Cobalt Strikes Again: An Analysis of Obfuscated Malware

@\ huntress.com/blog/cobalt-strike-analysis-of-obfuscated-malware

How deep can a rabbit hole go? Recently, we discovered a suspicious-looking run key on a
victim system. It was clear that the key was likely malicious, but it didn’t seem like anything
out of the ordinary.

Little did we know, we were about to encounter Cobalt Strike malware hidden across almost
700 registry values and encased within multiple layers of fileless executables.

This particular malware sample went to great lengths to hide itself, deploying numerous
evasion tactics and obfuscation techniques in order to evade detection and analysis. And as
you'll see, it goes to show the great lengths hackers will go to evade detection and
compromise their targets.

Let's dive in.

What is Cobalt Strike?

Cobalt Strike is a commercial threat-emulation and post-exploitation tool commonly used by
malicious attackers and penetration testers to compromise and maintain access to networks.
The tool uses a modular framework comprising numerous specialized modules, each
responsible for a particular function within the attack chain. Some are focused on stealth and
evasion, while others are focused on the silent exfiltration of corporate data.

1/18

https://www.huntress.com/blog/cobalt-strike-analysis-of-obfuscated-malware
https://www.cobaltstrike.com/
https://www.huntress.com/blog/tried-and-true-hacker-technique-dos-obfuscation

While the intent of Cobalt Strike is to better equip legitimate red teams and pen testers with
the capabilities of sophisticated threat actors, it is often misused when in the wrong hands.
You know what they say... with great power comes great responsibility. Cobalt Strike is an
undeniably powerful framework, but it's easily weaponized by malicious actors as a go-to tool
for undercover attacks.

Finding Cobalt Strike Malware

It all started with a RunOnce key, which is typically found here:

HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce

This key is used to automatically execute a program when a user logs into their machine.
Since this is a “RunOnce” key, it will automatically be deleted once it has executed. Typically,
this is used by legitimate installation and update tools to resume an update after reboot—but
not to resume after every reboot.

There are also “Run” keys, which don’t get removed each time and are used both
legitimately and maliciously to create persistent footholds between reboots.

In this particular case, we found multiple commands for legitimate applications contained in
the RunOnce key, but there was one that looked awfully suspicious. « ¢

We inspected the command in the suspicious key and found this, which seemed to be
executing a PowerShell command stored in one user’s environment variables.

Looking at the command in further detail, we can note that it does the following:

¢ |loads PowerShell in a hidden window
¢ |loads the environment variables of the current user
¢ |oads a value from the environment with the same name as the current user

« retrieves the data from this value and uses them as arguments for the PowerShell
command

This was starting to look extremely suspicious, and we knew we had to find out what was
lurking in that environment variable.

After extracting that environment variable from the machine, we found a PowerShell
command, this time executing a Base64 encoded string. After decoding and cleaning up the
Base64 string, it ended up looking like this:

What Does This Script Do?

2/18

https://www.huntress.com/blog/what-is-a-persistent-foothold

If you're unfamiliar with PowerShell, that script may look a bit intimidating. Ultimately, the
PowerShell script achieves four main things:

e Loads an obfuscated string that has been stored in the registry.

o De-obfuscates the string and converts the result into a byte array.

e Loads the byte array into memory as a DLL using PowerShell reflection (this is a
common evasion technique that avoids writing a decoded payload to disk).

o Executes the “test” method of that DLL, located in the “Open” object class.

From a more technical lens, here’s a line-by-line breakdown of the PowerShell script in
action:

e Lines 1-9: This section is used to pull data from some more registry keys (up to 700 of
them) and stores this data in a string.

e Lines 10-17: This defines a function that takes that string and converts it into a byte
array. This usually indicates that the string will be used to create an executable file.

o Lines 19-25: This section is a bit strange. It essentially generates the number 1000
and stores it into the $ko variable. It does this in a way that takes a million loop
iterations to generate—which might be an anti-analysis technique.

e Line 27: Loads the StringToBytes function, but first replaces any instance of the #
character with the number in $ko.

o Line 28: Utilizes reflection to load the byte array into memory as a DLL. This avoids
writing the payload to disk and is a common antivirus evasion technique.

e Line 29: Executes the “test” function of the loaded DLL.

The Huntress ThreatOps team was able to retrieve the relevant registry values from the
victim system and modify the script to dump out the payload as a file instead of loading it into
memory. This resulted in our first executable payload.

The First Binary File

After successfully reversing that first PowerShell script, we were able to recreate the binary
file that it was loading into memory. This file was a 6KB 32-bit .NET binary file.

