Hex-Rays, GetProcAddress, and Malware Analysis

msreverseengineering.com/blog/2021/6/1/hex-rays-getprocaddress-and-malware-analysis

June 1, 2021
e
June 1, 2021 Rolf Rolles

This entry is about how to make the best use of IDA and Hex-Rays with regards to a
common scenario in malware analysis, namely, dynamic lookup of APIs via

GetProcAddress (and/or import resolution via hash). | have been tempted to write this
blog entry several times; in fact, | uploaded the original code for this entry exactly one year
ago today. The problem that the script solves is simple: given the name of an API function,
retrieve the proper type signature from IDA's type libraries. This makes it easier for the
analyst to apply the proper types to the decompilation, which massively aid in readability
and presentability. No more manually looking up and copying/pasting API type definitions,
or ignoring the problem due to its tedious solution; just get the information directly from the
IDA SDK. Here is a link to the script. EDIT LATER: | decided to write a small GUI for the
functionality. You can find the Hex-Rays GUI plugin here.

Background

Hex-Rays v7.4 introduced special handling for GetProcAddress . We can see the
difference -- several of them, actually -- in the following two screenshots. The first comes
from Hex-Rays 7.1:

int v5; // [rsp+28h] [rbp-2@h]

HANDLE hObject; // [rsp+20h] [rbp-18h]
FARPROC v7; // [rsp+38h] [rbp-16h]

DWORD dwProcesslId; // [rsp+56h] [rbp+8h]
_DWORD *v9; // [rsp+58h] [rbp+1@h]

v9 = a2;

dwProcessId = al;

vE = @;

v2 = GetModuleHandleW(L"kernel32.dll");

v7 = GetProcAddress(v2, "IsWow6é4Process");
if ( v7 )
return 1;
hobject = OpenProcess(@x4@0u, @, dwProcessId);
if ( !hobject )
return GetLastError();
if ( ((unsigned int (__fastcall *)(HANDLE, int *))v7)(hObject, &v5) == 0 )
The second comes from Hex-Rays 7.6:

1/5


https://www.msreverseengineering.com/blog/2021/6/1/hex-rays-getprocaddress-and-malware-analysis
http://10.10.0.46/blog?author=5111cf9ee4b0a36262da10df
https://github.com/RolfRolles/Miscellaneous/blob/master/PrintTypeSignature.py
https://github.com/RolfRolles/Miscellaneous/blob/master/APIRetypeGUI.py

BOOL v5; // [rsp+28h] [rbp-286h] BYREF

BoOL v6; // [rsp+2Ch] [rbp-1ch]

HANDLE hobject; // [rsp+2@h] [rbp-18h]

BOOL (__stdcall *IsWowe4Process)(HANDLE, PBOOL); // [rsp+38h] [rbp-1eh]

v = @;
ModuleHandlelW = GetModuleHandleW(L"kernel32.dll");
Ishow64Process = (BOOL (__stdcall *)(HANDLE, PBOOL))GetProcAddress(ModuleHandlel, "IsWow64Process");
if ( !IsWow64Process )
return 1;
hobject = OpenProcess(@x4eeu, @, al);
if ( lhobject )
return GetLastError();
if ( IsWow64Process(hObject, &v5) )

Several new features are evident in the screenshots -- more aggressive variable mapping
eliminating the first two lines, and automatic variable renaming changing the names of
variables -- but the one this entry focuses on has to do with the type assigned to the return
value of GetProcAddress . Hex-Rays v7.4+ draw upon IDA's type libraries to automatically
resolve the name of the procedure to its proper function pointer type signature, and set the
return type of GetProcAddress to that type.

This change is evident in the screenshots above: for 7.1, the variable is named v7 , its
type is the generic FARPROC , and the final line shows a nasty cast on the function call. For
7.6, the variable is named IswWow64Process , itstypeis BOOL (__stdcall *)(HANDLE,
PBOOL) (the proper type signature for the Iswow64Process API), and the final line shows
no cast. Beyond the casts, we can also see that applying the type signature also changes
the types of other local variables: v5 in the first has the generic type int , whereas v5
has the proper type BOOL in the second.

