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The BlackBerry Research & Intelligence Team

Strong ARMing with MacOS: Adventures in Cross-
Platform Emulation

blogs.blackberry.com/en/2021/05/strong-arming-with-macos-adventures-in-cross-platform-emulation

Summary:
 

In a world where adversaries are becoming more sophisticated by the day, it is important
that threat hunters can keep a competitive advantage and remain one step ahead of threat
actors. Recent developments in Apple® hardware have made it even more difficult for
security researchers to keep up, and the demand for ARM-targeted testing environments is
increasing.

BlackBerry recognizes the importance of supporting the cybersecurity community in the
fight against cyberthreats, and is therefore following up its release of the PE Tree Tool in
2020 by sharing this methodology report to inform security researchers and pen-testers on
how to successfully emulate a MacOS ARM64 kernel under QEMU.

Pen-testers and researchers can use the virtualized environment of a stripped-down
MacOS kernel for debugging and vulnerability discovery, and this illustrates the extent to
which one can use emulation to manipulate and control the kernel to their desired ends,

https://blogs.blackberry.com/en/2021/05/strong-arming-with-macos-adventures-in-cross-platform-emulation
https://blogs.blackberry.com/en/2020/08/blackberry-open-source-pe-tree-tool-for-malware-reverse-engineers


2/39

whether it be to find a critical bug or to patch an area of the kernel.

More importantly, this project was a successful experiment in cross-platform emulation that
has the potential for future development.

Introduction

Demand for ARM-targeted testing environments is increasing. The first Apple silicon
processors are appearing in the market in conjunction with the growing extent of ARM64
support on the most popular operating systems. This project was inspired by a series of
recent developments in emulation software and Apple hardware as well as a race to be the
first to coalesce them. iOS® kernel emulation on a MacOS host had already been
attempted, accomplished, and published. Cross-platform virtualization like this is nothing
new: ARM-based systems have been virtualizable on Intel-based host systems as early as
2009.

QEMU, the versatile and dynamic emulator responsible for bringing this practice into
practicality, is popular among developers and pen-testers for cross-platform emulation.
Even the Android™ emulator is based on QEMU. It was only a matter of time before XNU,
Apple’s own Unix-derived kernel, joined the party.

Background

When emulating a kernel image, the first phase of the kernel boot stage is typically referred
to as the 'bootstrap' phase. This is normally when the earliest kernel output appears and is
the first visible output during an emulation session of the MacOS® ARM64e kernel. The
MacOS 11.1 ARM64e kernel bootstrap process is shown below:

Darwin Kernel Version 20.2.0: Wed Dec  2 20:40:22 PST 2020; root:xnu-
7195.60.75~1/RELEASE_ARM64_T8020 
pmap_startup() init/release time: 106420 microsec 
pmap_startup() delayed init/release of 0 pages 
vm_page_bootstrap: 383584 free pages, 115105 wired pages, (up to 0 of which are 
delayed free) 
"vm_compressor_mode" is 4 
oslog_init completed, 16 chunks, 8 io pages 
standard timeslicing quantum is 10000 us 
standard background quantum is 2500 us 
WQ[wql_init]: init linktable with max:262144 elements (8388608 bytes) 
WQ[wqp_init]: init prepost table with max:262144 elements (8388608 bytes) 
mig_table_max_displ = 53 mach_kobj_count = 365 
debug_log_init: Error!! gPanicBase is still not initialized 
debug_log_init: Error!! gPanicBase is still not initialized 
kdp_core zlib memory 0x8000 
Serial requested, consistent debug disabled or debug boot arg not present, 
configuring debugging over serial 
iBoot version: 
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Fifty seconds, 5086 lines, and 113 kexts later:

 

bash-3.2# ls 
.fseventsd      dev             mnt2            mnt5            mnt8            sbin 
System          etc             mnt3            mnt6            mnt9            usr 
bin             mnt1            mnt4            mnt7            private         var 
bash-3.2# ps -ef 
 UID   PID  PPID   C STIME   TTY           TIME CMD 
   0     1     0   0 12:02AM ??         0:10.31 /sbin/launchd 
   0     3     1   0 12:02AM ??         0:08.71 /bin/bash 
   0     5     3   0 12:05AM ??         0:03.41 ps -ef 
 

All of this is virtualized in a QEMU session, on a Linux® host, running an Intel® Core™ i5-
7500 CPU @ 3.40GHz. You can see the full output on our GitHub page:

https://github.com/cylance/macos-arm64-emulation/blob/main/macos-qemu.log

Getting the Files

In June 2020, Apple announced the first beta releases of MacOS 11 (Big Sur) along with
universal binary support for both x86-64 and ARM64. Does that mean we can expect to find
both the x86-64 and ARM64 kernels in this release?

Yes!

The OSX-KVM project provides a script to download the Big Sur installer package. From
there, it was simply a matter of extracting one nested archive after the other to find the
kernel image. This script does not have a good track record when it comes to reading
Apple’s software update catalogs. Therefore, we’ve provided a link to the kernelcache,
ramdisk, and device tree files below:

https://mega.nz/file/GZwzGYKb#HscZIOg_K5JdUIvbLwwwW7_Ntc1z9c7QPOcEQRKwp8c

Note that the next few steps are only necessary if these files are extracted from the installer
package referenced below, instead of from the link above. Skip ahead to the Modifying
QEMU section, or continue below if you are extracting the files from the installer package:

# Download Big Sur installer and extract the HFS file system 
$ wget http://swcdn.apple.com/content/downloads/00/55/001-86606-
A_9SF1TL01U7/5duug9lar1gypwunjfl96dza0upa854qgg/InstallAssistant.pkg 
$ xar -xf InstallAssistant.pkg SharedSupport.dmg 
$ 7z e SharedSupport.dmg 5.hfs 
 

https://github.com/cylance/macos-arm64-emulation/blob/main/macos-qemu.log
https://github.com/kholia/OSX-KVM
https://mega.nz/file/GZwzGYKb#HscZIOg_K5JdUIvbLwwwW7_Ntc1z9c7QPOcEQRKwp8c
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An archive inside the SFR software update directory with a hash-style name contains the
files we need. We must also extract the Mac® software update archive that contains the
APFS file system. This file system contains many ARM64e binaries that are not present on
the ramdisk, including bash and ls:

 

# Find and extract the SFR and Mac software update archives 
$ 7z l -ba 5.hfs | grep ".zip" 
2020-12-08 01:49:10 .....      1982210      1982464  Shared Support/UpdateBrain.zip 
2020-12-08 01:52:41 .....    927135894    927137792  Shared 
Support/SFR/com_apple_MobileAsset_SFRSoftwareUpdate/aabc1798a59cc185ea5a87bfd4dec012f

2020-12-08 01:52:27 .....  11256421743   2666487808  Shared 
Support/com_apple_MobileAsset_MacSoftwareUpdate/6c799f422b6d995ccc7f3fb669fe3246fd9f6

$ 7z e -so 5.hfs "Shared 
Support/SFR/com_apple_MobileAsset_SFRSoftwareUpdate/aabc1798a59cc185ea5a87bfd4dec012f
> sfr.zip 
$ 7z e -so 5.hfs "Shared 
Support/com_apple_MobileAsset_MacSoftwareUpdate/6c799f422b6d995ccc7f3fb669fe3246fd9f6
> mac.zip 
 

It’s important to note that the long, hash-style archive file names will vary from version to
version. The ramdisk, device tree and kernel files can be easily extracted the SFR archive:

 

# Extract the ramdisk, device tree, and kernel from the SFR archive 
$ 7z e sfr.zip AssetData/usr/standalone/update/ramdisk/arm64eSURamDisk.dmg 
$ 7z e sfr.zip AssetData/boot/Firmware/all_flash/DeviceTree.j273aap.im4p 
$ 7z e sfr.zip AssetData/boot/kernelcache.release.j273  
 

The ramdisk file functions as the operating system. The device tree file identifies the
devices for loading the relevant drivers. The kernel, begetter of all running processes, boots
the system.