3/18

https://www.huntress.com/platform/threatops

pestudio 9.09 - Malware Initial Assessment - www.winitor.com [c:\users\ieuser\desktop\malware\binary1.bin]

file settings about

wd X8 ¢
c:\users\ieuser\desktop\malware\binary1.bin property value
4 indicators (18) mds 570F39840828307ESAE2C3072BABAA34
e shal 6CCOEOAEDB74C0538B41CBECBTA3EAF22643E119

> dos-header (64 bytes)

— sha256 3F4AD34F946AA34026F5DAS11E9FFEF3E2B7077DD20B709979B85582A387B081
dos-stub (64 bytes)

md5-without-overlay

> file-header (Mar.2021) AR sy

> optional-header (console) sha236-without-overlay

.. #4 directories (5) first-bytes-hex 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 00
> sections (91.67%) first-bytes-text MZ et e er et e e e e v e enae v e @ e e e e
&7 libraries (Microsoft NET Runtime Execution E | file-size 6144 (bytes)
& imperts (_CorDIIMain) size-without-overlay
= entropy 4.267
4 imphash DAEOZFSZAZ]EDSCEGM]ZFSESEQAZDAA/
=0 signature Microsoft Visual C# / Basic NET
4 relocations (2) entry-point FF 25 00 20 00 1000 00
- resources (version) file-version 0000
abe strings (110) description
A3 file-type dynamic-Eink-Ebrary
H cpu 32-bit
{19] version (test1.dll) subsystem console
L compiler-stamp 0x6046C11F (Mon Mar 08 16:28:15 2021)

-4 debugger-stamp
resources-stamp
exports-stamp
version-stamp
certificate-stamp

Given the rather small size (only 6KB) of this file, we were suspicious that we might have
missed something. The file seemed too small to contain a proper payload. We suspected
that this was not the final payload and was likely a stager used to retrieve another payload.

Since the file was written in .NET, we were able to load it into dnSpy to analyze the source
code. This is possible because .NET does not fully compile in the same way that C/C++ code
does and instead “compiles” to an intermediary bytecode format that can be converted back
into source code by tools like dnSpy.

So, we loaded the file into the dnSpy tool and were quickly able to find the “Open” class
referenced by the PowerShell script—which is where we found the following code.

4/18

What's interesting is that this code seemed to be loading even more registry values from a
suspicious registry key and resetting the RunOnce registry values that initially triggered the
investigation. This allows the malware to persist across reboots as if it were a regular Run

key.

Our team was then able to retrieve the suspicious registry key that was being loaded from
the user’s machine, where we found encoded data that was spread across 662 Registry
values. Since the data was pre-formatted in JSON, it was simple to write a regex to dump
only the relevant data to a text file. Once this was done, we were able to decode it using a
simple Python script—which was essentially just a wrapper around the original code used by
the malware.

The Second Binary File

Using the output of the Python script, we were able to produce another 32-bit .NET binary
file. This one was significantly larger than the first file, so we knew we were getting
somewhere!

5/18

E pestudio 9.09 - Malware Initial Assessment - www.winitor.com [c:\users\ieuser\desktop\malware\binary2.bin]

file settings about

Since this was another .NET file, we loaded it up into dnSpy for another round of analysis.

[} c\users\ieuser\desktop\malware\binary2.bin

ad indicators (20)
>

dos-header (64 bytes)
BN dos-stub (64 bytes)

file-header (Mar.2021)

optional-header (console)
= directories (5)

sections (99.97%)
4 | libraries (Microsoft .NET Runtime Execution E
~ | imports (_CorDIIMain)

F

;7‘ relocations (2)

‘14 resources (version)
abc strings (199)

o

=

[£9] version (test_dIl.dIl)

a}

property

md5

shal

sha256
md5-without-overlay
shal-without-overlay
sha256-without-overlay
first-bytes-hex
first-bytes-text
file-size
size-without-overlay
entropy

imphash

signature

entry-point
file-version
description

file-type

cpu

subsystem
compiler-stamp
debugger-stamp
resources-stamp
exports-stamp
version-stamp
certificate-stamp

value

D135BD05B46650DEACDCTABC51D0B4B4
59749C420F1FEBB7D858BFABIE3AQTBA29EADIBS
630B8BIEBC59CBT7ACBIAATBSCH1E1D56EE233CA815E6DF34851D4D3FDBB30541

4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 BE 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 00

1525760 (bytes) —

2.885

DAE02F32A21E03CE65412F6E56942DAA

Microsoft Visual C# / Basic NET

FF 2500 20 00 10 00
0.0.0.0

dynamic-link-library

32-bit

console

0x6046C11E (Mon Mar 08 16:28:14 2021)

This is where we noticed some interesting evasion and anti-analysis techniques.

Evasion Techniques: Part One

The first thing we noticed was numerous sleep functions scattered across the code, which
would cause the program to sleep for 60 seconds between the components of its initial

setup.

This technique is often used to bypass automated scanning tools that don’t have the time to
wait for the sleep functions to complete. It can also be used to evade manual dynamic
analysis, since an analyst may falsely believe that the malware is not doing anything when

it's actually just taking a quick nap.

Learn More: To dive into more defense evasion techniques, check out our Intro to Antivirus

[] payload)

(payload);

(process_id))

(payload);

Evasion session from this year's hack it event!

Obfuscation

6/18

https://www.huntress.com/resources/webinar/webinar/hack_it-2021

Deeper down in the code, we observed numerous references to functions used to perform
process injection. The names of these functions were lightly obfuscated using exclamation
marks, which can be seen on the right side of the below screenshot.

Browsing further, we find the victim process that the malware is targeting for the injection. In
this case, it was the genuine (and signed) Windows “Werfault.exe” process.

This is a legitimate process used by the Windows OS for error reporting—and it was likely
targeted for two reasons:

¢ |t's a genuine and signed Windows process. These are sometimes ignored or
whitelisted by detection systems. (Look up LOLBAS as to why it’s a terrible idea to
whitelist Microsoft binaries.)

o Since the Werfault.exe process performs error reporting, it may have legitimate
reasons for making external network connections, meaning any malicious traffic
created by the malware will have something to blend in with.

