
1/30

Evolution of JSWorm ransomware
securelist.com/evolution-of-jsworm-ransomware/102428/

Authors

 Fedor Sinitsyn

 Yanis Zinchenko

Introduction

Over the past few years, the ransomware threat landscape has been gradually changing. We
have been witness to a paradigm shift. From the massive outbreaks of 2017, such as
WannaCry, NotPetya, and Bad Rabbit, a lot of ransomware actors have moved to the covert
but highly profitable tactic of “big-game hunting”. News of ransomware causing an outage of
some global corporation’s services has now become commonplace.

In some cases, this global trend is just a reflection of the continuous life cycle of threats: old
ransomware families shut down and new ones appear and pursue new targets. However,
there are times when a single ransomware family has evolved from a mass-scale operation

https://securelist.com/evolution-of-jsworm-ransomware/102428/
https://securelist.com/author/fedors/
https://securelist.com/author/yaniszinchenko/
https://securelist.com/wannacry-faq-what-you-need-to-know-today/78411/
https://securelist.com/expetrpetyanotpetya-is-a-wiper-not-ransomware/78902/
https://securelist.com/bad-rabbit-ransomware/82851/
https://securelist.com/wastedlocker-technical-analysis/97944/

2/30

to a highly targeted threat – all in the span of two years. In this post we want to talk about
one of those families, named JSWorm.

Chronology

JSWorm ransomware was discovered in 2019 and since then different variants have gained
notoriety under various names such as Nemty, Nefilim, Offwhite and several others.

Several versions were released as part of each “rebranded” variant that altered different
aspects of the code, renamed file extensions, cryptographic schemes and encryption keys.

In the diagram below we present some of the names used by this Trojan along with the dates
the corresponding variant was actively distributed in the wild (ITW) (not the date it was first
encountered). We should note that this list is not comprehensive, but it marks the main
milestones in the evolution of JSWorm.

Together with name changes, the developers of this ransomware have also been reworking
their code and trying different approaches to distribution.

At some point in 2020 the developers even changed the programming language from C++ to
Golang, completely rewriting the code from scratch. However, the similarity in the
cryptographic scheme, ransom notes and use of the same data leak website address led us
to believe it’s the same campaign.

The original version of the malware, as well as some of the subsequent “rebrandings”, e.g.,
Nemty, were advertised on an underground forum by a poster with the username jsworm.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24115814/JSworm_malware_01.png

3/30

Forum advertisement for an early JSWorm variant

Distribution methods

From its creation in 2019 until the first half of 2020, JSWorm was offered as a public RaaS
and was observed propagating via:

RIG exploit kit
Trik botnet
Fake payment websites
Spam campaigns

From the first half of 2020, the public RaaS was closed and the operators switched to big-
game hunting. There is evidence of an initial breach via exploitation of vulnerable server-side
software (Citrix ADC) and unsecure RDP access.

Technical details

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24115844/JSworm_malware_02.png

4/30

We will describe some notable variants of the JSWorm family encountered during the history
of this malware. We won’t attempt to cover all the discovered variants of this malware as they
are too numerous. The dates indicate the approximate period when the corresponding
variant was observed ITW.

May 2019: JSWorm

MD5: a20156344fc4832ecc1b914f7de1a922

This sample is one of the earliest discovered variants of JSWorm ransomware and, unlike its
successors, it doesn’t contain an internal version number. The sample is developed in C++
and compiled in MS Visual Studio.

Besides file encryption, it performs actions such as stopping a number of running processes
and services to maximize the number of files available for encryption. In addition, it deletes
all system backups, shadow copies, disables the system recovery mode, and clears event
logs.

Cryptographic scheme

The files are encrypted using a custom modification of a Blowfish cipher with a 256-bit key.
The key is generated at the beginning of the program execution and based on concatenation
of the strings: user name, device MAC address and volume serial number (example values
in the comments).