Decoding and Decompressing

Now we’ve discovered the kernel image, ramdisk image, and device tree binary and can
gather the requisite files into a single directory. Next, we move ahead to decode each of the
three ASN1-encoded files with these scripts:
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$ SCRIPTS=~/source/xnu-qemu-arm64-tools/bootstrap_scripts 
$ python $SCRIPTS/asn1kerneldecode.py kernelcache.release.j273 
kernelcache.release.j273.asn1decoded 
$ python $SCRIPTS/asn1rdskdecode.py arm64eSURamDisk.dmg 
arm64eSURamDisk.dmg.asn1decoded 
$ python $SCRIPTS/asn1dtredecode.py DeviceTree.j273aap.im4p 
DeviceTree.j273aap.im4p.asn1decoded 
 

The decoded device tree file and kernel image were LZFSE compressed, unlike the LZSS-
compressed iOS kernel. LZFSE features a -decode option for such files:

 

$ lzfse -decode -i kernelcache.release.j273.asn1decoded -o 
kernelcache.release.j273.out 
$ lzfse -decode -i DeviceTree.j273aap.im4p.asn1decoded -o 
DeviceTree.j273aap.im4p.out 
 

Getting Bash and Other Binaries

The root file system on the ramdisk was missing many common command line tools,
including a shell client binary. Even the ls program was completely absent. This brings us to
the mac.zip archive extracted earlier. Below are the contents of the AssetData/Restore
directory in this archive:

 

$ 7z l -ba mac.zip | grep "AssetData/Restore" 
2020-12-07 23:17:30 D....            0            0  AssetData/Restore 
2020-12-07 23:17:30 .....      2871122      2841290  
AssetData/Restore/AppleDiagnostics.dmg 
2020-12-07 23:17:30 .....          328          328  
AssetData/Restore/AppleDiagnostics.chunklist 
2020-12-07 23:17:30 .....         2416         2325  
AssetData/Restore/BaseSystem.chunklist 
2020-12-07 23:16:50 .....    908228542    658466440  AssetData/Restore/022-10310-
098.dmg 
2020-12-07 23:17:32 .....    610378184    605691452  
AssetData/Restore/BaseSystem.dmg 
2020-12-07 23:15:22 .....         3424         3261  AssetData/Restore/022-10310-
098.chunklist 

 

BaseSystem.dmg is for x86_64 installations only. 022-10310-098.dmg is for ARM64e
installations only. After extracting the ARM64e installer and examining the contents:
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$ 7z e mac.zip AssetData/Restore/022-10310-098.dmg 
$ 7z l -ba 022-10310-098.dmg 
                   .....          512          512  0 - MBR 
                   .....          512          512  1 - Primary GPT Header 
                   .....        16384        16384  2 - Primary GPT Table 
                   .....    926695424    908185600  3 - Apple_APFS 
                   .....        16384        16384  4 - Backup GPT Table 
                   .....          512          512  5 - Backup GPT Header 
3 - Apple_APFS is the file system and contains the arm64e Mach-O binaries we need. 
We extracted and mounted with apfs-fuse: 
$ 7z e 022-10310-098.dmg "3 - Apple_APFS" 
$ mkdir apfs 
$ apfs-fuse -o allow_other "3 - Apple_APFS" apfs 
 

Discovering a bash file within, we check the file type:

 

$ find apfs -type f -name bash 
apfs/root/bin/bash 
$ file apfs/root/bin/bash 
apfs/root/bin/bash: Mach-O 64-bit arm64 executable, flags: < 
NOUNDEFS|DYLDLINK|TWOLEVEL|PIE > 
 

It turns out all of the Mach-O binaries in this directory were purely ARM64e executables, as
well as those in the /sbin, /usr/bin, and /usr/sbin directories. To fit these binaries into the
original ramdisk file, the ramdisk had to be resized. Hdiutil is the only tool for the job, but no
port of hdiutil existed outside of MacOS. This means the ramdisk needed to be resized in a
MacOS system:

 

# cp arm64eSURamDisk.dmg.asn1decoded arm64eSURamDisk.dmg.out 
# hdiutil resize -size 1.5G -imagekey diskimage-class=CRawDiskImage 
arm64eSURamDisk.dmg.out 
 

This was the only time throughout the entire project that access to a MacOS system was
required. Fortunately, this can be done in a MacOS virtual machine (VM) that can be
created with OSX-KVM. We mounted the ramdisk, cleared out its
/System/Library/LaunchDaemons directory and transferred the binaries into the ramdisk file
system:
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$ mkdir ramdisk 
$ sudo mount -t hfsplus -o force,rw arm64eSURamDisk.dmg.out ramdisk 
$ sudo rm -rf ramdisk/System/Library/LaunchDaemons/* 
$ sudo cp apfs/root/bin/* ramdisk/bin/ 
$ sudo cp apfs/root/sbin/* ramdisk/sbin/ 
$ sudo cp apfs/root/usr/bin/* ramdisk/usr/bin/ 
$ sudo cp apfs/root/usr/sbin/* ramdisk/usr/sbin/ 
 

We then created a new file at
ramdisk/System/Library/LaunchDaemons/com.apple.bash.plist:

 

$ sudo touch ramdisk/System/Library/LaunchDaemons/com.apple.bash.plist 
 

Afterwards we copied the following code into it:

 

< ?xml version="1.0" encoding="UTF-8"? > 
< !DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"https://www.apple.com/DTDs/PropertyList-1.0.dtd" > 
< plist version="1.0" > 
< dict > 
       < key >Label< /key > 
       < string >com.apple.bash< /string > 
       < key >Umask< /key > 
       < integer >0< /integer > 
       < key >RunAtLoad< /key > 
       < true/ > 
       < key >ProgramArguments< /key > 
       < array > 
               < string >/bin/bash< /string > 
       < /array > 
       < key >StandardInPath< /key > 
       < string >/dev/console< /string > 
       < key >StandardOutPath< /key > 
       < string >/dev/console< /string > 
       < key >StandardErrorPath< /key > 
       < string >/dev/console< /string > 
       < key >POSIXSpawnType< /key > 
       < string >Interactive< /string > 
       < key >EnablePressuredExit< /key > 
       < false/ > 
       < key >UserName< /key > 
       < string >root< /string > 
< /dict > 
< /plis t> 
 



8/39

Finally, we unmounted the file system and ramdisk:

 

$ sudo umount apfs ramdisk 

 

Then it was time to begin testing.

Modifying QEMU

Since the kernelcache binary already contained all the necessary kexts, it was not
necessary to create a kext collection. Thanks to the folks at Aleph Research for providing a
modified version of QEMU that supports Apple’s XNU kernel. With access to this source, we
managed to add support for MacOS on top of the iOS support already implemented.

