A Deep Dive into Packing Software CryptOne

deepinstinct.com/2021/05/26/deep-dive-packing-software-cryptone/

May 26, 2021

Learn more

May 26, 2021 | Ron Ben Yizhak

Threat actors are continuously developing and refining methods to evade detection from
cybersecurity professionals. One of the more creative ways to disguise threat activity comes
in the form of packing software — a technique that applies a packing algorithm on malware to

1/8

https://www.deepinstinct.com/2021/05/26/deep-dive-packing-software-cryptone/
https://www.deepinstinct.com/news/deep-instinct-shows-100-percent-score-in-mitre-evaluations
https://www.deepinstinct.com/author/ron-ben-yizhak

produce a file that is harder to detect, analyze, and prevent. While packers are legitimate and
quite useful in helping developers protect their code against illegal copying and reverse
engineering, in the wrong hands packing software can be used for more sinister purposes.

A packing software called CryptOne became popular recently among some major threat
actors. It was first reported by Fox-IT that the group behind Wastedlocker has begun using it,
as well as Netwalker, Gozi ISFB v3, ZLoader, and Smokeloader.

The CryptOne packer caught our attention when Emotet started using it. We followed the
Emotet group closely and published multiple articles about the malware until the operation
was disrupted and taken down. Some of the most recent samples that were generated
before the takedown were packed by CryptOne.

As we began analyzing the packed samples we found more malware families that are using
CryptOne that weren’t reported by Fox-IT, such as Dridex, Qakbot and Cobaltstrike.

In this blog post we will describe the features of this packer that made it so popular among
threat actors, outline the unpacking process, and detail indicators that can determine if a
sample was packed with CryptOne.

Features

1. Multiple stages

The unpacking process is composed of two stages until the destined malware is executed.
The first stage is the DLL that is created by the packing software. This DLL contains
encrypted data in one of its sections, which is copied to a RWX buffer and then decrypted.
This data contains a shellcode and another block of encrypted data. The shellcode is
described in greater detail later.

2/8

https://blog.fox-it.com/2020/06/23/wastedlocker-a-new-ransomware-variant-developed-by-the-evil-corp-group/
https://www.europol.europa.eu/newsroom/news/world%E2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action

G4o@aees 31 65 74 46 69 6C 65 58 6F 69 6E 74 65 72 66 88
G4oEaele 88 43 eC 6F 73 65 48 61 6E 64 6C 65 80 86 06 68
GioEEe28 88 88 32 69 V2 74 75 6l 6C 46 72 65 65 86 08 68
B4cEaE58 86 88 ed e6C 73 74 72 6C 65 BE 41 60 88 86 68 88
G4o@ae4e @8 B0 88 88 47 65 74 54 65 6D 7@ 58 61 74 68 41
G4006858 98 90 88 88 e8 oC 73 74 72 63 61 74 41 @6 80 88
G400B068 00 09 88 60 88 88 56 69 V2 V4 75 61 6C 41 6C 6C
G40@ee78 ©F 63 08 60 00 88 88 47 65 74 38 72 6F B3 41 64
edo@aece 64 72 65 73 73 868 @0 88 55 6E 6D 61 7@ 56 69 65
24o@aaca 77 4F 66 46 69 BC 65 B8 88 56 69 72 74 75 61 BC
c4o@EesE 58 72 6F 74 65 B3 74 88 86 88 4C 6F 61 b4 4C 69
B4c@aeEe B2 72 61 V2 V9 45 78 41 66 88 88 47 65 74 4D 6F
a4c@aece 64 75 6C 65 48 61 6E 64 6C 65 41 @8 43 72 65 61
G4coaebe 74 65 46 69 6C 65 41 B8 66 @8 B8 @8 B8 57 72 69
B408688E8 74 65 46 69 6C 65 69 68 60 00 B0 00 60 B8 B0 B8
G4oEEeFe @l o0 08 60 B8 B0 00 68 62 00 B0 00 84 B0 B0 B8
G4oEales 16 o0 88 62 56 B8 o0 82 20 00 BB o0 48 B8 B0 B8
24088118 86 84 1E 68 A4 59 99 88 EA 63 88 88 ED 83 oo o8
G40BE128 FE FB @8 88 31 83 60 88 E9 83 88 60 29 84 08 o8
E4588158 E9 85 88 88 E9 B3 80 8@ E9 83 B8 88 E9 B3 60 88
B4088148 E9 85 08 88 E9 B3 69 88 E9 83 88 88 E9 83 e a8
G4088158 F1 84 @8 88 E7V 1A BA BE E9 AF 89 (D C3 BB @1 4C
G4c@elee AC 25 54 68 @8 77 280 7@ FB 6A 67 72 C3 b8 28 63
B4g@el7e C8 69 6E 6F DD 23 62 65 69 76 75 6E @9 el oE 28
G4o@aloe AS 4A 53 28 C4 6A 64 65 FF @8 8D a4 CD @3 e a8
24088198 E9 83 e 88 91 A 8C 18 D 89 62 43 C5 89 62 43
24c8elae BD 89 62 43 CE 96 FE 43 AF 89 62 43 1C 72 E1 43

