exe 47

lsass.exe 46

spoolsv.exe 46

wininit.exe 46

smss.exe 46

System Idle Process 46

explorer.exe 46

winlogon.exe 46

System 46

services.exe 46

opera.exe 43

firefox.exe 43

dwm.exe 41

lsm.exe 40

Skype.exe 29

OSPPSVC.EXE 27

taskeng.exe 24

... ...

bitcoin-qt.exe 14

4/18

infium.exe 14

qip.exe 14

communicator.exe 14

bitcoind.exe 14

steam.exe 14

sppsvc.exe 12

vslvqrlijtvi.exe 12

splwow64.exe 12

artifact.exe 10

fontdrvhost.exe 10

SteamService.exe 9

SearchProtocolHost.exe 9

SearchFilterHost.exe 9

GoogleUpdate.exe 8

dllhost.exe 8

ioynossujx.exe 8

wqwupyjrsw.exe 8

notepad.exe 8

taskmgr.exe 7

ONENOTEM.EXE 7

sihost.exe 6

vmtoolsd.exe 6

SearchUI.exe 6

TrustedInstaller.exe 6

1a7446534577bab0984f5eb275bdf1f43ed92dfc.exe 6

ivpvkimw.exe 6

utg2.exe 6

5/18

Helios12.exe 5

OfficeClickToRun.exe 5

OmniPOS.exe 5

ifs.exe 5

EdcSvr.exe 5

Registry 5

OUTLOOK.EXE 5

wmpnetwk.exe 5

CentralCreditCard.exe 5

8lfuaq3.exe 4

SophosFileScanner.exe 4

e5d46536.exe 4

SgrmBroker.exe 4

nvtray.exe 4

hmpalert.exe 4

350befaf.exe 4

1a34b48b.exe 4

avp.exe 3

SEDService.exe 3

Tcpview.exe 3

mp3tray.exe 3

InstallRite.exe 3

SavService.exe 3

scap.exe 3

mscorsvw.exe 3

SAVAdminService.exe 3

sdrservice.exe 3

6/18

StartMenuExperienceHost.exe 3

Procmon.exe 3

backgroundTaskHost.exe 3

HttpLog.exe 3

ShellExperienceHost.exe 3

taskhostw.exe 3

popwack.exe 3

msdtc.exe 3

sedsvc.exe 3

avpui.exe 3

procexp64.exe 3

Procmon64.exe 3

SophosCleanM64.exe 2

module-cargo.exe 2

WindowsInternal.ComposableShell.Experiences.TextInput.InputApp.exe 2

MemCompression 2

DS5FEMT81XbOM0LW.exe 2

SecurityHealthService.exe 2

88d38301327da310c5c00a0b3ae8209730e033f3c57575a447096d94a647e816.exe 2

swc_service.exe 2

KMSAuto Net.exe 2

3sO7_zsS.exe 2

SophosFS.exe 2

TiWorker.exe 2

s35zi2y.exe 2

ld8itap.exe 2

SophosNtpService.exe 2

7/18

GoogleUpdateSetup.exe 2

SSPService.exe 2

swi_service.exe 2

pythonw.exe 2

WbjiETqs.exe 2

ctfmon.exe 2

pw.exe 2

swi_filter.exe 2

hltpwzd.exe 2

Sophos.Encryption.BitLockerService.exe 2

uniform-98682.exe 2

8eu3umxnf.exe 2

SophosIPS.exe 2

union_rechnung_install_39213.exe 2

userinit.exe 2

gzqhbp.exe 2

05a62b54.exe 2

SophosSafestore64.exe 2

sdcservice.exe 2

swi_fc.exe 2

3myJvMOn.exe 2

WmiApSrv.exe 2

cuckoo-
47ed17bdea1dab10fdee7f61dff8b8f33ad5d092b3e1e5f0f5a3522a27798183.exe

2

mtwebooS.exe 2

05a62b54e6e32c406f33d22634b03fe8.exe 2

SnrUNWUv.exe 2

msiexec.exe 2

8/18

follow-sneaky-on-twitch.exe 2

SophosHealth.exe 2

... ...