Key generation process

Then a string referred to by the ransom notes as “JSWORM PUBLIC KEY” is generated. In
fact, asymmetric cryptography is not used here and using the word “public” makes no sense
in this context. What the ransomware developer is calling “JSWORM PUBLIC KEY” is in fact
the aforementioned Blowfish key XOR-ed with the string “KCQKCQKCQKCQ” and encoded
in Base64.

https://opentip.kaspersky.com/a20156344fc4832ecc1b914f7de1a922/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24115938/JSworm_malware_03.png

5/30

XOR with the “KCQKCQKCQKCQ” key

Below is an example of key calculation, with the serial number and MAC address values
chosen for illustration purposes:

Blowfish key: “53385773534FE:ED:00:DE:AF:00user”
Public key after XOR: “5xpi~tfxvb\x05\x14q\x06\x15qsaq\x07\x14q\x02\x17qsa>049”
Public key after conversion to Base64:
“NXhwaX50Znh2Yn8FFHEGFXFzYXEHFHECF3FzYT4wNDk=”

A custom version of Blowfish is used for encryption of the content of each of the victim’s files.
No more than 100,000 bytes are encrypted, probably to speed up encryption of large files.
The encrypted data is written over the original.

The developers changed the internal implementation of the Blowfish cipher, which resulted in
it being incompatible with standard implementations, probably in an attempt to make
decryption more difficult for researchers.

After encrypting the contents of a file, the program renames it. An additional extension “.
[ID-…][mail@domain.tld].JSWORM” is added to the filename.

Encryption flaws

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120003/JSworm_malware_04.png

6/30

The malware essentially saves the key that can be used for decryption in the ransom notes.
Base64-decoding and un-xoring it is trivial, and the victim’s data can be saved without paying
the ransom. Even if the ransom note is for some reason lost, the key can be easily
regenerated on the infected machine.

July 2019: JSWorm 4.0.3

MD5: 5444336139b1b9df54e390b73349a168

An improved and updated version of JSWorm that attempts to fix flaws found in the previous
variants.

This sample contains a language check of the infected machine. This is most likely intended
to prevent encryption of data on systems where the following languages are used: RU
(Russian), BE (Belarusian), UZ (Uzbek), KY (Kyrgyz), TG (Tajik), TK (Turkmen), KK
(Kazakh), UK (Ukrainian).

Determining the user’s language

However, likely due to an error, this version of ransomware only encrypts files if the system
language is Russian. If we look closely at the conditions above, we can see that the first
condition is ‘!=’ (‘not equal’). This makes the Trojan execute the code branch that exits
without encryption on systems systems where the language is not Russian. If the condition
was ‘==’, the other branch would have been taken, resulting in what was probably the
originally intended behavior of the Trojan.

The ransom note in this variant is implemented as an HTA file named <ID>-DECRYPT.hta,
where <ID> is the unique victim ID assigned by the malware. The HTA file is launched upon
completion of the file encryption and also added to the autorun via registry:

reg add HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run /v “zapiska” /d
“C:\Users\user\JSWRM-DECRYPT.hta”

https://opentip.kaspersky.com/5444336139b1b9df54e390b73349a168/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120055/JSworm_malware_05.png

7/30

reg add HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run /v “zapiska” /d
“C:\Users\user\JSWRM-DECRYPT.hta”

Ransom note of JSWorm 4.0.3

Cryptographic scheme

This version of JSWorm uses the WinAPI implementation of RSA and a custom
implementation of AES to encrypt files. JSWorm generates two random values of 128 bits
(IV) and 256 bits (key) that are limited to the characters: a…z, A…Z, and 0…9. The RSA
public key is embedded inside the ransomware:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120138/JSworm_malware_06.png

8/30

RSA public key used in JSWorm 4.0.3

Using this key, JSWorm encrypts the AES key and initialization vector (IV) and encodes them
into Base64:

WinAPI RSA encryption in JSWorm 4.0.3

Afterwards, this value is added to the ransomware note <ID>-DECRYPT.hta, but the value
itself is not displayed visually because it is located inside the file as an HTML comment.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120210/JSworm_malware_07.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120239/JSworm_malware_08.png

9/30

Values inside the .hta ransom note file

In order to make decryption attempts more difficult for researchers, the malware developers
implemented a custom variant of the AES block cipher which is incompatible with the
standard algorithm. The contents of the victim’s files are encrypted by this cipher with the key
and IV described above.

For optimization, like before, only the first 160,000 bytes are encrypted in large files. After
encryption, an additional extension is appended to the filename, which is familiar to us from
the previous sample: “<filename>.[ID-NQH1J49][doctorSune@protonmail.com].JSWRM”.

Encryption flaws

In this variant of JSWorm the developers tried to fix the flaws found by researchers in
previous versions. However, decryption without payment was still possible. The
pseudorandom number generator used to generate the key and IV is not cryptographically
secure and it allows researchers to restore the key and IV by attacking the generation
algorithm. Knowing these values, they can decrypt the victims’ data.