Building QEMU

We skimmed through the source files in xnu-qemu-arm64 and found two files that
specifically targeted the iOS kernel used by the iPhone® 6s Plus:
include/hw/arm/n66_iphone6plus.h and hw/arm/n66_iphone6splus.c. These files target
a very specific iOS kernel: N66, build 16B92. The definitions and configurations in these
files would likely be incompatible with the kernel we were using (J273, build 20C69), let
alone any macOS kernel. To add additional support for the MacOS kernel, we:

Copied these files;
Renamed the variables, functions, and preprocessor directives to match the names of
the MacOS kernel (J273), kernel version (20C69), and chipset (A21Z); and

 
Updated the filenames in the QEMU command line:

 

cp hw/arm/n66_iphone6splus.c hw/arm/j273_macos11.c 
cp include/hw/arm/n66_iphone6splus.h include/hw/arm/j273_macos11.h 
sed -i 's/N66/J273/g' hw/arm/j273_macos11.c include/hw/arm/j273_macos11.h 
sed -i 's/n66/j273/g' hw/arm/j273_macos11.c include/hw/arm/j273_macos11.h 
sed -i 's/16B92/20C69/g' hw/arm/j273_macos11.c include/hw/arm/j273_macos11.h 
sed -i 's/S8000/A12Z/g' hw/arm/j273_macos11.c include/hw/arm/j273_macos11.h 

 

As in the original xnu-qemu-arm64, we included the generated object files in
hw/arm/Makefile.objs:

 

https://alephsecurity.com/2019/06/17/xnu-qemu-arm64-1/
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sed -i "s/obj-y += boot.o/obj-y += boot.o \ 
xnu_fb_cfg.o \ 
xnu_trampoline_hook.o \ 
xnu_pagetable.o xnu_cpacr.o \ 
xnu_dtb.o \ 
xnu_file_mmio_dev.o \ 
xnu_mem.o \ 
xnu.o \ 
n66_iphone6splus.o \ 
j273_macos11.o \ 
guest-services.o \ 
guest-socket.o \ 
guest-fds.o \ 
guest-file.o/g" hw/arm/Makefile.objs 
 

After this, we began the QEMU build. Unfortunately, and unsurprisingly, the compiler
produced an error:

 

$ make -j6 
... (truncated output) 
scsi/qemu-pr-helper.c: In function ‘multipath_pr_out’: 
scsi/qemu-pr-helper.c:523:32: error: array subscript  is outside array bounds of 
‘struct transportid *[]’ [-Werror=array-bounds] 
 523 |             paramp.trnptid_list[paramp.num_transportid++] = id; 
     |             ~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~ 
... (truncated output) 
 

But what if the linker doesn’t even need this qemu-pr-helper.c module or any other
potentially unbuildable modules? Let’s run make again with the -k flag and CFLAGS="-Wno-
error":

 

$ make -j6 -k CFLAGS="-Wno-error" 
... (snip) 
$ ls ./aarch64-softmmu/qemu-system-aarch64 
./aarch64-softmmu/qemu-system-aarch64 
 

This appears to have succeeded. However, we are not out of the woods yet.

Switch to QEMU 5.1.0

QEMU 5.1.0 supports the LDAPR instruction. QEMU 4.2.0 does not. The official ARM
documentation states the following about this instruction:
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This instruction is supported in architectures ARMv8.3-A and later. It is optionally supported
in ARMv8.2-A with the RCpc extension.

Xnu-qemu-arm64 is based on 4.2.0. QEMU 4.2.0 has very limited support of ARMv8.3 and
no support for the LDAPR instruction. The immediate task ahead was to move all the xnu-
related source files over to a freshly downloaded source of QEMU 5.1.0. Below is a Git diff
showing the files added to the official QEMU 5.1.0 source from xnu-qemu-arm64:

 

$ git diff --no-index --name-only --diff-filter=A qemu-5.1.0 xnu-qemu-arm64-5.1.0 
xnu-qemu-arm64-5.1.0/hw/arm/guest-fds.c 
xnu-qemu-arm64-5.1.0/hw/arm/guest-file.c 
xnu-qemu-arm64-5.1.0/hw/arm/guest-services.c 
xnu-qemu-arm64-5.1.0/hw/arm/guest-socket.c 
xnu-qemu-arm64-5.1.0/hw/arm/j273_macos11.c 
xnu-qemu-arm64-5.1.0/hw/arm/n66_iphone6splus.c 
xnu-qemu-arm64-5.1.0/hw/arm/xnu.c 
xnu-qemu-arm64-5.1.0/hw/arm/xnu_cpacr.c 
xnu-qemu-arm64-5.1.0/hw/arm/xnu_dtb.c 
xnu-qemu-arm64-5.1.0/hw/arm/xnu_fb_cfg.c 
xnu-qemu-arm64-5.1.0/hw/arm/xnu_file_mmio_dev.c 
xnu-qemu-arm64-5.1.0/hw/arm/xnu_mem.c 
xnu-qemu-arm64-5.1.0/hw/arm/xnu_pagetable.c 
xnu-qemu-arm64-5.1.0/hw/arm/xnu_trampoline_hook.c 
xnu-qemu-arm64-5.1.0/hw/display/xnu_ramfb.c 
xnu-qemu-arm64-5.1.0/include/hw/arm/guest-services/fds.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/guest-services/file.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/guest-services/general.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/guest-services/socket.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/j273_macos11.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/n66_iphone6splus.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/xnu.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/xnu_cpacr.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/xnu_dtb.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/xnu_fb_cfg.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/xnu_file_mmio_dev.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/xnu_mem.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/xnu_pagetable.h 
xnu-qemu-arm64-5.1.0/include/hw/arm/xnu_trampoline_hook.h 
xnu-qemu-arm64-5.1.0/include/hw/display/xnu_ramfb.h 
 

In addition to the following modified files in the official source:
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$ git diff --no-index --name-only --diff-filter=M qemu-5.1.0 xnu-qemu-arm64-5.1.0 
xnu-qemu-arm64-5.1.0/hw/arm/Makefile.objs 
xnu-qemu-arm64-5.1.0/target/arm/helper.c 

 

One particular function proved problematic:

 

void allocate_ram(MemoryRegion *top, const char *name, hwaddr addr, 
                 hwaddr size) 
{ 
       MemoryRegion *sec = g_new(MemoryRegion, 1); 
       memory_region_init_ram(sec, NULL, name, size, &error_fatal); 
       memory_region_add_subregion(top, addr, sec); 
} 
 

Due to changes in the source from QEMU 4.2.0 to 5.1.0,
memory_region_allocate_system_memory had to be changed to
memory_region_init_ram. It takes the same arguments in the same order plus one extra
(&error_fatal). The full Git diff file can be downloaded below:

https://github.com/cylance/macos-arm64-emulation/blob/main/xnu-qemu-arm64-5.1.0.diff

To apply the diff and build the modified QEMU source:

Download the source for QEMU 5.1.0 to the same directory as the Git diff file
Extract it
Rename it to xnu-qemu-arm64-5.1.0
Apply the Git diff:

$ wget https://download.qemu.org/qemu-5.1.0.tar.xz 
$ tar xf qemu-5.1.0.tar.xz 
$ mv qemu-5.1.0.tar.xz xnu-qemu-arm64-5.1.0 
$ git apply xnu-qemu-arm64-5.1.0.diff 
 

Configure the source and build it per the instructions provided by Aleph Research:

 

$ cd xnu-qemu-arm64-5.1.0 
$ ./configure --target-list=aarch64-softmmu --disable-capstone --disable-pie --
disable-slirp 
$ make -j6 
 

https://github.com/cylance/macos-arm64-emulation/blob/main/xnu-qemu-arm64-5.1.0.diff
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No bypasses or build flags are necessary.

