
1/8

Zero-Day TCC bypass discovered in XCSSET malware
jamf.com/blog/zero-day-tcc-bypass-discovered-in-xcsset-malware/

Jamf Blog

May 24, 2021 by Jaron Bradley

Jamf Protect, Enterprise, Education, Government, Healthcare, Security
A zero-day discovery allows an attacker to bypass Apple’s TCC protections which safeguard
privacy. By leveraging an installed application with the proper permissions set, the attacker
can piggyback off that donor app when creating a malicious app to execute on victim
devices, without prompting for user approval.

Authors: Stuart Ashenbrenner, Jaron Bradley and Ferdous Saljooki

Introduction

In the latest macOS release (11.4), Apple patched a zero-day exploit (CVE-2021-30713)
which bypassed the Transparency Consent and Control (TCC) framework. This is the system
that controls what resources applications have access to, such as granting video
collaboration software access to the webcam and microphone, in order to participate in
virtual meetings. The exploit in question could allow an attacker to gain Full Disk Access,
Screen Recording, or other permissions without requiring the user’s explicit consent — which
is the default behavior. We, the members of the Jamf Protect detection team, discovered this
bypass being actively exploited during additional analysis of the XCSSET malware, after

https://www.jamf.com/blog/zero-day-tcc-bypass-discovered-in-xcsset-malware/
https://www.jamf.com/blog/
https://www.jamf.com/blog/category/jamf-protect/
https://www.jamf.com/blog/category/enterprise/
https://www.jamf.com/blog/category/education/
https://www.jamf.com/blog/category/government/
https://www.jamf.com/blog/category/healthcare/
https://www.jamf.com/blog/category/security/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30713

2/8

noting a significant uptick of detected variants observed in the wild. The detection team
noted that once installed on the victim’s system, XCSSET was using this bypass specifically
for the purpose of taking screenshots of the user’s desktop without requiring additional
permissions.

What is the XCSSET malware?

In August 2020, a new strain of malware dubbed XCSSET was revealed by Trend Micro.
This malware targeted Mac developers by infecting Xcode projects as a means of further
spreading via Github repositories to expand its reach.

One of the more novel aspects of note is the way in which the malware was developed,
written in AppleScript - a scripting language developed by Apple - that facilitates control over
script-enabled Mac applications. Much of the time the malware author leverages
AppleScripts in their attack chain due to the facility in which it handles many bash
commands, even downloading and/or executing Python scripts in an effort to obfuscate their
intentions through a confusing use of various scripting languages.

Upon initial discovery, one of the most notable features of the XCSSET malware was that it
reportedly utilized two zero-day exploits. This first was used to steal the Safari browser
cookies - which are protected by system integrity protection; while the second was used to
bypass prompts in order to install a developer version of the Safari application. Diving further
still into the malware, Jamf discovered that it has also been exploiting a third zero-day to
bypass Apple’s TCC framework.

What is TCC?

From the user’s perspective, TCC is the prompt they receive when a program attempts to
perform an action that Apple believes should require explicit permission from the user before
allowing the action to occur, as referenced in the video collaboration example mentioned
previously. Other examples of TCC in action are saving files to the Documents directory,
recording keystrokes, and taking a screenshot. When an application attempts to perform
such an action, the user is presented with a prompt asking them if they would like to grant or
deny the application permission to do so. In some instances, users are required to first go
into the System Preferences and authorize permissions to the application granularly before it
can perform the action. Upon granting permissions to any applications, they’re now free to
perform that action without prompting the user again until it is manually disabled in the
privacy settings.

The example below shows the Terminal app prompting the user for permission to run a
program that wants to take a screenshot.

https://www.trendmicro.com/en_us/research/20/h/xcsset-mac-malware--infects-xcode-projects--uses-0-days.html

3/8

The application can then be given permissions via the system preferences.

The Bypass

While dissecting the malware, Jamf Protect detection team members took note of an
AppleScript module titled“screen_sim.applescript.” Inside it, they noticed an interesting check
called “verifyCapturePermissions” being used which takes an application ID as an argument.

4/8

By looking at the log comment alone, it seems as though the malicious AppleScript is
searching for an application that has permissions to capture a screenshot. Not only that, but
it celebrates upon successfully locating such an app.