August 2019: Nemty 1.4

MD5: 1780f3a86beceb242aa81afecf6d1c01

The code change between JSWorm and Nemty is significant. Based on our analysis, the
malware developers may have rewritten their Trojan from scratch, possibly to prevent
successful decryption attempts that allowed victims of several earlier variants of JSWorm to
restore their data without paying.

This sample is also developed in C++ and compiled in MS Visual Studio. It implements a
minor anti-analysis trick consisting of a string obfuscation algorithm. The strings (e.g.,
ransom note name and contents, RSA public key, payment URL, etc.) are encrypted by the

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120311/JSworm_malware_09.png
https://opentip.kaspersky.com/1780f3a86beceb242aa81afecf6d1c01/?utm_source=SL&utm_medium=SL&utm_campaign=SL

10/30

RC4 stream cipher with a hardcoded key “fuckav” and encoded in Base64.

Ransom note of Nemty 1.4

Upon launch, the sample will gather the information about storage devices attached to the
infected machine, get its external IP address by an HTTP request to http://api.ipify.org,
determine the victim’s country by requesting data from http://api.db-ip.com/v2/free/, generate
a pair of RSA-2048 session encryption keys, and combine all the gathered information in a
JSON structure. This structure is then encrypted by the public RSA key of the threat actors
and saved at the end of the ransom notes as “NEMTY DECRYPTION KEY”.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120407/JSworm_malware_10.png

11/30

Information gathered prior to being encrypted by RSA

Some of the fields of interest in this structure:

isRU: specifies whether the country of the victim determined by their external IP
address is one of the following: Russia, Belarus, Kazakhstan, Tajikistan, Ukraine
version: internal version of the Trojan
CompID: unique ID of the infected machine
FileID: infection ID generated on every malware launch
UserID: ID of the affiliate, hardcoded in the Trojan sample
key: base64-encoded key for file encryption (will be discussed later)
pr_key: base64-encoded private session RSA-2048 key (will be discussed later)

Cryptographic scheme

The Trojan sample contains the threat actor’s hardcoded RSA-8192 public key, which we will
call the master RSA public key.

When executed on the victim’s machine, the Trojan also generates a pair of session RSA-
2048 keys with the private key addressed above as pr_key. In addition to this, it also
generates a 256-bit key that will be used with a custom block cipher based on AES.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120442/JSworm_malware_11.png

12/30

The 256-bit key and pr_key are encrypted by the master RSA public key and saved in the
ransom notes.

When encrypting each of the victim’s files, Nemty 1.4 will generate a 128-bit IV and use the
256-bit key with this IV to encrypt the file contents by a custom AES-based cipher. The IV is
encrypted by the session public RSA key and appended to the encrypted file.

Each encrypted file is renamed so that it gets an additional extension “._NEMTY_<…>_”
where the skipped part is the infection ID mentioned above as FileID.

Encryption flaws

Like some of the earlier variants of JSWorm, the implementation of the cryptographic
scheme in Nemty 1.4 is not flawless. Decryption of the victims’ files was possible by
exploiting two weaknesses:

1. The PRNG for the key generation is not secure;
2. The RSA session key is not removed from the system store.

By using the first weakness, it’s possible to restore the 256-bit key, while the pr_key can be
restored using the second. Once you know the pr_key, you can decrypt the IV and then,
armed with the 256-bit key and IV, decrypt the victim’s file contents.

C&C communication

The sample downloads the TOR client from https://dist.torproject.org/torbrowser/8.5.4/tor-
win32-0.4.0.5.zip, extracts it and launches on the infected machine. After waiting for 30
seconds (obviously deemed by the malware developers to be long enough to connect to the
TOR network), the Trojan sends information about the infection to its C&C server hardcoded
in the sample:

1 zjoxyw5mkacojk5ptn2iprkivg5clow72mjkyk5ttubzxprjjnwapkad.onion

Nemty 1.4 uses HTTP GET with URI /public/gate?data=
 The information sent to the server is the same as that saved in each ransom note and is

essentially an encrypted version of the JSON structure discussed above.

Further versions of Nemty

The ‘Nemty’ branding was used until March of 2020. One of the last variants had the internal
version 3.1.