This is consistent with SpecterOps’ usage recommendations for Cobalt Strike.

"Consider choosing a binary that would not look strange making network connections."

7/18

https://lolbas-project.github.io/#
https://posts.specterops.io/a-deep-dive-into-cobalt-strike-malleable-c2-6660e33b0e0b

As we continued browsing, we found that a large string contained the payload to be injected
into Werfault.exe. If you look closely, you can see that it is lightly obfuscated with # values,
which are later replaced with the number 1000.

[] payload

Diagnostics. (payload);

The Third Binary File

Getting closer! But this time, the data we saved as our third binary file was not a .NET, so we
can’t peek at the source code using dnSpy.

We are dealing with a 32-bit Delphi compiled binary, with a fake compiler timestamp dated in
1992. In case you're not familiar with Delphi, it's a programming language that allows you to
write, package and deploy cross-platform native applications across a number of operating
systems.

8/18

pestudio 9.09 - Malware Initial Assessment - www.winitor.com [c:\users\ieuser\desktop\malware\binary3.bin]
file settings about

wHXET

[ERCE] c:\users\ieuser\desktop\malware\binary3.bin

property value
4 indicators (43) mds 1CFB36D9370FES108B38043439890C52
2 shal SAD97AC3EC020502C6D38609CF19AB495BDFESF]
©_ dos-header (64 bytes) sha256 BO34B6CECAS6ETDS15CAFF534F151408F C3SFAAAFA20939636050D CEBEEA5235
dos-stub (192 bytes) -
. md5-without-overlay
> file-header (Jun.1992) SRR
» optional-header (GUI) sha2536-without-overlay
¥ directories (&) first-bytes-hex 4D 5A 50 00 02 00 00 00 04 00 OF 00 FF FF 00 00 B8 00 00 00 00 00 00 00 40 00 1A 00 00 00 00 00 00
> sections (files) first-bytes-text MZP.vvvnvnnnnnnnnnnnnnen @unnwnnn.
-4 | libraries (4) file-size 379392 (bytes)
<] imports (46) size-without-overlay
=) entropy 6.637
- & imphash 96AC253940FB18F936E737072CD669BB
=0 signature BobSoft Mini Delphi -> BoB / BobSoft
j’}' relocations (3038) entry-point 558BEC83C4F0OB8C4384100E8BAOTCFFFF33C9B201 A1B0374100E8 02 EC FFFF 681027
{4 resources (Delphi) file-version
abe strings (3848) description
ﬁ} file-type executable
= | cpu 32-bit
) subsystem GUI
E compiler-stamp 0x2A425E18 (Fri Jun 19 15:22:17 1992) -

debugger-stamp
resources-stamp
exports-stamp
version-stamp
certificate-stamp

Evasion Techniques: Part Two

We initially performed some basic static analysis and found that the strings within the code
contained references to VirtualProtect (commonly used in process injection), but this function
was not listed in the import table. This indicated that the code was likely resolving some
functions at runtime, which is suspicious behavior—and yet another tactic used to evade
preventive security tools and thwart analysis.

We also noted the presence of GetProcAddress and LoadLibrary, which further confirmed
our suspicions that the file may be loading functions at runtime.

If you’re not familiar, GetProcAddress is a Win32 API call often used in reflection techniques
that can be used to find the memory address of a given symbol (essentially a function) at
runtime. LoadLibrary is another Win32 API that loads a DLL into the context of the currently
running process. These two functions combined allow a piece of malware to hide
functionality from static analysis and potentially evade some basic forms of detection.

VINNganuisUuCAL SR LIUIIriLel CALEHLUUTITIIanunry eI
FreelLibrary dynamic-library implicit
GetModuleFileNameA dynamic-library implicit
GetModuleHandleA dynamic-library implicit
GetProcAddress dynamic-library implicit
LoadLibraryExA dynamic-library implicit
GetStdHandle console implicit

9/18

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya

Loading up the file within the x32dbg debugger, we observed a large number of calls to the
sleep function, which would cause the program to sleep 10 seconds between performing
suspicious actions. This is yet another anti-analysis tactic.

After getting through the sleep calls, we finally made it to some suspicious functions—
namely some calls to VirtualAlloc and VirtualProtect.

VirtualAlloc is a Win32 API call that will allocate a section of memory that can be used later in
the program’s runtime. Typically, malware might allocate memory and then move malicious
code (such as shellcode) into that section before executing it with another API call like
CreateThread.

VirtualProtect is an API call that will change the memory protections on a given memory
section, this is used to mark a section of memory as readable, writable and/or executable.

Paying close attention to suspicious functions and newly allocated sections of memory, we
eventually hit a breakpoint on CreateThread, which was targeting one of the newly allocated
sections of memory created by the VirtualAlloc calls. We inspected that section further and
found an MZ header, indicating that we had found our fourth binary file.