QEMU Dry Run

The next thing to determine is: will it run? The run.sh script below has the updated QEMU
command line, where we enabled remote kernel debugging with the -S -s option:

 

$ cat run.sh 
~/source/xnu-qemu-arm64-5.1.0/aarch64-softmmu/qemu-system-aarch64 \ 
-M macos11-j273-a12z,\ 
kernel-filename=kernelcache.release.j273.out,\ 
dtb-filename=Firmware/all_flash/DeviceTree.j273aap.im4p.out,\ 
ramdisk-filename=arm64eSURamDisk.dmg.out,\ 
kern-cmd-args="kextlog=0xfff cpus=1 rd=md0 serial=2 -noprogress",\ 
xnu-ramfb=off \ 
-cpu max \ 
-m 6G \ 
-serial mon:stdio \ 
-nographic \ 
-S -s 
$ ./run.sh 
 

Attaching the remote debugger on the same host:

 

$ aarch64-linux-gnu-gdb -q -ex "target remote:1234" 
Remote debugging using :1234 
warning: No executable has been specified and target does not support 
determining executable automatically.  Try using the "file" command. 
0x0000000047ac4580 in ?? () 
(gdb) 
 

0x47ac4580 is the entry point to our MacOS 11 Big Sur ARM64e kernel image. On entry,
addresses seen in QEMU will be physical addresses. Since this is an initial dry run, we let it
loose:

 

$ ./run.sh 
 

Or, in this case, we let it spin around endlessly on the same three instructions:
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0x479f4388      mrs     x0, s3_4_c15_c0_4 ; APCTL_EL1 
│ 
0x479f438c      and     x1, x0, #0x2  
│ 
0x479f4390      cbz     x1, 0x479f4388 ; infinite loop 
 

Bit 1 (#0x2) is never set in the system coprocessor register s3_4_c15_c0_4, so it never
breaks the loop. This is an Apple-specific hardware register. Apple registers are
unrecognized by the official QEMU branch, but xnu-qemu-arm64 added several Apple
registers to boot the iOS kernel, including s3_4_c15_c0_4. This register is also known as
APCTL_EL1/MIGSTS.

Patching the Kernel

That dry run barely got us on our feet. Not easily discouraged, we began skimming the
QEMU source files for clues. After looking at the patching function we disabled, we could
find nothing directly addressing the elusive “APCTL_EL1” register. The infinite loop above
does show up in the XNU source in xnu-6153.141.1/osfmk/arm64/start.s:

 

#ifdef HAS_APPLE_PAC 
#ifdef __APSTS_SUPPORTED__ 
... (snip) 
#else 
mrs  x0, ARM64_REG_APCTL_EL1 
and  x1, x0, #(APCTL_EL1_MKEYVld) 
cbz  x1, 1b     // Poll APCTL_EL1.MKEYVld 
... (snip) 
 

It is polling a flag by the name of MKEYVld.

MKEYVld

What is the MKEYVld flag? Not many clues are in the XNU source. Perhaps a flag
indicating some kind of validation status (MKEYVld = MAC key validated?). Most likely the
kernel is waiting for it to be set by some other piece of hardware. We can force set this flag
ourselves by adding to the following patch already provided by Aleph Research in our
copied hw/arm/j273_macos11.c:
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static uint32_t g_set_cpacr_and_branch_inst[] = { 
   //  91400c21       add x1, x1, 3, lsl 12    # x1 = x1 + 0x3000 
   //  d378dc21       lsl x1, x1, 8            # x1 = x1 * 0x100 (x1 = 0x300000) 
   //  d5181041       msr cpacr_el1, x1        # cpacr_el1 = x1 (enable FP) 
   //  d2800041       mov x1, #2               # MKEYVld 
   //  d51cf081       mov apctl_el1, x1 
   //  aa1f03e1       mov x1, xzr              # x1 = 0 
   //  14000eb5       b 0x1fc0                 # branch to regular start 
   0x91400c21, 0xd378dc21, 0xd5181041, 
   0xd2800041, 0xd51cf081, 0xaa1f03e1, 
   0x14000eb5 
};
 

We introduced two more instructions that set the MKEYVld flag (bit 1) in APCTL_EL1:

 

   //  d2800041       mov x1, #2               # MKEYVld 
   //  d51cf081       mov apctl_el1, x1 
 

The presence of several fixed offsets in xnu-qemu-arm64/hw/arm/n66_iphone6splus.c
shows that there were 11 places in the iOS kernel that required patching:

 

#define INITIAL_BRANCH_VADDR_16B92 (0xfffffff0070a5098) 
#define BZERO_COND_BRANCH_VADDR_16B92 (0xfffffff0070996d8) 
#define SMC_INST_VADDR_16B92 (0xfffffff0070a7d3c) 
#define SLIDE_SET_INST_VADDR_16B92 (0xfffffff00748ef30) 
#define NOTIFY_KERNEL_TASK_PTR_16B92 (0xfffffff0070f4d90) 
#define CORE_TRUST_CHECK_16B92 (0xfffffff0061e136c) 
#define TFP0_TASK_FOR_PID_16B92 (0xfffffff0074a27bc) 
#define TFP0_CNVRT_PORT_TO_TASK_16B92 (0xfffffff0070d7cb8) 
#define TFP0_PORT_NAME_TO_TASK_16B92 (0xfffffff0070d82d8) 
#define TFP0_KERNEL_TASK_CMP_1_16B92 (0xfffffff0070d7b04) 
#define TFP0_KERNEL_TASK_CMP_2_16B92 (0xfffffff0070d810c) 

 

There was no way these hard-coded offsets would be compatible with the MacOS kernel
image. This is when we realized we would need to tear the MacOS kernel apart in a
disassembler to find the offsets.

IDA
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Completing this project would have been impossible without a disassembler. IDA 7.5 was
the primary candidate, chiefly because of its support for ARM64e binaries and the latest
A64 instruction set. For instance, earlier versions of IDA (namely 7.0) do not recognize the
pointer authentication code for instruction key B (PACIBSP) instruction, which appears at
the start of nearly every function in the MacOS ARM64e kernel:

 

Figure 1.

Moreover, the kernel image used in this project contained no symbols. Functions had to be
manually named, one by one, throughout the two-month testing and research period. ASCII
strings offered the most reliable clues. The open-source XNU kernel was crucial in the
struggle to identify the culprit of a crash or freeze. A total of 122645 functions have been
defined in the IDA project so far. On initial analysis, however, IDA failed to define nearly
every single function in the kernel binary. A script was needed to rectify this:
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import idc 
import struct 
import idautils 
pacibsp = "7F 23 03 D5" # PACIBSP 
matches = [] 
ea = idc.find_binary(0, 1, pacibsp) 
while ea != idc.BADADDR: 
   matches.append(ea) 
   ea = idc.find_binary(ea + 4, 1, pacibsp) 
# Move backwards to avoid nesting functions 
for matchea in reversed(matches): 
   if not idc.get_func_name(matchea): 
       idc.add_func(matchea) 
 

The kernel image, kernelcache.release.j273.out, is ~83MB. While the script only took
around 10 minutes to execute, the resulting mass of new functions and cross-references
took over an hour to finish generating. After weeks of research and testing, all patches were
written, and offsets defined:

 

#define INITIAL_BRANCH_VADDR_20C69 (0xfffffe0007ac4580) 
#define BZERO_COND_BRANCH_VADDR_20C69 (0xfffffe0007ab8a3c) 
#define SLIDE_SET_INST_VADDR_20C69 (0xfffffe000806b438) 
#define CORE_TRUST_CHECK_20C69 (0xfffffe0008cb6538) 
#define DISABLE_IMGPF_NOJOP_20C69 (0xfffffe000806b234) 
 

MSR Instructions

QEMU is not equipped to emulate ARM-based Apple systems. Over 110 of Apple’s model-
specific hardware registers (MSR), in addition to hundreds of others, are currently
unrecognized by QEMU. The Aleph Research team added support for 12 Apple-specific
registers required for the iOS kernel to boot. To reach the goal of fully booting the MacOS
ARM64 kernel, 24 more hardware registers needed support. But which registers would we
need to add?