absolutetelnet.exe 1

gmmeby.exe 1

outlook.exe 1

isspos.exe 1

qgksae.exe 1

totalcmd.exe 1

ncftp.exe 1

whatsapp.exe 1

igfxCUIService.exe 1

winscp.exe 1

coreftp.exe 1

barca.exe 1

socbristol.exe 1

rundll32.exe 1

accupos.exe 1

bedrooms-story-avoid.exe 1

active-charge.exe 1

fling.exe 1

vrmafl.exe 1

gmailnotifierpro.exe 1

pidgin.exe 1

diaryrecent.exe 1

creditservice.exe 1

operamail.exe 1

9/18

centralcreditcard.exe 1

unsecapp.exe 1

AutoKMS.exe 1

medical reservoir.exe 1

alftp.exe 1

netsh.exe 1

wspsvc.exe 1

scriptftp.exe 1

spgagentservice.exe 1

slwvdq.exe 1

edcsvr.exe 1

Sysmon.exe 1

american.exe 1

wmi64.exe 1

flashfxp.exe 1

axdnik.exe 1

webpagepioneer.exe 1

skype.exe 1

Memory Compression 1

fpos.exe 1

ApplicationFrameHost.exe 1

filezilla.exe 1

spcwin.exe 1

Unfortunately, we can also see things like cuckoo-
47ed17bdea1dab10fdee7f61dff8b8f33ad5d092b3e1e5f0f5a3522a27798183.exe or
1a7446534577bab0984f5eb275bdf1f43ed92dfc.exe which is simply the checksum hash of

10/18

the sample. An attacker can simply compute the popular checksums (the ones on the
details section in VT) and see if its name is any of those and terminate .

Machine names

One thing I wanted to see is the username the malware in the sandbox will run on. For the most
part I was underwhelmed. It appears the machine name remains the same across executions,
which may be easy for an attacker to just submit bogus “malware” just to harvest all the
machine names. In terms of the context I did see that sometimes the sample was executed as
Administrator meaning that some sandboxes give the “malware” admin privilleges. This is

done to make sure that malware can execute.

Username Number of executions

art-PC 7

PC-4a095e27cb 5

w7sb64-01 3

w7x64 3

z97Otih0P4v-PC 2

AMAZING-AVOCADO 2

mgvwazbfy 1

WIN-IMCGBF4ZV49 1

HAPUBWS-PC 1

DESKTOP-VXO5LFI 1

QGl87k-PC 1

IOFXBF742797820 1

WIN-QVM8C8V0B1E 1

XDuwTfOno 1

dillon 1

WIN-BROIECEJLD2 1

CZAC38122213349 1

Xj8Uz1ljKXdt-PC 1

DESKTOP-ILTLN65 1

11/18

OngJeNyHDSzmoUHw 1

Anna-PC 1

DcXhlNjDfk-PC 1

WIN-FYI1QSCHQHU 1

WIN-LQOUJKDIROR 1

XGUW12547433669 1

AL MUKALLA 1

WIN-KRAZH63AMC2 1

PC 1

GCSPJUXFT667743 1

DESKTOP-D019GDM 1

WIN-UJ21PNWQMR2 1

Lisa-PC 1

vX3juZIWR5Wy-PC 1

WIN-TGCR76AWNUB 1

WIN-U1DY5TBDUI7 1

Hardware analysis

CPU and memory analysis

Next we are interested to know what CPU are the sandboxes running on? I realized the
platform.processor() was not returning the actual CPU name, but it was too late when I

realized so I used the available information from this command and scrapped some tables
online to get the processor name (here is the pkl file that aggregates all data). In the latest
version I added this awesome library called cpuinfo , so in case you need to collect your own
data the cpuinfo will do the work.