U4 Dump 1 4% Dump 2 U4 Dump 3 @ Dump4 B4 Dump 5 @ watch 1 [x=] Locals & Struct Disassembly

Address

6BACD000
6BAC0010 D
6BAC0020 | 00 00
6BAC0030 |00 00
6BACO040
6BACO050 7
6BACO060 |74 2
6BACO070
6BACO080
6BAC0030 | 00
6BACOOAD | 00
6BACO0BO | 00
6BAC00CO
6BACO0DO |
GBACOOED
6BACOOF0
6BACO100 |
6BACO110 |00 O

6BACO120 | 0

6BACO130| 00 00 00 00|00 00
GBACO140! 00

0O 00|04 00 O
o =

0 0{80 00 O 0
21 BS 01 4C (€D 21 54 68]..°.. .11 .L1I1Th
72(61 6D 20 63|61 6E 6E 6F|is program canno
20 69 6E 20|44 4F 53 20{t be run in DOS
A|24 00 00 00|00 00 O 0
00|0C D5 DE SE
0B 01
0|20 14 ¢

0 10 «
0|04 00 00

mode....$.......
PE..L....0pDA....

0|BS _SE 04 000
00 00|00 00 10 00|00
00 C

00 00 00
0|00 00 00

Command: [

The Fourth Binary File

After dumping the newly discovered section from the debugger, and re-aligning the sections
using PE-bear, we were able to retrieve a fourth binary file: a 32-bit DLL, 315KB in size.

10/18

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

file settings about

pestudio 9.09 - Malware Initial Assessment - www.winitor.com [c:\users\ieuser\desktop\malware\malware-aligned.bin]

FHXB %

> file-header (Jun.2020)
- > optional-header (console)
--#4 directories (5)

> sections (virtualized)
-2 | libraries (2)
4| imports (49)
-~ exports (5)
-
=0 tls-callbacks (2)

4F relocations (530)
-

-abc strings (2800)

05 me

-] overlay (unknown)

ERCE] c:\users\ieuser\desktop\malware\malware-align
4 indicators (33)
-p1
> dos-header (64 bytes)
dos-stub (64 bytes)

property

md5

shal

sha256
md5-without-overlay
shal-without-overlay

sha236-without-overlay

first-bytes-hex
first-bytes-text
file-size
size-without-overlay
entropy

imphash
signature
entry-point
file-version
description
file-type

cpu

subsystem
compiler-stamp
debugger-stamp
resources-stamp
exports-stamp
version-stamp

value

10A3899D5ECCI3A019F39A18BE148FD9
AE5B91DCO806AD11A404ABA18698983F4B1CD8%4
40DEB52B73C70863D3F59769F694871229E64558E93E75944ADCCC44D41CTF15
67D3E030B885DB4ASCSODCDEAS497570
2F31BB912390D45DEF92638A467FB413F9361A90
03EE1C3D227378B154FSEFD5SC2BF3CC291733B096371233925CCEFEQ35AF2063
4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 00
315392 (bytes)

312832 (bytes)

6.043

E1DCFFDE169ED8BS47DCH3ACDBTBAECA

83EC1C8B542424C7051870B0O6B 0000000083 FAO1 74 1ABB4C 2428884424 20E8 1D FE

dynamic-link-library

32-bit

console

0x5EDED50C (Mon Jun 08 17:17:16 2020)

0x5EDEDS0C (Mon Jun 08 17:17:16 2020)

certificate-stamp

Inspecting the imports of the function, we observed even more references to VirtualAlloc and
VirtualProtect, indicating that more process injection was about to take place.

However, this time we noticed references to MemCpy, indicating that the process may be
injecting or overwriting code into itself rather than into a separate process. Note that if this
code was executing as intended, then “itself” would refer to the already injected Werfault.exe

process.

11/18

mallog

VirtualQuery
VitualProtect
VirtualAllec

fwrite

WriteFile

ReadFile
GetSystemTimeAsFileTime
CreateFileA
TlsGetValue
TerminateProcess
Sleep
GetCurrentThreadld
GetCurrentProcessld

GetCurrentProcess
CreateThread
UnhandledExceptionFilter
SetUnhandledExceptionF...
LoadLibraryW

LoadLibraryA
GetProcAddress

GetModuleHandleA

Freelibrary
GetLastError

CreateNamedPipeA
ConnectNamedPipe

memory
memory
memory
memory
memory

file

file

file

file

file

executicn
execution
execution
execution
execution
execution
execution
exception-handling
exception-handling
dynamic-library
dynamic-library
dynamic-library
dynamic-library
dynamic-library
diagnostic
data-exchange
data-exchange

implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit

A few lines below the memory imports, we see references to named pipe functions being

imported by the malware. In most cases, named pipes are legitimately used for inter-process
communication. But they are also a key component of Cobalt Strike beacons and a common
tactic used to evade automated analysis as they tend to cause issues for emulation tools and
automated sandboxes.

Below, we can see something else interesting: a reference to a named pipe that is highly
consistent with the Default Naming Scheme of named pipes used by Cobalt Strike.

type (2) size (bytes) file-offset blacklist (4) hint (11) group (10) value (2800)

ascii 25 0x000473A8 pipe \\\pipe\MSSE-7285-server
ascii 4 0x00000268 file CRT

ascii 4 0x0001FO6D file -H.c

ascii 4 0x0001FDCD file -H.c

ascii 13 0x00046000 file libggj-12.dIl

ascii 12 0x00046048 file mingwm10.dll

ascii 8 0x00048028 file temp.dll

ascii 12 0x00049558 file KERNEL32.dIl

ascii 10 0x00049580 file msvert.dil

unicode 10 0x00046193 file msvert.dll

ascii 40 0x0000004D dos-message {This program cannot be run in DOS mode.