Finding the Necessary Registers

Getting to that bash prompt after two grueling months of research and testing was anything
but a straightforward process. Unsupported MSR registers tended to pop up intermittently
as we diagnosed and fixed one crash after another. We typically followed a “panic, crash
and patch” strategy, adding register support for individual MSR’s on an ad hoc basis. The
list of definitions below from hw/arm/j273_macos11.c are the result:
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   J273_CPREG_DEF(ARM64_REG_EHID1, 3, 0, 15, 3, 1, PL1_RW), 
   J273_CPREG_DEF(ARM64_REG_EHID10, 3, 0, 15, 10, 1, PL1_RW), 
   J273_CPREG_DEF(ARM64_REG_EHID4, 3, 0, 15, 4, 1, PL1_RW), 
   // EL2 registers 
   J273_CPREG_DEF(ARM64_REG_MIGSTS_EL1, 3, 4, 15, 0, 4, PL1_RW), 
   J273_CPREG_DEF(ARM64_REG_KERNELKEYLO_EL1, 3, 4, 15, 1, 0, PL1_RW), 
   J273_CPREG_DEF(ARM64_REG_KERNELKEYHI_EL1, 3, 4, 15, 1, 1, PL1_RW), 
   J273_CPREG_DEF(ARM64_REG_VMSA_LOCK_EL1, 3, 4, 15, 1, 2, PL1_RW), 
   J273_CPREG_DEF(APRR_EL0, 3, 4, 15, 2, 0, PL1_RW), 
   J273_CPREG_DEF(APRR_EL1, 3, 4, 15, 2, 1, PL1_RW), 
   J273_CPREG_DEF(CTRR_LOCK, 3, 4, 15, 2, 2, PL1_RW), 
   J273_CPREG_DEF(CTRR_A_LWR_EL1, 3, 4, 15, 2, 3, PL1_RW), 
   J273_CPREG_DEF(CTRR_A_UPR_EL1, 3, 4, 15, 2, 4, PL1_RW), 
   J273_CPREG_DEF(CTRR_CTL_EL1, 3, 4, 15, 2, 5, PL1_RW), 
   J273_CPREG_DEF(APRR_MASK_EN_EL1, 3, 4, 15, 2, 6, PL1_RW), 
   J273_CPREG_DEF(APRR_MASK_EL0, 3, 4, 15, 2, 7, PL1_RW), 
   J273_CPREG_DEF(ACC_CTRR_A_LWR_EL2, 3, 4, 15, 11, 0, PL1_RW), 
   J273_CPREG_DEF(ACC_CTRR_A_UPR_EL2, 3, 4, 15, 11, 1, PL1_RW), 
   J273_CPREG_DEF(ACC_CTRR_CTL_EL2, 3, 4, 15, 11, 4, PL1_RW), 
   J273_CPREG_DEF(ACC_CTRR_LOCK_EL2, 3, 4, 15, 11, 5, PL1_RW), 
   J273_CPREG_DEF(ARM64_REG_CYC_CFG, 3, 5, 15, 4, 0, PL1_RW), 
   J273_CPREG_DEF(ARM64_REG_CYC_OVRD, 3, 5, 15, 5, 0, PL1_RW), 
   J273_CPREG_DEF(IPI_SR, 3, 5, 15, 1, 1, PL1_RW), 
   J273_CPREG_DEF(UPMCR0, 3, 7, 15, 0, 4, PL1_RW), 
   J273_CPREG_DEF(UPMPCM, 3, 7, 15, 5, 4, PL1_RW), 
 

Unrecognized system registers typically appear as s#_#_c#_c#_# in various debuggers,
where # corresponds to the arguments in each of the definitions above. For example,
ARM64_REG_EHID1 or APRR_EL0 are parsed as s3_0_c15_c3_1 and s3_4_c15_c2_0,
respectively. The last argument PL1_RW means “exception level 1 read/write”, which
specifies the privilege level of the given registers. This indicates that the register is
accessible in exception level 1 (EL1). Yet the level 2 (EL2) registers are marked with
PL1_RW. This is because the following line in the function j273_cpu_setup prohibits EL2
registers:

 

object_property_set_bool(cpuobj, "has_el2", false, NULL); 
 

Setting this to true proved problematic, as QEMU then became unable to switch from
physical to virtual addressing early in the boot process. The fix involved forcing QEMU to
treat these registers as EL1 registers in define_one_arm_cp_reg_with_opaque
(target/arm/helper.c):
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       case 4: 
       case 5: 
           /* min_EL EL2 */ 
           mask = PL1_RW; // changed from mask = PL2_RW 
           break; 
 

We were initially apprehensive of this fix, as modifying any official QEMU source files to
bypass errors may prove to be a dangerous endeavor. Fortunately, no calamities arose, and
eventually all MSR registers were accounted for.

Device Tree

The device tree (DeviceTree.j273aap.im4p.out) was responsible for over half of the panics
during testing. Several properties and devices were either absent from the tree entirely,
usually causing a crash, or needed to be manually adjusted to prevent later issues. We
have written a program that can apply the necessary changes to a device tree file using a
diff-style file:

https://github.com/cylance/macos-arm64-emulation/tree/main/dtetool

To create a compatible device tree, back up the device tree file and apply the changes
specified in dtediff_20C69 with the dtetool program:

cp DeviceTree.j273aap.im4p.out DeviceTree.j273aap.im4p.out.backup 
./dtetool DeviceTree.j273aap.im4p.out.backup -d dtediff_20C69 -o 
DeviceTree.j273aap.im4p.out 

 

The following section provides a more detailed description of each modification.

Device Tree Modifications

The following property is changed to “running” to avoid an infinite loop in
pe_identify_machine:

 

device-tree/cpus/cpu0/state                                 8  running 
 

The first element in arm-io/ranges is changed to 0x100000000:

 

https://github.com/cylance/macos-arm64-emulation/tree/main/dtetool
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device-tree/arm-io/ranges                                   8  0x100000000 
 

The following node is removed to ignore dockchannel-uart in order to use the default uart0
in serial_init:

 

device-tree/dockchannel-uart 
 

The following properties are added to the “chosen” node to avoid the panics at the end of
arm_init:

 

device-tree/chosen/dram-base                                8  0 
device-tree/chosen/dram-size                                8  0 
 

The following properties are added to the lock-regs node to avoid the panic in subroutine
0xfffffe0007b2af00:

 

device-tree/chosen/lock-regs/amcc/aperture-count 4 0 d 
device-tree/chosen/lock-regs/amcc/aperture-size 4 0 d 
device-tree/chosen/lock-regs/amcc/plane-count 4 0 d 
device-tree/chosen/lock-regs/amcc/plane-stride 4 0 d 
device-tree/chosen/lock-regs/amcc/aperture-phys-addr 0 
device-tree/chosen/lock-regs/amcc/cache-status 4 0 d 
device-tree/chosen/lock-regs/amcc/cache-status-reg-offset 4 0 d 
device-tree/chosen/lock-regs/amcc/cache-status-reg-mask 4 0 d 
device-tree/chosen/lock-regs/amcc/cache-status-reg-value 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/page-size-shift 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/lower-limit 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/lower-limit-reg-offset 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/lower-limit-reg-mask 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/upper-limit 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/upper-limit-reg-offset 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/upper-limit-reg-mask 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/lock 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/lock-reg-offset 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/lock-reg-mask 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/lock-reg-value 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/enable 4 0 d 
device-tree/chosen/lock-regs/amcc/amcc-ctrr-a/write-disable 4 0 d 
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One final device tree property is modified: the nvram.

NVRAM

No external NVRAM file is necessary, as the device tree file can house all NVRAM data in a
property called nvram-proxy-data. By default, this property is completely empty, which led to
several problems later (i.e. panics), which were related to null pointers. Crafting and
configuring the NVRAM to the kernel’s liking was a time-consuming task, albeit with a fairly
simple outcome. Several issues cropped up in succession, and additional changes had to
be made.