In the few months following the initial creation, several intermediate versions of Nemty were
discovered. The changes include different mutex names and C&C addresses, the added
ability to terminate running processes, stop services and delete shadow copies, improved

13/30

cryptography that prevented unpaid decryption, changes to the ransom text, and numerous
tweaks.

As a side note, the developers of this malware tend to hardcode strings in Russian
(transliterated) seemingly as a joke or maybe as a way to gain attention from researchers.
Some of the strings contain profanities that turned out to be quotes from rap songs.

Strings in a sample of Nemty 2.4

Strings in a sample of Nemty 2.6

March 2020: Nefilim

MD5: 5ff20e2b723edb2d0fb27df4fc2c4468

Around March 2020, the developers changed the branding of their Trojan to Nefilim. Around
the time the first variants of Nefilim started appearing, the distribution model of this family
changed. The developers switched from the public RaaS scheme used with the JSWorm and
Nemty variants to private cooperation with affiliates aimed at big-game hunting. The threat
actors started targeting high-profile victims and manually operating inside the victim’s
network, exfiltrating confidential data and threatening to leak it to intimidate the victim.

All auxiliary functionality such as process termination, deletion of shadow copies,
communication with C&C, was removed from the Trojan’s code. The Trojan became a single-
purpose binary used exclusively for file encryption. If any additional actions were deemed
necessary, they were carried out by the threat actors manually or with the help of additional
third-party tools.

Nefilim is developed in C++ and compiled in MS Visual Studio like Nemty, and the code
overlap between the later versions of Nemty (2+) and Nefilim is very substantial and allows
us to suggest that the development continued from the same source code.

One example of the code overlap is that of the string decryption procedures – they are
identical with the RC4 key being the only difference.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120621/JSworm_malware_12.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120640/JSworm_malware_13.png
https://opentip.kaspersky.com/5ff20e2b723edb2d0fb27df4fc2c4468/?utm_source=SL&utm_medium=SL&utm_campaign=SL

14/30

Identical string decryption procedures. Left: Nemty 2.6
(141dbb1ff0368bd0359972fb5849832d); right: Nefilim

The overlap is not limited to string obfuscation – code fragments for various procedures
match throughout the samples, including the key generation and file encryption functions.

Code similarity in file encryption procedures. Left: Nemty 2.6
(141dbb1ff0368bd0359972fb5849832d); right: Nefilim

Unlike Nemty, the Nefilim sample is signed by a digital signature that was valid at the time
this malware variant was being actively distributed, but has since been revoked.

Upon launch, the malware checks command line arguments. If there are no arguments, it
proceeds to search for the victim’s files on all local and remote drives. If an argument is
given, the Trojan checks whether it is an existing directory path. If so, it will encrypt the files

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120753/JSworm_malware_14.png
https://opentip.kaspersky.com/141dbb1ff0368bd0359972fb5849832d/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120844/JSworm_malware_15.png

15/30

in this directory. Otherwise, it will interpret the argument as a file path and attempt to encrypt
this file. The command line argument checks may have been added to allow cybercriminals
to manually choose files for encryption or merely as a debug functionality.

Cryptographic scheme

The Trojan body contains the threat actors’ hardcoded master RSA-2048 public key. When
processing each victim’s file, Nefilim generates a 128-bit key and a 128-bit IV and encrypts
the file content by AES in CBC mode. The key and IV are encrypted by the RSA master key
and saved at the end of the encrypted file.

The encrypted file is renamed so that it gets the additional extension .NEFILIM.

The ransom notes are saved as NEFILIM-DECRYPT.txt in the processed directories and
contain email addresses to contact the extortionists.

Ransom note dropped by Nefilim

April 2020: Offwhite

MD5: ad25b6af563156765025bf92c32df090

With the branding change from Nefilim to Offwhite the code of the malware has been
further trimmed to reduce the resulting binary size. To achieve this, the developers stopped
using the STL library and got rid of C++ runtime code that was adding unnecessary bulk.
Otherwise, it’s still basically the same old Nefilim. In addition to the capabilities we already
discussed in the previous section, one other feature of note has been added to the Trojan
code allowing it to generate a wallpaper from the ransom text and save it as “scam.jpg”.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24120935/JSworm_malware_16.png
https://opentip.kaspersky.com/ad25b6af563156765025bf92c32df090/?utm_source=SL&utm_medium=SL&utm_campaign=SL

16/30

Wallpaper generated by Offwhite

June 2020: Telegram

MD5: 004f67c79b428da67938dadec0a1e1a4

The differences between the Offwhite and Telegram variants of the Trojan are minimal. The
code is almost identical with the main differences being the encrypted file extension
(.TELEGRAM), the ransom note name (TELEGRAM-RECOVER.txt), and the fact that the
names of imported API functions are not encoded as HEX strings.