We won’t dive too much into this, but there are a few great write-ups on this topic on the
Cobalt Strike blog and by F-Secure Labs.

In order to confirm that this was really Cobalt Strike malware, and to try and pull more
information, we parsed the file using this Cobalt Strike Parser.

12/18

https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes
https://blog.cobaltstrike.com/2021/02/09/learn-pipe-fitting-for-all-of-your-offense-projects/
https://labs.f-secure.com/blog/detecting-cobalt-strike-default-modules-via-named-pipe-analysis/
https://github.com/Sentinel-One/CobaltStrikeParser

EUser\De \ as))y malware_6BACOE0@.bin

Not Found

This worked great and confirmed our suspicions that this was Cobalt Strike.

It also allowed us to view the Cobalt Strike configuration file, which included the
communication method (HTTPS POST requests) and the IP of the C2 Server.

Submitting that IP address to VirusTotal, we observed only 1/82 detections. This indicated
that the server may not have been widely used, or that it was potentially still active.

13/18

1

\. 4

@ 1security vendor flagged this IP address as malicious

51.81.135.148 (51.81.0.0/16)

AS 16276 (OVH SAS)

DETAILS

?
X Community o
Score
DETECTION
benkow.cc

The Fifth Binary File

RELATIONS

(D Malware

COMMUNITY

We are well beyond the point of necessary analysis, but we decided to continue down this
rabbit hole.

Using a debugger, we tried to monitor the buffers used by the named pipes, as they are often
used to move payloads and malicious data used by Cobalt Strike.

Shortly after monitoring these buffers, we found a new file appearing in memory. Note the
MZRE Header, which is part of the default configuration of Cobalt Strike.

@4 Dump 1

4% Dump 2

% Dump 3

4% Dump 4

@4 Dump 5

@ watch 1

[x=| Locals

2 struct [Disassembly

Address

022A0000
022A0010
022A0020
022A0030
022A0040
022A0050
022A0060
022A0070
022A0080
022A0090
022A00A0
022A0080
022A00C0
022A00D0
022A00E0
022A00F0
022A0100
022A0110
022A0120
022A0130
022A0140

ASCII

4D SA 52 45
€3 14 7C 00
00 57 FF DO
00 00 00 00
OE 1F BA OE
€9 73 20 70
74 20 62 65|20 72
6D 6F 64 65
Al SA 12 04
58 74 EA 57
FB 69 E9 57
C2 FD 07 57 |EE 3B
FB 69 F5 57|2F 3B
FB 69 ED 57 |E4 3B
00 00 00 00|00

E5 3B
E4 3B
F1 3B

50 45 00 00
00 00 00 00

00 5C 01 00
00 60 02 00
05 00 00 00
00 DO 03 00

E8 00 00 00
00 FF D3 68
00 00 00 00
00 00 00 00
00 B4 09 CD
72 6F 67 72
75 6E
2E OD 0D OA
7C 57
7C 57
7C 57
7C 57
7C 57
7C 57
00 00 00

4C 01 04 00
EO 00 02 A1
00|00 00 00 00
00 00 00
00 00 00 00
00 04 00 00

10

00 5B 89 DF
FO BS A2 56
00 00 00 00
00 00 00 00
21 B8 01 4C
61 6D 20 63
20 69 6E 20
24 00 00 00
E5 3B 7C 57
FB 69 F8 57

55 89 ES 81
68 04 00 00
00 00 00 00
FO 00 00 00
D 21
61 6E 6E G6F
44 4F 53 20
00 00 (
ES 3B 7
CD 3B 7

FB 69 FF 57|67

ES 3B 7D 572

FB 69 EE 57

52 69 63 68|E5 3

00 00
02 B2 AD 5F
0B 01 09 00

00 00

285D 04 00
00 10 00 00
05 00 00 00
00 00 00 00

7C
00 00 00 GO
00 00 00 0O

54 68|..

MZREe é
A| yOhbutvh

I LI'TI’!

is prugram canno
t be run in DOS

00 4E 02 00|..

0(00 10 00 00| .\

00 02 00 00|.°

00 00 00 00
02 00 40 01

Commmd:l

Dumping out that segment, we were able to pull a fifth binary file. This time, it appeared to be
the Reflective Loader used by the Cobalt Strike Beacon. And as we loaded up the new

binary, we can see that it is another 32-bit DLL, about 211KB in size.

14/18

https://blog.cobaltstrike.com/2016/06/15/what-is-a-stageless-payload-artifact/

file settings about

T XxXBE?