Null Pointers

The first of the NVRAM-related issues happened in IODTNVRAM::init, where a null pointer
reference to a lock variable caused a panic. This lock variable was supposed to have been
initialized in IODTNVRAM::initNVRAMImage, but this function was never called. We
discovered that the device-tree/chosen/nvram-total-size property in the device tree file was
zero. Another panic occurred due to a null pointer reference in the
IODTNVRAM::initOFVariables function. Apparently the nvram partition dictionary was not
being set due to missing partition information in the device tree’s nvram data.

Nvram-Proxy-Data

The solution to this problem was to tailor the device-tree/chosen/nvram-proxy-data and
device-tree/chosen/nvram-total-size properties to the kernel’s needs. Clues as to what
format this data must be in were given in IODTNVRAM::initNVRAMImage:
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void 
IODTNVRAM::initNVRAMImage(void) 
{ 
// ... (snip) 
// Look through the partitions to find the OF, MacOS partitions. 
while (currentOffset < kIODTNVRAMImageSize) { 
currentLength = ((UInt16 *)(_nvramImage + currentOffset))[1] * 16; 
if (currentLength < 16) { 
break; 
} 
partitionOffset = currentOffset + 16; 
partitionLength = currentLength - 16; 
if ((partitionOffset + partitionLength) > kIODTNVRAMImageSize) { 
break; 
} 
if (strncmp((const char *)_nvramImage + currentOffset + 4, 
   kIODTNVRAMOFPartitionName, 12) == 0) { 
_ofPartitionOffset = partitionOffset; 
_ofPartitionSize = partitionLength; 
} 
// ... (snip) 
initOFVariables(); 
} 
 

When initialized, the NVRAM must be a valid, non-zero size no greater than 65536. This is
specified in the nvram-total-size property. In addition to a valid size the nvram must have at
least one valid partition with a size of at least 32 bytes. Valid partition names include
“common” (defined as kIODTNVRAMOFPartitionName) or “system” (not in the most recent
XNU source). Below is the updated device tree data for nvram-proxy-data:

 

... 
00000f60: 73 79 73 63 66 67 2f 42 47 4d 74 00 6e 76 72 61  syscfg/BGMt.nvra 
00000f70: 6d 2d 70 72 6f 78 79 2d 64 61 74 61 00 00 00 00  m-proxy-data.... 
00000f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00  ................ 
00000f90: 00 00 02 00 63 6f 6d 6f 6e 00 00 00 00 00 00  ....common...... 
00000fa0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................ 
... 
 

Actual data starts at offset 0xf90 in our modified device tree file. The partition’s size is
calculated by multiplying the 16-bit integer at offset 0xf92 by 16. In this case, 2 * 16 = 32
bytes. This includes the first 16 bytes containing the partition’s name and the remaining 16
null bytes. Now that the kernel is satisfied with our empty partition, the mystery of the
missing NVRAM is solved.

Forcing JOP
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All the required MSR registers had been added to QEMU. The device tree was properly
tailored to the kernel’s requirements. The following launchd greeting in a GDB session gave
a small boost of optimism:

Thu Jan  1 00:02:10 1970 localhost com.apple.xpc.launchd[1] <Notice>: hello

The holy grail of a shell prompt is still beyond our grasp at this point. Something was
spinning in the kernel, impeding progress once again:

 

... (snip) 
load_init_program: attempting to load /sbin/launchd 
getExceptionList: failed to open /System/Library/Security/HardeningExceptions.plist 
dyld: setting comm page to 0x800000000 
000120.870479 wlan0.A[3] initWithProvider@120:amfm not matched 
000120.913992 wlan0.A[4] deferredStart@1726: Lowered adjustBusy(-1), getBusyState() 
-> 4 
Thu Jan  1 00:02:10 1970 localhost com.apple.xpc.launchd[1] < Notice >: hello 
Darwin Bootstrapper Version 7.0.0: Tue Aug 25 21:19:12 PDT 2020; 
root:libxpc_executables-2038.40.23.161.1~1/launchd/RELEASE_arm64e 
boot-args = debug=0x8 kextlog=0xfff cpus=1 rd=md0 serial=2 
Thu Jan  1 00:02:10 1970 localhost com.apple.xpc.launchd[1] < Notice >: Restore 
environment starting. 
Thu Jan  1 00:02:10 1970 localhost com.apple.xpc.launchd[1] < Notice >: System 
Integrity Protection is engaged. 
Thu Jan  1 00:02:10 1970 localhost com.apple.xpc.launchd[1] 
(com.apple.xpc.launchd.domain.system) < Notice >: entering ondemand mode 
Thu Jan  1 00:02:10 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: fsck 
Thu Jan  1 00:02:10 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: mount-phase-1 
Thu Jan  1 00:02:10 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: data-protection 
Thu Jan  1 00:02:10 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: check-migration-mode 
Thu Jan  1 00:02:10 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: unlock-data-volume 
Thu Jan  1 00:02:10 1970 localhost com.apple.xpc.launchd[1] < Notice >: Doing boot 
task: commit-boot-mode 
Thu Jan  1 00:02:10 1970 localhost com.apple.xpc.launchd[1] < Notice >: boot-mode 
committed: (null) 
... (spinning) 
 

In an infinite loop at 0xfffffe00079ebcbc:
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(gdb) c 
Continuing. 
^C
Program received signal SIGINT, Interrupt. 
0xfffffe00079ebcbc in ?? () 
(gdb) 
 

In Ldisable_jop:

 

Figure 2.

Notice the infinitely looping B.NE instruction. How did it get here? We looked a bit further up
in the disassembly:

 

Figure 3.
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XNU kernel threads have a member called TH_DISABLE_USER_JOP. If set to a non-zero
value, Ldisable_jop is invoked. SCTLR_EL1 (system control register) is then validated
against a constant (0x7454599d) and freezes execution if the values do not match. Where
is this thread property being set, and how can we prevent it in the most orthodox manner
possible? Setting a write watchpoint in gdb for the address of the blocking thread’s
TH_DISABLE_USER_JOP property leads to this location in posix_spawn:

 

Figure 4.

In posix_spawn (xnu-6153.141.1/bsd/kern/kern_exec.c):

 

error = exec_activate_image(imgp); 
#if defined(HAS_APPLE_PAC) 
ml_task_set_disable_user_jop(new_task, imgp->ip_flags & IMGPF_NOJOP ? TRUE : FALSE); 
ml_thread_set_disable_user_jop(imgp->ip_new_thread, imgp->ip_flags & IMGPF_NOJOP ? 
TRUE : FALSE); 
#endif 
 

In the case of the blocking thread, imgp->ip_flags is set to 0x80000000, which indicates the
IMGPF_NOJOP flag is enabled. The enabled status of this flag is written to the thread’s
TH_DISABLE_USER_JOP property. So where is imgp->ip_flags set?
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Load_machfile

IMGPF_NOJOP is enabled in load_machfile near the end of the function:

 

Figure 5.

Load_machfile compares the Mach-O executable’s identifier against several strings and
enables IMGPF_NOJOP if any are a match:

 

com.apple.security.cs.disable-library-validation 
com.apple.private.cs.automator-plugins 
com.apple.private.security.clear-library-validation 
com.apple.perl5 
com.apple.perl 
org.python.python 
com.apple.expect 
com.tcltk.wish 
com.tcltk.tclsh 
com.apple.ruby 
com.apple.bash 
com.apple.zsh 
com.apple.ksh 
 

The bash identifier is among them. This flag may be a security mechanism to prevent
certain executables from loading at boot time, as they may be used to compromise the
system. Among them are several shell clients and script interpreters. The kernel blocks the
executing thread if the Mach-O file’s identifier matches any of the above strings.