November 2020: Fusion

MD5: f37cebdff5de994383f34bcef4131cdf

This Trojan variant is written in the Go programming language. As we mentioned above,
previous variants were developed in C++, which means a complete rewrite from scratch,
possibly by another developer.

However, the similar overall modus operandi of the malware, similar cryptographic scheme,
matching ransom notes, and the fact that the binary is signed, suggest this sample is in fact
a new variant of the JSWorm family.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24121009/JSworm_malware_17.png
https://opentip.kaspersky.com/004f67c79b428da67938dadec0a1e1a4/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/f37cebdff5de994383f34bcef4131cdf/?utm_source=SL&utm_medium=SL&utm_campaign=SL

17/30

What’s more, the data leak site addresses hardcoded in the Trojan’s body are the same
as the ones used previously by these threat actors, which is a pretty compelling
argument in support of our suggestion that there’s a link between Fusion and its
predecessors.

Also, like the previous variants, the Fusion program accepts a command line argument: the
name of the file to be encrypted (possibly used to debug the ransomware).

Cryptographic scheme

The program generates two 128-bit random numbers (IV and key) that are used to encrypt
files using AES in GCM mode according to the following scheme: if the file is less than
1.5MB, then the entire file is encrypted; if the file is larger, then sequentially:

320KB of information is encrypted;
320KB skipped (not encrypted);
the next 320KB are encrypted;
the next 320KB are skipped;
…
and so on until the end of the file.

This means that if the file is large, half turns out to be encrypted (albeit in alternating blocks).

A master public RSA key is embedded inside the program and used to encrypt the IV and
key values. Once encrypted, they are appended to the end of each encrypted file.

RSA public key used by Fusion

And finally, the line “FUSION” is written to the end of the file. The extension “.FUSION” is
then appended to the file name. The sample also leaves a note with contacts for
communication (FUSION-README.txt):

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24121123/JSworm_malware_18.png

18/30

Ransom note dropped by Fusion

January 2021: Milihpen

MD5: e226e6ee60a4ad9fc8eec41da750dd66

With the Milihpen variant the actors behind the JSWorm family have once again completely
reworked the code of the malware, or perhaps hired another developer to implement it from
scratch. This sample is once again developed in C++ (like Nefilim and previous variants) and
not Golang (like Fusion).

Despite this, the main functionality, execution flow, crypto scheme and data leak site
addresses are preserved. In addition, the Trojan name reveals a connection to one of the
previous malware variants – it’s the word “Nephilim” written backwards.

The Trojan now logs all its actions to console, probably making it more convenient for the
malware operator to control the infection process.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24121152/JSworm_malware_19.png
https://opentip.kaspersky.com/e226e6ee60a4ad9fc8eec41da750dd66/?utm_source=SL&utm_medium=SL&utm_campaign=SL

19/30

Console logging of Milihpen

As with previous variants, the malware sample is signed by a digital certificate. Upon launch,
Milihpen parses the configuration data hardcoded in the Trojan’s body. This configuration
structure is stored in JSON format and contains the following fields:

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24121243/JSworm_malware_20.png

20/30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

{

//mutex name

"mutex": "MILIHPEN",

//encrypted file extension

"ext": "MILIHPEN",

//ransom note name part

"nt_name": "-INSTRUCT.txt",

//master RSA public key (base64-encoded), redacted

"pub": "UlNB...Bnum9ew==",

//ransom note text (base64-encoded), redacted

"nt_content": "VHdvIHRoa...wuY29t",

//skipped file extensions

"whiteext": [".exe", ".dll", ".lnk", ".url", ".log", ".cab", ".cmd", ".bat", ".dll", ".msi", ".mp3",
".mp4", ".pif", ".ini"],

//skipped directory names

"whitedir": ["windows", "programdata", "program files", "program files (x86)",
"appdata", "$recycle.bin", "all users", ".", "..", "rsa"],

//dynamically imported API function names

"winapi": ["MessageBoxA", "MessageBoxW", "BCryptOpenAlgorithmProvider",
"BCryptGenRandom", "BCryptImportKeyPair", "BCryptEncrypt"]

}

21/30

After parsing the values from the configuration, Milihpen creates a mutex, parses command
line arguments and proceeds to operate with the same logic as Nefilim and more recent
JSWorm variants. If a command line argument is provided, the Trojan checks whether it’s a
directory path. If so, it will encrypt files inside it; otherwise, it will interpret it as a file path and
try to encrypt it. If no argument is given, the Trojan searches all local and remote drives for
the victim’s files.