[ERCE] c:\users\ieuser\desktop\malware\cobalt_reflect

4 indicators (51)
”n
dos-header (64 bytes)
B¥ dos-stub (176 bytes)
rich-header (checksum)
> file-header (Nov.2020)
optional-header (GUI)
= directories (5)
> sections (99.26%)
4| libraries (4)
4 imports (192)
- exports (_ReflectiveLoader@4)

[
[

{# relocations (2678)

L]

abe strings (1661)

overlay (unknown)

D &E ms

property

md5

shal

sha256
md5-without-overlay
shal-without-overlay
sha256-without-overlay
first-bytes-hex
first-bytes-text
file-size
size-without-overlay
entropy

imphash

signature

entry-point
file-version
description

file-type

cpu

subsystem
compiler-stamp
debugger-stamp
resources-stamp
exports-stamp
version-stamp
certificate-stamp

value

30AD528BAGEGTFCEE446B8A13656C0SE
44678C58E330EFE6B3F3DFO63A413AD6BFE0451E
TJ4AAAABBFAG4FBCASETEOBFCASDAIF316C82958E CADAEE408C24C1207B176761
646CFBOB64ADAB4D409BI535A87DBIBE
C619791FACCC869A9085E4655107D21226F9A88C
891D68B717F5318E910FE706A28C372542C826D47EB42B6AB3E6BIABA4673C26
4D 5A 52 45 E8 00 00 00 00 5B 89 DF 55 89 E5 81 C3 14 7C 00 00 FF D3 68 FO B5 A2 56 68 04 00 00 00
MZRE..wuwulwalunnna]unnnhonVho oo

208896 (bytes)

208384 (bytes)

6.7%4

8B FF 55 8B EC 83 7D 0C 01 75 05 E8 9B 69 00 00 FF 75 08 8B 4D 10 8B 55 OC E8 EC FE FF FF 59 5D C2

dynamic-link-library

32-bit

GUI

0x5FA0B202 (Mon Nov 02 17:27:30 2020)

0x5FA0B201 (Mon Nov 02 17:27:29 2020)

Doing some basic static analysis, we saw that the file is potentially downloading a
PowerShell script from localhost, indicating that there may be a tiny web server storing
PowerShell commands somewhere else in the code.

Manually Finding Indicators of Compromise (I0Cs)

Eventually, we hit LoadLibrary again and observed the Winlnet.DLL and WS2_32.DLL
module being loaded. Since these are Windows libraries used for network and web
communication, we knew that the code might be about to reach out to its C2 Server.

Hide FPU

e Sa el
3P O3TLFLEC

ESI Q2IEF722 TR rECtOryA”

EDX 02 JED000

EIP TE802280 [akcernel 32. LoadL 1 braryds l
EFLAGS QOOO0E10

IF O PF O AF 1
OF @ S O COF O
€F 0 TF 1 IF 1

£

Dot (stdcal)

ziGetiodul enandleas

=uah fITRCEA™
akernel 32. LoadL ibr aryAs
“wii_¥z.d1"

0I3ED0O00

TEBOZIE0 ckernel32. LoadLibraryi>

EFLAGS
IF O

<
Defaudt (s1dcal)

OI000310
PF O AF 1

Tt [€sprd] OFBGLRCO "WINERLT.@TT
2 --elg-al 0230000
3z [espsc] smacisic
a: lespe10] 0216CRED [
§: (espeld] O27LFLFE

| |
17 [e5prd] OZIGLFCO| WEI_3Z.d1T"

23 [esp+8! O2FG0000)

3: fespsc] EEACIBIC

43 [esprl0] O2BECFCO “wii_Ni.d11°
51 [esp+lal O2TEFEFS

We were able to set breakpoints on web-related functions, which confirmed some of the
malicious indicators extracted from the Cobalt Strike parsing tool. And one thing that we
noticed was that the beacon references the Avant Browser in the user-agent of its C2
requests. This likely means that the C2 server won’t respond (or will return something
benign) unless it sees that header.

15/18

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/wininet/about-wininet
https://www.google.com/search?q=avant+browser&oq=Avant+Browser

cc

74118685
74118689
74118690
74118696
74118699

[«
8BFF
55

83EC 64

Al E0322A74
33C5

8945 FC
8B45 08

53

8945 D8
8B45 14

B8
8D45 9C
50
Es 75620800
5365 EO 00
F605 50392A74 02
v OF85 0A3C0900

8D4D 9C
E8 76370000

.
sub esp,64
mov eax,dword ptr ds:[742A32F0]
xor eax,ebp
mov dword ptr ss:[ebp-4],eax
mov eax,dword
push ebx
mov dword ptr ss:[ebp-28],
mov eax,dword ptr ss: [ebp 14]
push esv
push edi
v dword ptr ss:[ebp-
1ea edi,dword ptr ss:
mov esi,dword p(r ss:
xor eax,eax
mov ebx,dword p!
and dword ptr ss:[ebp-1
stosd

ptr ss: [ebp 8]

t

tr _ss: [ebg 10]

eax

,eax
ebp 18]
ebp+C]

d

lea eax,dword ptr ss:[ebp-64]
push eax
call <JMP &memset>
add esp,C
and dword ptr ss:[ebp-20],0
test byte ptr ds: [742A3950]
jne wininet.741AC2A0
lea ecx,dword ptr ss:[ebp-64]
call w1n1net 7411BE14

[ebp 14]
esi:

InternetopenA

[ebp+8]:"51.81.135.148"

"/submit.php"

[ebp+10]:"Mozi11a/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; Avant Browser)"

/

[ebp-20]:"Mozi11a/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; Avant Browser)"

Digging deeper, we also find pieces of the Malleable C2 commands used by the beacon,

which in this case are embedded into HTTP cookie headers.

&"”Cookie:

Jnof/e08Xfay/dYKGpmuBIXL6ZpnGtPuLtuglgeU5vsP4K/bMWYy21s2ulMVQjYmUGOCL1OYSSXWhLNMWPV3y 1€

Although it looked like the data was Base64 encoded, we were unable to extract anything
meaningful from using variations of Base64 decoders.