These screenshots clearly demonstrate that IDA is capable of resolving an APl name to its
proper type signature, the desirable effects of applying the proper type signature on
readability, and the secondary effects of setting the types of other variables involved in
calling those APls.

Relevance to Malware Analysis

Hex-Rays' built-in functionality won't work directly when malware looks up APl names by
hash, or uses encrypted strings for the APl names: the decompiler must see a fixed string
being passed to GetProcAddress to do its magic. Although the malware analysis
community seems very comfortable in dealing with imports via hash and encrypted strings,
they seem less comfortable with applying proper type signatures to the resultant variables
and structure members. Only one publication I'm aware of bothers to tackle this, and it
relies upon manual effort to retrieve the type definitions and create typedef s for them.
This is unfortunate, as applying said types dramatically cleans up the decompilation output,
but this is understandable, as the manual effort involved is rather cumbersome.

As a result, most publications that encounter this problem feature screenshots like this one.
Note all of the casts on the function pointer invocations, and the so-called "partial types"
_QWORD , etc.:

2/5


https://cyber.wtf/2019/03/22/using-ida-python-to-analyze-trickbot/

396 LABEL 11:
897 vile

898 ilCmdAddr_dup2;// ptr to MZ header (start of PE file)

899
elele) &v17[*((signed in ; // ptr to PE header
a1 (Llns"gned 6 *) +18) + 24;

@2

a3 v19[ /{ ptr to .text header (code segment)

S84 1 &

985 g ((_Q.-.:Rl: 1o o+ 6);

a@6| result = ({_ inte4 (_ fastcall *)(__inte4, _QWORD, signed _ inte4, signed _ int64))virtualAllec_func3){// kernel32_VirtualAlloc()
9@7 16,

9@3 *((unsigned int *}v19 + 28), /{ size of 39888 bytes

989 @x3000i64, // MEM_COMMIT | MEM_RESERVE

ala ax40164) ; // PAGE_EXECUTE_READWRITE

a11| // =» allocate memory for PE file. returns pointer to that memory

912| w23 = result;

913| if ( result )}

o14| {

a15 v24 = v28 + 46 * ‘((Lln igned _ intlé *)vi9 + 3});

916 ({void ( stcall (uns cned inte4, char *, _QWORD))memcpy_func4)(result, v17, *((signed int *)v17 + 15});
17 /f =» copy MZ header into new allocated region

918 ({void (_ fastcall *)(unsigned _ int64, char *, _QWORD))memcpy func4)}(v23 + *((signed int *)v17 + 15), v19, v24);
919 Jo=> copJ PE header into allocated region after MZ header

a2e v25 = *((unsigned _ intl6 *}v10 + 3);

(I chose not to link the analysis from which the above screenshot was lifted, because my
goal here is positive assistance to the malware analysis community, and not to draw
negative attention to anyone's work in particular. This pattern is extremely frequent
throughout presentations of malware analysis; it is immaterial who authored the screenshot
above, and | had other examples to choose from.)

The Solution

| did not know how to resolve an APl name to its type signature, so | simply reverse
engineered how Hex-Rays implements the functionality mentioned at the top of this entry.
The result is a function PrintTypeSignature(apiName) you can use in your scripts and
day-to-day work that does what its name implies: retrieves and prints the type signature for
an API specified by name.

The script includes a demo function Demo() that resolves a number of API type signatures
and prints them to the console. It begins by declaring a list of strings:

Demo() :
apiNames [
"RegCloseKey",
RegQueryValueExl",

"RegCreateKeyExil",

"RegSetValueExA",

"RegSetValueExW",

"RegQue vValupEwﬂ"
The output of the script is the type signatures, ready to be copied and pasted into the
variable type window and/or a structure declaration.