Configuration JSON structure in the Milihpen sample

Cryptographic scheme

As with other aspects, Milihpen closely mimics the high-level logic of previous variants
starting with Nefilim and its successors. Code analysis shows, however, that the
implementation has been completely rewritten.

To encrypt the files, Milihpen uses the same algorithms: AES in CBC mode and RSA. The
AES key and IV are also 128-bit and are saved after encryption by the master public RSA
key at the end of the encrypted file.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24121321/JSworm_malware_21.png

22/30

For random number generation and RSA encryption, unlike its predecessors, Milihpen uses
functions from BCrypt API which is a part of the Cryptography Next Generation (CNG) API
that was introduced in Windows Vista. This doesn’t provide any significant advantages to
Milihpen, but it’s a notable characteristic as BCrypt API is not commonly used in crypto-
ransomware nowadays.

The encrypted files are renamed with an additional extension .MILIHPEN and the ransom
notes are saved as MILIHPEN-INSTRUCT.txt.

The ransom note contains similar text to previous variants of this family as well as the same
data leak site addresses.

Ransom note dropped by Milihpen

February 2021: Gangbang

MD5: 173ab5a59490ea2f66fe37c5e20e05b8

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24121412/JSworm_malware_22.png
https://opentip.kaspersky.com/173ab5a59490ea2f66fe37c5e20e05b8/?utm_source=SL&utm_medium=SL&utm_campaign=SL

23/30

The Gangbang variant is identical to Milihpen and is currently the most recently discovered
strain of this ransomware family. The only notable difference is the fact that the configuration
structure is now encrypted by AES with a hardcoded key and IV instead of being in plaintext
like in Milihpen. Additionally, in contrast with previous versions, the digital signature on this
sample is invalid.

Configuration of the Gangbang sample (redacted)

Data leak site

In the spring of 2020, the actors behind JSWorm family switched to big-game hunting and
started their own website where they could publish confidential data stolen from their victims.

At the time of writing, the website is still operational and contains posts about more than a
hundred organizations that fell victim to this malware.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24121446/JSworm_malware_23.png

24/30

Page about the threat actors’ terms

The ‘contact’ page lists email addresses currently used by the threat actors for negotiations.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24121523/JSworm_malware_24.png

25/30

Page with contact email addresses

For some victims there are also individual pages where some of the data stolen from them
can be downloaded.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24121550/JSworm_malware_25.png

26/30

Stolen data download page

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24121648/JSworm_malware_26.png

27/30

Victims

Based on our KSN telemetry, we created a chart illustrating the geographical distribution of
JSWorm ransomware attacks.

Geography of JSWorm victims according to KSN (download)

Top 10 countries attacked by JSWorm according to KSN statistics

Country %*

1 China 21.39%

2 United States of America 7.96%

3 Vietnam 7.46%

4 Mexico 6.97%

5 Russian Federation 6.47%

6 Brazil 5.47%

7 India 5.47%

8 Germany 4.98%

9 France 4.48%

10 Republic of Korea 2.99%

* Unique users attacked by JSWorm ransomware family in the country as a percentage of all
users who encountered JSWorm ransomware

We also analyzed the data about victims posted by the threat actors themselves on their
data leak site. Based on this data, we created a chart illustrating the distribution of JSWorm
victims by industry.

Distribution of JSWorm victims by industry according to the data leak site of the threat actors
(download)

According to the victim list published by the threat actors, two-fifths (41%) of JSWorm attacks
were targeted against companies in the Engineering and Manufacturing category. Energy
and Utilities (10%), Finance (10%), Professional and Consumer Services (10%),
Transportation (7%), and Healthcare (7%) were also at the top of their list.