But wait—are these actually addresses?

Looking at the cookie data within the dump view, we noticed that there were three valid
memory addresses contained within the encoded version of the cookie data.

Address |

02564830
02564840
02564850
02564860
02564870
02564880
02564890
025648A0
025648B0
025648C0
025648D0
025648E0D
025648F0
025643900
02564910
02564920
02564930
02564940
02564950
02564960
02564970

79 69
00 00
00 00
00 00
00 00

00
00
00
00
00
20
4B

62
6D
77
eC
55
46
32
eD
00
00
00
00
00

s s s s CEEEEREEE
.l.l.l.lB.llsléil
Cookie: Inof/e08
xfay/dyKGpmuBIXL
6ZpnGtPuLtugLgeu
SVSP4K/bMWYy21s2
uTMVQjYmugoaC10YS
8XWbLNMwPV3y101G
Abupkazlk+gbR1In
tIegPQBULlTZM+QX]
RO3pphLF1Ng/Hxhl
N+97 7wWC 27 90W0Z TC
hANVRXZmVT46+X/1
yiI=..

One of these referenced the ws2_32.DLL, and the other two referenced a suspicious section

of memory.

16/18

https://www.cobaltstrike.com/help-malleable-c2

Running strings on the memory sections referenced in the red underlines provided some
interesting results—namely lots of information about my virtual machine that the malware
was likely trying to send to the C2 server.

58
BATHEXT=, 20M; .EXE; ,BAT;
PROCESSOR_&BCKITECTURE=:E €
PROCESSOR_ARCHITEWES 325AMDG4

PROCESSOR_LEVEL=6
PROCESSOR_REVISION=Selc
ProgramData=C:\ProgramData

ProgramWE432=C:\Program Files

PUBLICEC:\Users\Public
(OT_AUTO_SCREEN_SCALE_FACTOR=1
(RAM_TCOLS_DIR=C:\Tesls
SESSIONNAME=Console

[USERDOMATN=MSEDGEWINLO

FUIAFESGEAR FLLe3\IOTAEC\RAR; VI \AUOLORI0 \IYIANALYZeT]]
«CMD; . VBS; .VBE; .J8; . JSE; .WSF; .WSH; .M8C; . BY; . BYW

IAUSEEI\AEVII VARPLATA 1 LOCAL \FICGTARI \FAGAL0E L \USE S \AEUIeT \APPLATA \KGARANG \RFR

PROCESSOR_IDENTIFIER=Intelé4 Family € Msdel 142 Stepping 12, GenuinsIntel

ProgramFiles=C:\Program Files (x86)
Programfiles (x86)=C:\Program Files (x86)

P3ModulePath=C: \Users\IEUser\Documents\WindowsPowerdhell\Modules

TEMP=C: \Usexa\IEUser\AppDatalLlocal\Temp
TME=C:\Users\IEUser\AppData\LocallTemp
TOOL_LIST_DIR=C:\Programbata\Microseft\Windews\Start Menu\Programs\FLARE
TOOL_LIST_SHORTCUT=C: \Uaera\IEUsex\Desktop\FLARE.lnk

o

IN_§ ROFILE=]
(USERNAME=IEUser
(USERPROFILE=C: \Users\IEUsexr

(windir=C:\Windows

417~
3mP225
Swindirs\syswowéd\rundl132. exe
/_uem.gif

51.81.135.148

51.81.135.148

ProgramData\FEVM
t\Program Files (x86)\Microseft Visual Studic 14.0\CommeonT\Tools)

| NT_SYMBOL_PATH=symsrv‘symsrv.d11*C:\Symbols*http://msdl.microsoft.com/download/symbols

f_urm.gif

Cockie: In9E/e08XEal L62pnGt Pultugl /MYy 21920 LMVO] YmUq9CLOYSEXRELIMWEY Iy 10t GAbup ka2 Lk+gbR1Tnt TG PEBUL tam+ GXJ ROIPPALFING/ HRh1N4 8T TwC2 7 9oN0Z L ChINVRX My T4 64X/ dyi 1=
/__utm.gif

In5£/e08XEaY, glg /EMNY Y219 2ulNVO Yalgs BV3y upka2lk+gbR1IntIEgPqBULtzm+ QX ROIPPhLFING/ Hxh1N+ 57 TwC2750NOZ tCh1NYRX ZmvT4 64X/ iyil=
Cockie: In9E/e08XEaY LEZpnGt Pultugl /) 2182ulMVOj! NHWEV 3y 1 Lk+gbR1Int I6gPaBULtam+ QX ROIPEALFLNG/ Hrh 1N+ 97 TwC2 T 90ROzt Ch1NVRXZmy T4 642/ dyi 1=

Continuing on,
methods used,

we noticed some more references to the C2 server and the communication
as well as a reference to a full URL used by the payload.

