
1/10

Kamila Babayeva June 1, 2021

Dissecting a RAT. Analysis of the Command-line
AndroRAT.

stratosphereips.org/blog/2021/5/6/dissecting-a-rat-analysis-of-the-command-line-androrat

This blog post was authored by Kamila Babayeva (@_kamifai_) and Sebastian Garcia
(@eldracote).

The RAT analysis research is part of the Civilsphere Project
(https://www.civilsphereproject.org/), which aims to protect the civil society at risk by
understanding how the attacks work and how we can stop them. Check the webpage for
more information.

This is the seventh blog of a series analyzing the network traffic of Android RATs from our
Android Mischief Dataset [more information here], a dataset of network traffic from Android
phones infected with Remote Access Trojans (RAT). In this blog post we provide the
analysis of the network traffic of the RAT08-command-line-AndroRAT [download here]. The
previous blogs analyzed Android Tester RAT, DroidJak RAT, AndroRAT RAT, SpyMax RAT,
AhMyth RAT and HawkShaw RAT.

Execution Setup

The goal of each of our RAT experiments is to use the software ourselves and to execute
every possible action while capturing all the traffic and storing all the logs. So these RAT
captures are functional and were used in real attacks.

Despite its name “Command line AndroRAT”, this RAT has no clear relationship with the
RAT called “AndroRAT”. The Command line AndroRAT is a software package that contains
the controller software and builder software to build an APK. It was executed on a Windows
7 guest virtual machine with Ubuntu 20.04 as a host. The Android Application Package
(APK) built by the RAT builder was installed in the Android virtual emulator called
Genymotion using Android version 8.

While performing different actions on the RAT controller (e.g. upload a file, get GPS
location, monitor files, etc.), we captured the network traffic on the Android virtual emulator.

The details about the network traffic capture are:

The controller IP address: 147.32.83.157

The phone IP address: 147.32.83.245

https://www.stratosphereips.org/blog/2021/5/6/dissecting-a-rat-analysis-of-the-command-line-androrat
https://www.civilsphereproject.org/
https://www.stratosphereips.org/android-mischief-dataset
https://mcfp.felk.cvut.cz/publicDatasets/Android-Mischief-Dataset/AndroidMischiefDataset_v2/RAT08_cli_AndroRAT.zip
https://www.stratosphereips.org/blog/2020/12/14/ngwqj0h060yv40w1afp51fg7wo9ijy-pzlhk
https://www.stratosphereips.org/blog/2021/1/22/analysis-of-droidjack-v44-rat-network-traffic
https://www.stratosphereips.org/blog/2021/3/29/dissecting-a-rat-analysis-of-the-androrat
https://www.stratosphereips.org/blog/2021/2/26/dissecting-a-rat-analysis-of-the-spymax
https://www.stratosphereips.org/blog/2021/5/6/dissecting-a-rat-analysis-of-the-ahmyth
https://www.stratosphereips.org/blog/2021/5/6/dissecting-a-rat-analysis-of-the-hawkshaw

2/10

UTC time of the infection in the capture: 2020-12-05 11:46:43 UTС

RAT Details

This Command-line AndroRAT software was the first one in our dataset that did not have an
graphical user interface. Instead, it uses a command line interface to control the target’s
device. Figure 1 shows the welcome message in the command line while waiting for the
infected device to connect.This Command-line AndroRAT software was the first one in our
dataset that did not have an graphical user interface. Instead, it uses a command line
interface to control the target’s device. Figure 1 shows the welcome message in the
command line while waiting for the infected device to connect.

Figure 1. Welcome message in the Command-line AndroRAT interface. The message is
shown until the infected phone is connected.

Infection and Initial Communication

This research started with the execution of the RAT in our virtual phone. Once the APK was
installed in the phone, it directly tried to establish a TCP connection with the command and
control (C&C) server. The phone used the IP address and the port of the controller that we
specified in the APK (Figure 2). In particular, the IP address of the controller was
147.32.83.157 and the port was 1337/TCP. The controller IP address 147.32.83.157 is the
IP address of a Windows 7 virtual machine in our lab computer, meaning that the IP
address is not connected to any indicator of compromise (IoC).

3/10

Figure 2. The controller IP and port specified during compilation can be seen in the code
inside the APK installed in the victim’s device. The phone uses the controller IP
147.32.83.157 and the port 1337 to establish a TCP connection.

The phone initializes a 3-way TCP handshake to establish the connection between the
phone and the C&C. Figure 3 shows these initial packets. The connection was successfully
established without any reconnections, but with a retransmission packet. The lack of
reconnections can be because both controller and victim were in the same network.