Conclusion

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24123501/01-en-jsworm-diagrams.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2021/05/24123527/02-en-jsworm-diagrams.png

28/30

The JSWorm family has already been evolving for two years and during this time it has
changed distribution models and the Trojan has undergone several complete
redevelopments. Since its initial emergence in 2019, it has turned from a typical mass-scale
ransomware threat affecting mostly individual users into a typical big-game hunting
ransomware threat attacking high-profile targets and demanding massive ransom payments.

As with other targeted ransomware threats of today, the key to preventing JSWorm infection
incidents is a complex approach to securing an organization’s network. Any weakness may
become an entry point for the threat actors, be it a vulnerable version of server-side
software, an employee clicking a malicious link, a weak password for remote control
systems, and so on.

To boost defenses against big-game hunting ransomware, we recommend carrying out a
security audit of your network in order to find and proactively fix any security flaws.

Other recommendations for maximizing security of your organization:

Do not expose remote desktop services (such as RDP) to public networks unless
absolutely necessary and always use strong passwords for them.
Make sure commercial VPN solutions and other server-side software are always up to
date as exploitation of this type of software is a common infection vector for
ransomware. Always keep client-side applications up to date as well.
Focus your defense strategy on detecting lateral movements and data exfiltration to the
internet. Pay special attention to the outgoing traffic to detect cybercriminal
connections. Back up data regularly. Make sure you can quickly access it in an
emergency when needed. Use the latest Threat Intelligence information to stay aware
of actual TTPs used by threat actors.
Use solutions like Kaspersky Endpoint Detection and Response and the Kaspersky
Managed Detection and Response service to help identify and stop an attack at the
early stages, before the attackers achieve their ultimate goals.
To protect the corporate environment, educate your employees. Dedicated training
courses can help, such as those provided in the Kaspersky Automated Security
Awareness Platform.
Use a reliable endpoint security solution, such as Kaspersky Endpoint Security for
Business that is powered by exploit prevention, behavior detection and a remediation
engine that is able to roll back malicious actions. KESB also has self-defense
mechanisms that can prevent its removal by cybercriminals.

IoC

JSWorm (early variant)
 MD5: a20156344fc4832ecc1b914f7de1a922

https://www.kaspersky.com/enterprise-security/threat-intelligence
https://www.kaspersky.com/enterprise-security/endpoint-detection-response-edr
https://www.kaspersky.com/enterprise-security/managed-detection-and-response
https://www.kaspersky.com/small-to-medium-business-security/security-awareness-platform
https://www.kaspersky.com/enterprise-security/endpoint
https://opentip.kaspersky.com/a20156344fc4832ecc1b914f7de1a922/?utm_source=SL&utm_medium=SL&utm_campaign=SL

29/30

JSWorm 4.0.3
MD5: 5444336139b1b9df54e390b73349a168

Nemty 1.4
MD5: 1780f3a86beceb242aa81afecf6d1c01

Nefilim
MD5: 5ff20e2b723edb2d0fb27df4fc2c4468

Offwhite
MD5: ad25b6af563156765025bf92c32df090

Telegram
MD5: 004f67c79b428da67938dadec0a1e1a4

Fusion
MD5: f37cebdff5de994383f34bcef4131cdf

Milihpen
MD5: e226e6ee60a4ad9fc8eec41da750dd66

Gangbang
MD5: 173ab5a59490ea2f66fe37c5e20e05b8

Data Encryption
Data theft
Malware Descriptions
Malware Technologies
RaaS
Ransomware
Targeted attacks
Trojan

Authors

 Fedor Sinitsyn

 Yanis Zinchenko

https://opentip.kaspersky.com/5444336139b1b9df54e390b73349a168/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/1780f3a86beceb242aa81afecf6d1c01/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/5ff20e2b723edb2d0fb27df4fc2c4468/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/ad25b6af563156765025bf92c32df090/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/004f67c79b428da67938dadec0a1e1a4/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/f37cebdff5de994383f34bcef4131cdf/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/e226e6ee60a4ad9fc8eec41da750dd66/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://opentip.kaspersky.com/173ab5a59490ea2f66fe37c5e20e05b8/?utm_source=SL&utm_medium=SL&utm_campaign=SL
https://securelist.com/tag/data-encryption/
https://securelist.com/tag/data-theft/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/raas/
https://securelist.com/tag/ransomware/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/tag/trojan/
https://securelist.com/author/fedors/
https://securelist.com/author/yaniszinchenko/

30/30

Evolution of JSWorm ransomware

Your email address will not be published. Required fields are marked *