4143D1F cC int3
8BFF mov edi,edi HttpAddRequestHeadersa

8| 74143D22 55 push ebp
®| 74143023 8BEC mov ebp,esp
®| 74143D25 83E4 F8 and esp,FFFFFFF8
o|[74143028 83EC 6C sub esp,6C
o|[74143028 Al FO322A74 mov eax,dword ptr ds:[742A32F0]
®| 74143D30 33C4 xor eax,esp
o|[74143032 894424 68 mov dword ptr ss:[esp+638],eax
o 74143036 8B55 0OC mov edx,dword ptr ss:[ebp+C]
| 74143D39 53 push ebx

74143D3A 8B5D 08 mov ebx,dword ptr ss:[ebp+s] [ebp+8]:"Cookie: JInof/e08xfaY,/dYKGpmuBIXL6ZpnGtPuLtugLgeUsvsP4K,
®|[74143D3D 56 push esi
o 74143D3E 57 push edi
o 74143D3F 895424 18 mov dword ptr [esp+18],edx [esp+18]:&"h"g"
®| 74143D43 F605 50, A74 02 test byte ptr : [742A3950],2
® | 74143D4A| ~ OF85 9A540800 jne wininet.741C91EA
®|[74143050 33C0 Xor eax,eax
o 74143052 C74424 10 00000000 mov dword ptr ss:[esp+10],0
e|[74143D5A 6A 3C push 3C
®| 74143D5C 50 push eax
®(74143D5D 894424 68 mov dword ptr esp+63],eax

74143D61 894424 6C mov dword ptr esp+6C]J , eax [esp+6C]:"https://51.81.135.148/__utm.gif"
®| 74143D65 894424 70 mov dword ptr esp+70] ,eax
|| 74143D63 894424 74 mov dword ptr esp+74],eax
®| 74143D6D 894424 78 mov dword ptr esp+78] ,eax
®| 74143D71 8D4424 2C lea eax,dword ptr ss:[esp+2C]
®(74143D75 50 push eax
®|[74143D76 E8 7CABO500 calll<IMP.&memset>
®|[74143D78 83C4 0OC add esp,C
o 74143D7E FF15 64702A74 call dword ptr ds:[<&GetLastError>] R
o 74143084 833D AC442A74 00 cmp dword ptr ds:[742A44AC],0 742A44AC: "paq"
ell 74143D88 8BF8 mov edi.eax
i 8BFF mov - InternetopenA A
1| 74118642 55 push ebp
' 8BEC mov ebp,esp
) 83EC 64 sub esp,64
) Al FO322A74 mov eax,dword ptr ds:[742A32F0]
' 33C5 xor eax,ebp
! 8945 FC mov dword ptr ss:[ebp-4],eax
' 8B45 08 mov eax,dword ptr ss:[ebp+s] [ebp+8]:"51.81.135.148"
[53 push ebx
' 8945 D8 mov dword ptr ss:[ebp-28],eax /
' 8B45 14 mov eax,dword ptr ss:[ebp+14] [ebp+1. " /submit.php"
) 56 push esi esi:™
' 57 push edi
) 8945 DC mov dword ptr ss:[ebp-24],eax
' sD7D ES lea edi,dword ptr Ss:[ebp-is]
' 8B75 0C mov esi,dword ptr ss:[ebp+C]
' 33C0 Xor eax,eax
' 8BSD 10 mov ebx,dword ptr ss:[ebp+10] [ebp+10]:"Mozi11a/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; Avant Browser)"
' 8365 E4 00 and dword ptr ss:[ebp-1C],0
[AB stosd
' 6A 3C push 3C
' 6A 00 push 0
' AB stosd
' AB stosd
' AB stosd
' AB stosd
[8D45 9C lea eax,dword ptr ss:[ebp-64]
' 50 push eax
' E8 75620800 call <JMP.&memset>
' 83C4 OC add esp,C
' 8365 EO 00 and dword ptr ss:[ebp-20],0 [ebp-20]:"Mozi11a/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; Avant Browser)"
' F605 50392474 02 test byte ptr ds:[742A3950],2
' v OF85 0A3C0900 jne wininet.741AC2A0
[lea ecx,dword ptr ss:[ebp-64]
' E8 76370000 call wininet.7411BE14
' 833D 5C392A74 00 cmp dword ptr ds:[742A395C],0
' v OF84 E2000000 je wininet.7411878D
' 8D45 F8 lea eax,dword ptr ss:[ebp-8]
' 33C9 Xor ecx,ecx
' 50 push eax
' 8D45 ES lea eax,dword ptr ss:[ebp-18]
| 74118684 50 push eax
1l 74118685 6A 24 push 24

17/18

Unfortunately, we didn’t have networking enabled on our test machine; so these requests all
failed, causing an infinite loop where the beacon would sleep for a while and try again. If we
were to enable networking, the beacon would likely download some additional payload
modules and begin to truly compromise our machine. Maybe in a later article we can retrieve
one of these payloads and do a deeper technical analysis of what this Cobalt Strike malware
is capable of.

That wraps up our analysis of this persistence mechanism and the binary files involved. It
was a wild ride, and hopefully you enjoyed reading as much as we enjoyed researching.

If there's one lesson this should leave you with, it's that we simply can't_rely on automated
tools alone to protect our systems. Through all these layers of obfuscation and evasion
tactics, it's clear just how many hoops hackers will jump through to execute their malware—
and that's why you need some type of human element to catch these sneaky threat actors in
their tracks.

We’ll come back to this another day, but for now, this is the end of this rabbit hole.

18/18

https://www.huntress.com/blog/what-is-human-powered-threat-hunting