Pythen>Demo( )
LSTATUS (_std:all R egClos K y)(HKEV hkey) s
LSTATUS (_stdcal UeExH) (HKEY hKey, LPCWSTR lpValueName, LPDWORD lpReserve d, LPDWORD 1pType, LPBYTE lpData me»onn lp cbbata);
LSTATUS (_std 11 EKE .yExid) (HKEY hKey, LPCWSTR lpSubke: o, DuoRD Re Ed, LPusTR 1pclass, DWORD dwoptions, REGSAM samDesired, cons t LPSECURITY_ATTRIBUTES lpSecurityattributes, PHKEY phkResult, LPDWORD lpdwDisposition);
LSTATUS (__stdcall *RegSetValueExA) (HKEY hKey, LPCSTR lpValueName, DWORD P ved, DWORD dwType, const BYTE *lpData, DWORD bD ta);
LSTATUS (_stdcall *RegSetValueExil) (HKEY hKey, LPCWSTR lpValu i e, DHORD e ved, DWORD dwType, const BYTE *IpData, DHORD chData);
LSTATUS (__stdcall *RegQueryValusexa) (HKEY hKey, LPCSTR lpvalu poe e, LFDORD lpRESer‘\lEd, LPDWORD lpl’ype, LREYTE 1pData, LPDWORD lpcbData);

GUI

3/5



| decided to add a small GUI to the functionality. After you run this plugin, you will have a
new entry on your Hex-Rays right-click menu that appears when your cursor is over a
pointer-sized local variable, as follows:

__inte4 (___fastcall *apGetProcAddress){ inté4. int *))

Synchronize with L4

Rename lvar...

Set var type...

Reset pointer type
Convert to struct *...

Unrnap varable(s)...

Remove function argument Shift+Del
Jump to xref... X

Edit func comment... f

Mark as decompiled Ctrl+ Shift+D
Copy to assembly

Hide casts \

Re-type as APl ™ ... Ctrl+Shift+A
View microcode Ctrl+Shift+M

Disable 55E intrinsics

Font...

Once you click on that, it will ask you to enter an APl name:

¥ Please enter a string >

Flease enter the APT name for which to set the type | GetProcAddress| e |

| Ok | | Cancel |

If there are no errors, the script will change the type of the variable to the function prototype
for the API.

FARPROC (___stdcall *apGetProcAddress)(HMODULE, LPCSTR)

A Final Note

Architecturally, there is a discrepancy between how the Hex-Rays microcode machinery
handles type information for direct calls versus indirect ones. To summarize, you may still
see casts in the output after applying the proper type signature to a variable or structure
member. If this happens, right-click on the indirect call and press Force call type to
force the proper type information to be applied at the call site. However, only do this once
you have set the proper type information for the function pointer variable or structure
member.

4/5


https://github.com/RolfRolles/Miscellaneous/blob/master/APIRetypeGUI.py

if ( ((unsigned int (__fastcall *)(void *, unsigned int *))GetAdaptersInfol(v4. &v14) )

}

vs = 2;

else

{

sub_1800@EBEO(v1e, v1d);

vi3 = @3

*(_OWORD *)Block = @ie4;

vs = @;

vi2 = @ie4;

sub_18e@e@ECCO(Block, 8164, &vi13);

e = BTaslLF17.

Synchronize with

Set call type...

Force call type
Rename lvar...

Set hvar type...

Reset pointer type
Convert to struct *...
Jurnp to xref...

Edit comment...

Edit block comment...
Hide casts

View microcode
Disable SSE intrinsics
Eont...

X

/

Ins

\

Ctrl+ Shift+ M

Mostly | published this because | want to see more types applied, and fewer casts, in the

malware analysis publications that | read. Please, use my script!

Addendum

After publishing this article, | was made aware of prior work that is strongly related. That

work focuses on the same problem, albeit in the disassembly listing rather than in Hex-Rays
(and hence does not discuss some of the considerations from my entry above). Its ultimate
solution is very similar to mine; it includes two out of three API calls from the one | came up

with in this entry.

5/5


https://usualsuspect.re/article/ida-tricks-handling-dynamic-imports