shellcode after the decryption
2. Reduced entropy

As mentioned, the payload is concealed as an encrypted resource. Encrypted data increase
the entropy of the data and causes the loader to look more suspicious. These samples
allocate a buffer with RWX permissions, but the encrypted data is not copied to it as is.
Rather, it is copied in chunks while some bytes are skipped over. The bytes that are skipped
over all have the same value. The reason for that might be to make the reverse engineering
process more difficult, but our assumption is that the padding exists to reduce the entropy of

the encrypted data and make the loader less suspicious.

letFilePointer..
.CloseHandle....
..2irtualFree...
... 1s5trlenf.
. .. .OetTempPathA
..... IstrcatA...
...... Virtualall
OCeuens GetProcAd
dress...UnmapVie
wifFile. .Virtual
Protect...LoadlLi
braryExA. . .GetMo
duleHandleA.Crea

e = wriBeginning of the

teFile.cvvunuuan
R I
£,..HY, B...1i..
pl..1...8...}..
B...8...8...8..
... 8., 8. .8...
fi c.2. &7 IEn.L

-%Th.w-pijgrEh-c
EinoY#be.vun.mn-
¥15-Ajdey. .. I...
€...%j..1.bCA.bC
%.bCI-pC™.bC.raC

3/8

=N

T

-l T

-

Encrypted data padded with chunks of the same value.
3. Sandbox evasion:

Sandboxes let the malware execute for a limited time. If the malware stays inactive until the
analysis is finished, it could avoid detection. Sandbox solutions are aware of this problem, so
they don'’t allow the Sleep function to be used for extended periods of time.The loader
created by the CryptOne software simulates Sleep. It contains small chunks of useless code
that runs in loops and performs system calls that are irrelevant for the malware's
functionality. In some loaders, this code executed very quickly, but the Emotet loaders took
almost a minute to execute this code.Another explanation for this behavior is to fill the
sandbox report with useless information so it will be harder to spot important alerts. Usually,
each system call is logged by the sandbox and added to the report. The packer performs
many system calls to create a report that will be difficult to process.

4/8

mav ebp, esp

sub esp, @ch

mow [ebptvar_4], @

mow ben_loop_counter, @
jmp short loc_4@1826

I
loc_481826:
omp ben_loop_counter, 57142k
jnb short loc_4@8183F
L] : L4
push offset FileName ; lpFileName
loc_48183F: call ds:LoadCursorFromFilew
cmp [ebpt+var_4], @ jmp short loc_481019
jz short loc_ 401068
 J Y
il il ol s =]
call get_enc_data
mow enc_data, eax loc_4@1@19:
push 15h mov eax, ben_loop_counter
call get_enc_data_size add eax, 1
add esp, 4 mov ben_loop_counter, eax
mowv enc_data_size, eax
push 7E45h
call alloc_rwx_buffer
add esp, 4

‘v
4. Static analysis subversion

: The loader attempts to break static analysis by inserting code blocks that will never be
executed and won't interrupt the unpacking process but might confuse some disassembly
algorithms. For example, a function that contains infinite recursion that will always be
skipped over.