Solution

NOP over the ORR W8, W8 #0x80000000 instruction to keep IMGPF_NOJOP disabled.
This gave the go-ahead to the kernel to allow launchd to execute bash (via xpcproxy):
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Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: auto-pivot-root 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: allow-non-platform-code 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Doing boot 
task: restore-datapartition 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: restore-
datapartition: optional boot task not present 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: mount-phase-2 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: enable-swap 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: sandbox-enable-root-translation 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Doing boot 
task: init-with-data-volume 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: deferred_install 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: fips 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: cache-start 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: bootroot 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: init_featureflags 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: EndpointSecurity 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: rc.server 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: tzinit 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: dirhelper 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: rootless-init 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: finish-demo-restore 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: systemstats 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: prng_seedctl 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Warning >: Unable to 
load cache 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: launchd 
UUID: 438960C9-7E3C-3D4A-9EA8-643FF64ACDF2 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Early boot 
complete. Continuing system boot. 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] 
(com.apple.xpc.launchd.domain.system) < Notice >: entering bootstrap mode 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] 
(com.apple.xpc.launchd.domain.system) < Error >: Failed to bootstrap path: path = 
/Library/Apple/System/Library/LaunchDaemons, error = 2: No such file or directory 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] 
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(com.apple.xpc.launchd.domain.system) < Critical >: No task-access server 
configured! The system will not get very far. 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] 
(com.apple.xpc.launchd.domain.system) < Notice >: exiting bootstrap mode 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] < Notice >: Skipping 
boot-task: cache-tag 
Thu Jan  1 00:01:58 1970 localhost com.apple.xpc.launchd[1] 
(com.apple.xpc.launchd.domain.system) < Notice >: exiting ondemand mode 
The default interactive shell is now zsh. 
To update your account to use zsh, please run `chsh -s /bin/zsh`. 
For more details, please visit https://support.apple.com/kb/HT208050. 
bash-3.2# 
 

A prompt appeared at last. Yet stdin is not working and there is no keyboard input.

Serial Keyboard and FIQ

A fully functioning bash prompt is useless without keyboard input. Keyboard input is read in
a separate thread in a function called serial_keyboard_poll. The serial_keyboard_poll:

Reads all pending characters from the stdin buffer
Sets the 16-millisecond deadline by calling assert_wait_deadline
Blocks execution in thread_block until the deadline has passed

serial_keyboard_poll is then re-invoked by thread_invoke, and this sequence of events
repeats indefinitely for as long as bash is open.
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Figure 6.

Yet this wasn’t happening. Thread_block was called only once, the thread stalled, and
serial_keyboard_poll was never invoked again.

We thought: maybe the deadline wasn’t being reached? Wait deadlines are specified in the
assert_wait_deadline function. This function creates a waitq object for the current keyboard-
polling thread with an optional deadline, in nanoseconds. When thread_block is called
shortly afterwards, the thread hangs until the thread_clear_waitq_state kernel function
clears the thread’s waitq object:

 

static inline void 
thread_clear_waitq_state(thread_t thread) 
{ 
   thread->waitq = NULL; 
   thread->wait_event = NO_EVENT64; 
   thread->at_safe_point = FALSE; 
} 
 

But this function never got called, and the deadline was never reached. What does the
thread do? It switches context to the system idle thread and blocks indefinitely, never
invoking a continuation of serial_keyboard_poll to continue polling for stdin. Surely
something somewhere is called that may lead to thread_clear_waitq_state? By back tracing
the sequence of function calls in the XNU source, we discovered the origin of interrupt
timers:
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thread_clear_waitq_state 
waitq_pull_thread_locked 
clear_wait_internal 
thread_timer_expire 
timer_queue_expire_with_options 
timer_intr 
rtclock_intr 
sleh_fiq 
_fleh_fiq 
 

After analyzing this call flow, we were inching ever closer to the source of the problem.
Analyzing the interoperability of threads, timers, clocks, and interrupts in the XNU kernel
was slowly paying dividends.

Fast Interrupt Requests (FIQ)

Further investigation revealed that not even fleh_fiq (first-level exception handler for Fast
Interrupt Request) was being called. Something was seriously wrong, as fleh_fiq is integral
to a working interrupt timer. Peripheral devices like keyboards and mice typically
communicate with the kernel using Fast Interrupt Requests (FIQ) in the ARM architecture.
We confirmed that FIQs were not firing in the emulator after looking at QEMU’s source. We
discovered that arm_cpu_exec_interrupt, which is called for a fast interrupt request, never
got called. No amount of keyboard-spamming would trigger this or any of the kernel
functions listed above.

Hardware Timers

Perhaps another possibility for a non-operational FIQ handler was timer-related? Threads
often rely on hardware timers to notify the thread of a passed deadline. If no timer exists, no
countdowns can be performed and idle threads waiting for a deadline will stall the system.
Without a hardware timer to poll for FIQs, MacOS will ignore them. This is significant, as it
would have affected not only standard keyboard input, but other areas of the kernel as well.
Wait deadlines would never be reached, threads would hang, and services would never
start simply because no hardware timer was present.

Enable_timebase_event_stream

We did a comparison between the iOS and MacOS kernel for the
enable_timebase_event_stream function. Why this function? Because this function modifies
three timer-related system registers and could provide the answer to our timer dilemma.
Below is from the MacOS kernel:
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Figure 7.

 

Contrast the above with the corresponding iOS kernel disassembly:

 

Figure 8.

 

We immediately noticed the presence of an extra register in the MacOS kernel:
CNTV_CTL_EL0. With the help of a comprehensive list of iOS ARM64 system registers, we
began to make the connection between these registers and the timer issues. The iOS
kernel appeared to be enabling the physical timer by writing 1 to it, while the MacOS kernel
was enabling the virtual timer by writing 1 to it. Then we noticed the line in the xnu-qemu-
ARM64 source:
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   qdev_connect_gpio_out(cpudev, GTIMER_PHYS, 
                         qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 
 

The GTIMER_VIRT constant gave it away almost instantly. QEMU’s official source lists five
different global timer types in target/arm/cpu.h:

 

#define GTIMER_PHYS     0 
#define GTIMER_VIRT     1 
#define GTIMER_HYP      2 
#define GTIMER_SEC      3 
#define GTIMER_HYPVIRT  4 
 

The solution was incredibly simple: MacOS uses a virtual timer. iOS uses a physical timer.
Therefore, QEMU must specify a virtual timer with GTIMER_VIRT instead of
GTIMER_PHYS when linking the timer to FIQ. Switching to GTIMER_VIRT:

 

   qdev_connect_gpio_out(cpudev, GTIMER_VIRT, 
                         qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); 
 

Followed by booting up the MacOS kernel, waiting for the bash prompt, then:

 

bash-3.2# asdfasdfasdf 
bash-3.2# ls 
.fseventsd      dev             mnt3            mnt7            sbin 
Library         etc             mnt4            mnt8            usr 
System          mnt1            mnt5            mnt9            var 
bin             mnt2            mnt6            private 
bash-3.2# 
 

Such a simple answer to a cryptic problem. This final fix marks the end of the final phase of
a fully bootable MacOS 11 ARM64e kernel.

Achieving a Functioning Emulator

This chronicling of discoveries, fixes and accomplishments would not be complete without
long-term failures and ineffective bypasses. Below are several examples that involved
multiple days of research and testing and created quite a bit of frustration throughout.
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IORTC

Before we discovered, diagnosed, and mitigated the timer dilemma, something related to
the initialization of the RTC (real-time clock) had been blocking the bsd_init thread.
IOKitInitializeTime was waiting for a matching IORTC service. The wait was initiated by
IOService::waitForMatchingService, which relies on assert_wait or assert_wait_deadline to
begin blocking the thread until a condition is met. assert_wait_deadline is non-functional
without a working hardware timer. The kernel had no working hardware timer. We tried
adding the no-rtc property to the device tree root and a child node (with the name rtc) to the
arm-io node. This would invoke the bootstrap to immediately publish the IORTC service and
skip the wait. After the real source of the problem was determined and fixed, these device
tree nodes were removed.