number of cores potential cores

1 { 8 , 4 }

1 { 8 , 4 }

https://web.archive.org/web/20210613070852/https:/albocoder.github.io/assets/misc/cpu_name_database.pkl

12/18

number of cores potential cores

1 { 8 , 4 }

4 { 16 }

2 { 8 , 4 }

1 { 8 , 4 }

1 { 8 , 4 }

1 { 8 , 4 }

1 { 8 , 4 }

As hypothesized, the machine has the wrong number of cores for the CPU name (VICTORY
). In the 9 machines, I found that the most used CPUs are Intel(R) Core(TM) i5-7500

CPU @ 3.40GHz , Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz and Intel(R) Xeon(R)
W-2140B CPU @ 3.20GHz . The machines seem to have 1 core for the most times but the name
is that of a cpu with 4 or 8 cores.

I also checked the CPU utilization rates. Hypothetically, the sandboxes would have low CPU
utilization, since they are only meant to run the malware.

0 2 0 4 0 6 0 8 0 1 0 0
Ut iliza t ion p e rce n ta g e

0

2

4

6

8

N
um

be
r

of
 e

xe
cu

ti
on

s

CPU u t iliza t ion h is tog ra m

While most of the sandboxes have a utilization less than 20% there are still cases where
sandboxes have 80% or even 100%. I believe the CPU utilization cannot be a feature to
distingush between sandboxes and real machines.

13/18

Lastly for this section we look into memory. How much memory can commercial sandboxes
spare?

0 2 4 6 8 1 0 1 2 1 4 1 6
Me m ory (Gb)

0

5

1 0

1 5

2 0

2 5

3 0

N
um

be
r

of
 e

xe
cu

ti
on

s

Ph ys ica l m e m ory h is tog ra m (in Gb)

It appears most of the machines have 1 to 2 GB of RAM to spare. In 2 cases I found machines
with 512MB of memory like its 2010 . Props to the AV vendor(s) that allocated 4, 8 and
16GB for a sandbox to run a malware sample.

Disk Partitions

An interesting result here is that in ALL sandboxes there seems to be 1 disk partion of type
cdrom . Hypothetically this may happen because during the VM creation the Windows

installation disk was left inserted (more work needs to be done to verify this).

For the main disk partition (where Windows is installed) we notice quite a spectrum of sizes, but
the usage in general is quite low (except for the 32GB disks with high usage because
Windows is installed there). In 2021 I wouldn’t expect there to be many machines left with
32GB in the main drive, so this may raise some suspicions from the attackers prespective.

14/18

Network Interfaces

In general 2 to 3 interfaces and 5 network interfaces in 1 sandbox. The most prevalent are of
course Loopback Pseudo-Interface 1 and Local Area Connection . Then I noticed
some pattern of isatap.{<random GUID here>} and Teredo Tunneling Pseudo-
Interface . Upon further analysis I found that these interface exist to enable IPv6
communication, so there is nothing special that an attacker can use here .

15/18

Battery

Not a single sandbox had a battery. Attackers right now pulling a high IQ strat .

Time analysis

One thing its hard to keep up to date while restoring the snapshot (at least in Windows) is local
time. Its a bit more difficult when you consider the geolocation the machine is supposed to be
at. For this I collected the local time, the global UTC time and the external IP address of the
sandbox and metadata for that IP. Thanks to ipfy, just-the-time, and ipinfo for the
awesome service. The process I followed is pretty simple. I use the data from ipinfo to get
the geolocation and convert the UTC time to the local time for that geolocation, then I
calculated the time skew between the time of the geolocation and the sandboxes local time.

time difference(hours) number of machines

-19.0 1

-9.0 2

-8.0 1

-3.0 1

-2.0 18

-1.0 4

0.0 19

3.0 1

5.0 1

9.0 2

As it appears, around 65% of the sandboxes have some sort of a time skew (and I believe the
other 35% are simply lucky to VPN on the same timezone or not even VPN at all, will get to this
later).