Figure 3. A 3-way TCP handshake between the controller (147.32.83.157) and the phone
(147.32.83.245). The connection was initialized by the phone and there is one
retransmission packet.

After the phone got infected and the connection between the phone and the controller was
established, the phone sent a welcome message together with the phone model “Samsung-
2”, as shown in Figure 4. The code from the malicious APK that sends the welcome
message to the controller is shown in Figure 5.

0000 48 65 6c 6c 6f 20 74 68 65 72 65 2c 20 77 65 6c Hello there, wel

0010 63 6f 6d 65 20 74 6f 20 72 65 76 65 72 73 65 20 come to reverse

0020 73 68 65 6c 6c 20 6f 66 20 53 61 6d 73 75 6e 67 shell of Samsung

0030 2d 32 0a -2.

Figure 4. The welcome message with the model of the phone sent from the infected phone
to the controller after a successful infection. Notice the English language

Figure 5. Code from the malicious APK that sends the welcome message to the C&C.

After sending a welcome message, the phone waits for the C&C command. While waiting
for the C&C command, there was no heartbeat performed between the phone and the
controller.

4/10

The phone then received its first executed C&C command ‘device info’ that aims to retrieve
the details about the phone’s hardware, system, settings, etc. Figure 6 shows the data field
of the packet with the command ‘device info’. The C&C command is sent in the plain text,
without any structure.

0000 64 65 76 69 63 65 49 6e 66 6f 0a deviceInfo.

Figure 6. The data field of the packet with the C&C command ‘device info’ that aims to
retrieve the details about the infected device. The data is in the plain text without any
structure.

The phone answers to the command ‘device info’ with device details composed of
Manufacturer, Version/Release, Product, Model, Brand, Device and Host. The data field of
this packet is displayed in Figure 7. It is important to notice that the answer from the phone
does not follow any structure, the data is sent in the plain text.

--

Manufacturer: unknown

Version/Release: 8.1.0

Product: vbox86p

Model: Samsung-2

Brand: Android

Device: vbox86p

Host: 49cfa9ee5067

--

Figure 7. The data field of the packet with the phone’s answer to the C&C command
‘device info’. The data is sent in the plain without any structure. It may seem that the
controller is separating these values by searching for the words “Manufacturer:”,
“Version/Release”, etc.

The request and answer to the C&C command ‘device info’ are shown in the command line
interface of the C&C, as shown in Figure 8.

5/10

Figure 8. The command line interface of the C&C with the executed command ‘Device Info’
and the phone’s reply. The characters “[36m” and similar seem to be related to a bug in the
assignment of colors to the interface.

Example of C&C Commands

Through the whole communication, the controller sends the C&C commands inplaintext, the
phone answers these commands in plaintext as well. When the controller or the victim
sends a big amount of data, e.g. photo, video, audio, text files., it defines the end of data by
adding a string ‘END123\n’ at the end.

As an example we can analyze the exchange of packets between the C&C and the victim
during the C&C command ‘getSMS’. This command aims to retrieve the messages sent and
received by the targeted device. The data of the packet with the ’getSMS’ command is
displayed in Figure 9. As before, the data is sent in plaintext and does not follow any
structure. As a reply to this command, the phone sends two packets: the first packet
confirms the execution of the C&C command (Figure 10), the second packet sends the
actual data (Figure 11).

0000 67 65 74 53 4d 53 20 69 6e 62 6f 78 0a getSMS inbox.

Figure 9. The data field of the packet sent by the controller with C&C command ‘getSMS’
that aims to retrieve the message inbox inside the targeted phone.

0000 72 65 61 64 53 4d 53 20 69 6e 62 6f 78 0a readSMS inbox.

Figure 10. The data field of the packet sent by the victim phone with the text ‘readSMS’ as
a confirmation answer to the command “getSMS”.

6/10

#0
Number : 333333
Person : null
Date : Sun Jun 13 13:18:52 EST 52877
Body : Hey! i am thwoing a party at my house next week! wanna join?

#1
Number : 928934
Person : null
Date : Sun Jun 13 04:14:21 EST 52877
Body : Hello! How are you and your child? Are you back from vacation already?

END123

Figure 11. The data field of the phone reply to the command ‘getSMS’. The messages are
sent in the plaintext. In order to define the end of the data, it puts the ‘END123\n’ string at
the end of the data. The fields seem to be separated, again, by searching for keywords
such as “Number”, “Person”, etc.