5/8

e 5

; Attributes: bp-based frame
recursibn_func proc near

var_18= dword ptr -18h
var_l4= dword ptr -14h
var_18= dword ptr -18h
var_C= dword ptr -8Ch
var_4= dword ptr -4

push ebp

Mo ebp, esp

sub esp, 18h

maw [ebptvar_18], 2
mov [ebpt+var_4], @
xor eax, eax

jz loc_4m5444

il e =

push 4

push 4

call recursion_func
add esp, 3

push 4

push 4

call recursion_func
add esp, 8

push 4

push 4

call recursion_func

5. Killswitch

This characteristic was reported by Fox-IT

The loader checks for the existence of the registry key: interface\{b196b287-bab4-101a-
b69c-00aa00341d07}

The loader then enters an infinite loop if the key does not exist. The loader attempts to hide
the parameters that are sent to RegOpenKey. An arbitrary value is stored in a global
variable. This value is then copied to a register and decreased to reach the actual value that
is required for the API call. This technique was observed in multiple families. Also, in some
samples the string of the registry key was decrypted in run-time.This killswitch might be a
precaution to avoid infecting the control servers. Another killswitch was found only in the
Emotet loaders. It exits if it is executed under the user “JhD.”

6/8

https://research.nccgroup.com/2020/06/23/wastedlocker-a-new-ransomware-variant-developed-by-the-evil-corp-group/

maw [edx+2Bh], cx

mov eax, ds:Reglpenkeyl
Mo dword_5SBREGR, eax
push offset unk_S8RER4
mow ecx, [ebptvar_g8]
push ecx

Mo edx, dword S88298 ; Bx3888BCAD
sub edx, BCADh

push edx

call dword_SdpEse

mow [ebptvar_4], eax
cmp [ebp+var_4], @

jz short loc_445CD4

Yy

Lol s =

loc_445CC9:

Mo eax, 1

test 23X, eax

jz short loc_445CD4

Y
i s =] [l el 5
jmp short loc_445CC9

loc_445CD4:
call sub_ 445558
mov dword_5882098, eax
mov esp, ebp
pop ebp
retn
sub_ 445648 endp

The Shellcode

The data that is decrypted by the loader has the following structure: names of WinAPI,
encrypted PE file, and then the shellcode. The shellcode decrypts the PE which is the
destined malware, and then performs reflective loading using the following steps:

1.

o 0k w

Resolve the addresses of the WinAPI names. This is performed using the DLL
kernelbase. This is unusual as most shellcodes use kernel32. This might be to evade
detection by security products since it is known that many products place hooks inside
functions from kernel32.

. Unmap the loader image using UnmapViewOfFile. This is another uncommon

technique. Usually, a new buffer will be allocated at a random address, but the
shellcode of CryptOne attempts to copy the destined malware to the same address that
the loader was in.

Copy the PE headers and sections

Fix the Import Address Table with the correct addresses

Perform the relocations listed in the relocation table

Change the memory protection of each section according to its characteristics

7/8

7. Update the following fields in the LDR entry of the image: entry point, DLL base, and
size of image
8. Update the image base address field in the PEB structure

After all these steps are performed, the shellcode jumps to the entry point of the destined
malware.

Conclusion

CryptOne is a sophisticated packer and presents a unique set of challenges to detect. It is
composed of multiple stages of execution and attempts to evade detection by subverting
static analysis, reducing the entropy of the data, and confusing disassembly algorithms. It
also tries to avoid sandbox detection and cause damage by staying inactive for a long
duration and filling the report with useless information.

These features make it attractive for attackers that need to reduce the detection rate of their
malware, and we might see more threat actors use it in the near future.

If you'd like to hear more about our industry-leading approach to stopping malware, please
contact us and we’ll set up a demo.

/blog/why-emotets-latest-wave-is-harder-to-catch-than-ever-before

[blog/why-emotets-latest-wave-is-harder-to-catch-than-ever-before-part-2/
/blog/emotet-malware-2020/

8/8

https://www.deepinstinct.com/contact-us/
https://www.deepinstinct.com/blog/why-emotets-latest-wave-is-harder-to-catch-than-ever-before
https://www.deepinstinct.com/blog/why-emotets-latest-wave-is-harder-to-catch-than-ever-before-part-2
https://www.deepinstinct.com/blog/emotet-malware-2020/