This is a very low effort feature a real malware can use to check if its inside a sandbox given
that such info can be checked for free. Even through a CnC server the attacker can measure
whether the malware has made it into the sandboxes. Throughout our paper we also noticed
that there are some real users’ machines with an outdated clock (sometimes out of date by
about 50 years) however this made up for less than 0.001% of the machines in the real
world not 65%, so a malware author may simply choose to forgive these outdated machines
just to be safe from analysis. And from a defender’s prespective, PLEASE UPDATE THE
CLOCK BEFORE ROUTING THE NET TRAFFIC TO NARNIA.

https://web.archive.org/web/20210613070852/https://www.ipify.org/
https://web.archive.org/web/20210613070852/https://just-the-time.appspot.com/
https://web.archive.org/web/20210613070852/https://ipinfo.io/
https://web.archive.org/web/20210613070852/https:/albocoder.github.io/assets/pdf_files/malw_variability.pdf

16/18

IP analysis

This is the meat of the blog post, in my opinion. Thanks again to ipinfo for the 7 day free trial.
As the most interesting to me, I first looked at “Who owns these IP addresses? Who are the
companies/ISPs?”. As shown in the table below the network traffic in all the sandboxes is
routed through VPNs that they get from dedicated servers. It appears CrowdStrike has their
own IP range that they use to route traffic (registered under their official name , hide the
pain Harold).

IP owner company number of IPs in the dataset

TELUS Communications Inc. 5

Wintek Corporation 5

PJSC Vimpelcom 5

Verizon Business Special Project 3

LLC Digital Network 3

Cox Communications Inc. 3

Zwiebelfreunde e.V. 2

Bell Canada 2

111250 Russia Moscow SOVINTEL/EDN 2

1337 Services LLC 1

Vodafone D2 GmbH 1

Telecom Colocation, LLC 1

IPG 1

111250 Russia MOscow EDN/Sovintel 1

Bungee Servers SP 1

CrowdStrike Services 1

Dedicated Servers 1

LeaseWeb Netherlands B.V. 1

ARCOR AG 1

Deutsche Telekom AG 1

Datacamp Limited 1

https://web.archive.org/web/20210613070852/https://ipinfo.io/

17/18

Core-Backbone GmbH 1

Now we want to know where exatly are these IPs from. With this much data it’s hard to say
which IPs are owned by the AV vendors, since they are also just buying VPN access, but I
wanted to see where they are buying from. It appears Russia, US, Canada and Germany are
the most prominent countries, and in Russia, Moscow seems to be the city with the highest
number of IPs.

Ru s s ia

2 5 .6 %

Un ite d Sta te s

2 3 .3 %

Ca n a d a

1 8 .6 %

Ge rm a n y

1 4 .0 %

Un ite d Kin g d om

7 .0 %
Sp a in

4 .7 %
Ne th e rla n d s

2 .3 % Ph ilip p in e s
2 .3 % Fra n ce2 .3 %

Loca t ion of th e s a n d b ox IPs

Ca n a d a Fra n ce Ge rm a n y Ne th e rla n d s Ph ilip p in e s Ru s s ia Sp a in
Un ite d Kin g d om Un ite d Sta te s

Bu rn a b y
Mon t ré a l

St ra sb ou rg
Be rlin

Boch u m
Ka rls ru h e

Ra t in g e n
Am s te rd a m

Moscow
Re u tov

Ma d rid
Lon d on

Oce a n City

Ph ila d e lp h ia

Wa sh in g ton

Loca t ion (Cou n t ry & City)

0

1

2

3

4

5

6

7

8

N
um

be
r

of
 e

xe
cu

ti
on

s

IP loca t ion s for a ll 4 m a lwa re 's e xe cu t ion s

An t ip o lo

We s t La fa ye t te

18/18

Conclusion

There is no silver bullet to detect sandboxes, but there are some features and bugs the
attacker can use to detect them. On the other hand the sandboxes can also cover these
weaknesses. It’s all about that arms race .