There are a total of 18 commands that the RAT software can perform on the targeted
device. The complete list is shown in Figure 12.

deviceInfo --> returns basic info of the device
camList --> returns cameraID
takepic [cameraID] --> Takes picture from camera
startVideo [cameraID] --> starts recording the video
stopVideo --> stop recording the video and return the video
file
startAudio --> starts recording the audio
stopAudio --> stop recording the audio
getSMS [inbox|sent] --> returns inbox sms or sent sms in a file
getCallLogs --> returns call logs in a file
shell --> starts a interactive shell of the device
vibrate [number_of_times] --> vibrate the device number of time
getLocation --> return the current location of the device
getIP --> returns the ip of the device
getSimDetails --> returns the details of all sim of the device
clear --> clears the screen
getClipData --> return the current saved text from the
clipboard
getMACAddress --> returns the mac address of the device
exit --> exit the interpreter

Figure 12. The complete list of 18 commands that can be used from the controller. It is a
print of the help function in the C&C interface.

End of communication

7/10

After the C&C sends the command ‘exit’ (Figure 13), the connection between the phone
and the controller should have been closed. However, in our experiment, after the
connection was closed (Figure 14), the phone attempts to reconnect to the C&C several
times with an interval of 3 seconds (Figure 15), showing a buggy implementation of the exit
function in the APK, or showing that the controller may no longer be active but giving the
victims the opportunity to reconnect if necessary.

0000 65 78 69 74 0a exit.

Figure 13. The C&C command ‘exit’ that aims to close the connection between the phone
and the controller.

Figure 14. Successful 4-way handshake TCP termination between the controller and the
targeted phone after the C&C command ‘exit’.

Figure 15. After the phone received the ‘exit’ C&C command, it still tries to reconnect with
the controller. However, the controller already closed the socket after the ‘exit’ C&C
command.

The complete communication between the phone and the controller in the experiment
happened in one flow. According to Wireshark-Statistics-Conversations (Figure 16), the
connection between the phone and the controller is considered to be the longest
(approximately 16 minutes) in the traffic. However, based on previous RATs analysis in the
Android Mischief dataset, connections to services such as Facebook, Instagram, etc. might
be longer than the 16 minutes of this malicious connection. Due to the victim reconnecting
to the C&C several times after the connection was closed, Wireshark displays a number of
flows to the C&C with a really short duration (Figure 17).

8/10

Figure 16. TOP connections from Wireshark-Statistics-Conversations sorted by the flow
duration. The connection between the victim and C&C is the longest.

FIgure 17. Wireshark displays reconnections to the C&C as the flows of really short
duration.

Conclusion

In this blog we have analyzed the network traffic from a phone infected with a unique
command line AndroRAT. Due to the RAT simple communication protocol, we were able to
decode its connection. The command line androRAT does not seem to be complex in its
communication, however, it is quite sophisticated in its work. It is not interrupting throughout
the whole communication compared to other RATs in the dataset.

To summarize, the details found in the network traffic of this RAT are:

The C&C sends the packets in plaintext without any structure.

The infected phone sends the packets in plaintext without any structure.

The communication between the C&C and the phone is done in one flow of long
duration (approximately 16 minutes).

Even though the connection between the controller and the phone was closed, the
phone tries to reconnect every 3 seconds.

There is no heartbeat in the traffic between the phone and the controller.

Biographies

9/10

KAMILA BABAYEVA

Sebastian Garcia is a malware researcher and security teacher with experience in applied
machine learning on network traffic. He founded the Stratosphere Lab, aiming to do
impactful security research to help others using machine learning. He believes that free
software and machine learning tools can help better protect users from abuse of our digital
rights. He researches on machine learning for security, honeypots, malware traffic
detection, social networks security detection, distributed scanning (dnmap), keystroke
dynamics, fake news, Bluetooth analysis, privacy protection, intruder detection, and
microphone detection with SDR (Salamandra). He co-founded the MatesLab hackspace in
Argentina and co-founded the Independent Fund for Women in Tech. @eldracote.
https://www.researchgate.net/profile/Sebastian_Garcia6

Kamila Babayeva is a 20 years old and third-year bachelor student in the Computer
Science and Electrical Engineering program at the Czech Technical University in Prague.
She is a researcher in the Civilsphere project, a project dedicated to protecting civil
organizations and individuals from targeted attacks. Her research focuses on helping
people and protecting their digital rights by developing free software based on machine
learning. Initially, she worked as a junior Malware Reverser. Currently, Kamila leads the
development of the Stratosphere Linux Intrusion Prevent System (Slips), which is used to
protect the civil society in the Civilsphere lab.

10/10

SEBASTIAN GARCIA