Stepping into the “verifyCapturePermissions” function, Jamf saw that this section of the script
is checking for capture permissions from the list of installed applications. This list is derived
from an earlier check of the following software appID’s, referred to by the malware as
“donorApps”.

As expected, the list of application IDs that are targeted are all applications that users
regularly grant the screen sharing permission to as part of its normal operation. The malware
then uses the following mdfind command — the command-line-based version of Spotlight —
to check if the appID’s are installed on the victim’s device.

If any of the appID’s are found on the system, the command returns the path to the installed
application. With this information, the malware crafts a custom AppleScript application and
injects it into the installed, donor application. It does so by performing a number of functions,
the most notable being called createDonorApp().

5/8

The script executes the following actions in this sequence:

1. The XCSSET AppleScript screenshot module is downloaded from the malware author’s
command and control (C2)server (to the ~/Library/Caches/GameKit folder).

6/8

2. Using the osacompile command, the screenshot module is converted to an
AppleScript-based application called avatarde.app. When any AppleScript is compiled
in this manner, an executable called “applet” is placed in the newly created application
bundle’s /Contents/MacOS/ directory and the script that the applet will execute can be
located at /Contents/Resources/Scripts/main.scpt.

3. The newly created Info.plist is then modified by the plutil binary, changing the
preference setting LSUIElement to true. This allows the application to be run as a
background process, concealing its presence from the user.

4. A blank icon is then downloaded and applied to the application.
5. Lastly, the newly created application is placed within the already existing donor

application using the following code:

For example, if the virtual meeting application zoom.us.app is found on the system, the
malware will place itself like so:

/Applications/zoom.us.app/Contents/MacOS/avatarde.app

If the victim computer is running macOS 11 or greater, it will then sign the avatarde
application with an ad-hoc signature, or one that is signed by the computer itself.

Once all files are in place, the custom application will piggyback off of the parent application,
which in the example above is Zoom. This means that the malicious application can take
screenshots or record the screen without needing explicit consent from the user. It inherits
those TCC permissions outright from the Zoom parent app. This represents a considerable
privacy concern for end-users.

During Jamf’s testing, it was determined that this vulnerability is not limited to screen
recording permissions either. Multiple different permissions that have already been provided
to the donor application can be transferred to the maliciously created app.

Conclusion

Jamf Protect offers a holistic Mac endpoint security solution that provides analytics to detect
and prevent anytime this vulnerability is potentially being abused. It does this by checking if
an application is bundled within another application. If a match occurs, it goes on to verify the

https://www.jamf.com/products/jamf-protect/

7/8

digital signatures between the two applications, effectively detecting mismatches in the
process of signing information. Jamf urges users to “patch fast and patch often,” as Apple
recently patched this issue to keep malware like XCSSET from abusing this vulnerability in
the future, for Mac computers running macOS 11.4 or later.

Indicators of Compromise (IoC)

During Jamf’s research, multiple hashes were found that were previously unidentified by
VirusTotal. Some of the hashes Jamf discovered were already being detected by Apple’s
built-in malware detection engine, XProtect. However, additional hashes Jamf’s team
identified as being XCSSET malware found their way onto Github, compromising the
affected repositories. The impacted executables have been noted as having potentially one
of five possible filenames within the Xcode project.

Command and Control Domains:

trendmicronano[.]com
findmymacs[.]com
adoberelations[.]com
statsmag[.]com
statsmag[.]xyz
flixprice[.]com
adobestats[.].com
titiez[.]com
icloudserv[.]com
atecasec[.]com
monotel[.]xyz
sidelink[.]xyz
mantrucks[.]xyz
linebrand[.]xyz
nodeline[.]xyz

Protect your environment now

Request Trial
Jaron Bradley

Other authors:

https://www.jamf.com/blog/even-for-iphone-patch-fast-and-often/
https://www.jamf.com/request-trial/jamf-protect/

8/8

Stuart Ashenbrenner, Ferdous Saljooki

Subscribe to the Jamf Blog
Have market trends, Apple updates and Jamf news delivered directly to your inbox.

To learn more about how we collect, use, disclose, transfer, and store your information,
please visit our Privacy Policy.

https://www.jamf.com/privacy-policy/