Task-access Server and SIP

The following message from the launchd output was a bit disconcerting:

 

< Critical >: No task-access server configured! The system will not get very far. 
 

It was originally attributed to code-signing, then attributed to SIP, and finally ignored once a
functioning bash prompt was operational. This message caused several unneeded
headaches. A task-access server is related to communication between tasks over the task-
access port (defined as constant TASK_ACCESS_PORT with a value of 9). Assuming this
only affected TCP connections, which this emulation project currently does not support, we
ignored the error.

iOS Binary Incompatibility

RootlessJB provides common Mach-O ARM64e binaries, including bash, that are runnable
in the iOS kernel. These are iOS binaries for an iOS kernel. This explains why one is likely
to see the following message when attempting to run said binaries on a MacOS system and
never see a bash prompt:

 

Using iOS Platform policy 
port is not ready for callouts 
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The necessary command line tools are part of the base ARM64 system, archived deep
within the MacOS Big Sur installer package. This is simply a warning to those attempting
execution of the aforementioned iOS binaries in a MacOS environment: it probably won’t
work.

Conclusion

This project was a successful experiment in cross-platform emulation that has potential for
future development. Hard disk and TCP tunneling (which xnu-qemu-arm64 already supports
for iOS) still await implementation. Multi-core and KVM support would dramatically reduce
the boot time, perhaps to mere seconds, and eliminate massive overhead. Full graphical
support is a mere prospect (even less so in a cross-platform environment). But graphical
support is low priority, so long as a functioning shell client is present. If it works, that is
enough of a motivation to make it work well.

Example Commands

To complement the article, we have decided to provide examples of command output from
an emulated MacOS 11 ARM64e guest. For example, the following shows output from the
lsof program:
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bash-3.2# lsof -c launchd 
COMMAND PID USER   FD   TYPE DEVICE SIZE/OFF NODE NAME 
launchd   1 root  cwd    DIR    2,0      748    2 / 
launchd   1 root  txt    REG    2,0   418976  940 /sbin/launchd 
launchd   1 root  txt    REG    2,0   821120  958 /usr/lib/dyld 
launchd   1 root  txt    REG    2,0    60880  977 /usr/lib/libSystem.B.dylib 
launchd   1 root  txt    REG    2,0   443120 1024 /usr/lib/libobjc.A.dylib 
launchd   1 root  txt    REG    2,0    79072  985 /usr/lib/libauditd.0.dylib 
launchd   1 root  txt    REG    2,0   161504  989 /usr/lib/libbsm.0.dylib 
launchd   1 root  txt    REG    2,0    77424 1044 /usr/lib/system/libcache.dylib
launchd   1 root  txt    REG    2,0   163856 1045 
/usr/lib/system/libcommonCrypto.dylib 
launchd   1 root  txt    REG    2,0    64304 1046 
/usr/lib/system/libcompiler_rt.dylib 
launchd   1 root  txt    REG    2,0   101696 1047 /usr/lib/system/libcopyfile.dylib 
launchd   1 root  txt    REG    2,0   656832 1048 
/usr/lib/system/libcorecrypto.dylib 
launchd   1 root  txt    REG    2,0   557520 1051 /usr/lib/system/libdispatch.dylib 
launchd   1 root  txt    REG    2,0   501456 1052 /usr/lib/system/libdyld.dylib 
launchd   1 root  txt    REG    2,0    57616 1053 /usr/lib/system/libkeymgr.dylib 
launchd   1 root  txt    REG    2,0    35296 1055 /usr/lib/system/liblaunch.dylib 
launchd   1 root  txt    REG    2,0    80192 1056 /usr/lib/system/libmacho.dylib
launchd   1 root  txt    REG    2,0    64432 1059 
/usr/lib/system/libquarantine.dylib 
launchd   1 root  txt    REG    2,0    59168 1060 
/usr/lib/system/libremovefile.dylib 
launchd   1 root  txt    REG    2,0   197136 1061 
/usr/lib/system/libsystem_asl.dylib 
launchd   1 root  txt    REG    2,0   110560 1062 
/usr/lib/system/libsystem_blocks.dylib 
launchd   1 root  txt    REG    2,0   758912 1063 /usr/lib/system/libsystem_c.dylib 
launchd   1 root  txt    REG    2,0    53456 1064 
/usr/lib/system/libsystem_collections.dylib 
launchd   1 root  txt    REG    2,0   100864 1065 
/usr/lib/system/libsystem_configuration.dylib 
launchd   1 root  txt    REG    2,0   176752 1066 
/usr/lib/system/libsystem_containermanager.dylib 
launchd   1 root  txt    REG    2,0    99584 1067 
/usr/lib/system/libsystem_coreservices.dylib 
launchd   1 root  txt    REG    2,0   144048 1068 
/usr/lib/system/libsystem_darwin.dylib 
launchd   1 root  txt    REG    2,0   132912 1069 
/usr/lib/system/libsystem_dnssd.dylib 
launchd   1 root  txt    REG    2,0    75376 1070 
/usr/lib/system/libsystem_featureflags.dylib 
launchd   1 root  txt    REG    2,0   451008 1071 
/usr/lib/system/libsystem_info.dylib 
launchd   1 root  txt    REG    2,0   244320 1073 /usr/lib/system/libsystem_m.dylib 
launchd   1 root  txt    REG    2,0   317408 1074 
/usr/lib/system/libsystem_malloc.dylib 
launchd   1 root  txt    REG    2,0   166784 1075 
/usr/lib/system/libsystem_networkextension.dylib 
launchd   1 root  txt    REG    2,0   115616 1076 
/usr/lib/system/libsystem_notify.dylib 
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launchd   1 root  txt    REG    2,0    21952 1078 
/usr/lib/system/libsystem_product_info_filter.dylib 
launchd   1 root  txt    REG    2,0   103232 1080 
/usr/lib/system/libsystem_sandbox.dylib 
launchd   1 root  txt    REG    2,0    80112 1081 
/usr/lib/system/libsystem_secinit.dylib 
launchd   1 root  txt    REG    2,0   373952 1072 
/usr/lib/system/libsystem_kernel.dylib 
launchd   1 root  txt    REG    2,0   105232 1077 
/usr/lib/system/libsystem_platform.dylib 
launchd   1 root  txt    REG    2,0   149616 1079 
/usr/lib/system/libsystem_pthread.dylib 
launchd   1 root  txt    REG    2,0   101552 1082 
/usr/lib/system/libsystem_symptoms.dylib 
launchd   1 root  txt    REG    2,0   242032 1083 
/usr/lib/system/libsystem_trace.dylib 
launchd   1 root  txt    REG    2,0   114304 1085 /usr/lib/system/libunwind.dylib 
launchd   1 root  txt    REG    2,0   467728 1086 /usr/lib/system/libxpc.dylib 
launchd   1 root  txt    REG    2,0   268336  993 /usr/lib/libc++abi.dylib 
launchd   1 root  txt    REG    2,0    80128 1022 /usr/lib/liboah.dylib 
launchd   1 root  txt    REG    2,0   787520  991 /usr/lib/libc++.1.dylib 
launchd   1 root    0w   CHR    0,0   0t4982  291 /dev/console 
launchd   1 root    1w   CHR    0,0   0t4982  291 /dev/console 

 

The df command lists active file systems, such as the root device where launchd, bash, and
all other userland programs are located:

 

bash-3.2# df -h 
Filesystem    Size   Used  Avail Capacity iused      ifree %iused  Mounted on 
root_device  1.5Gi  130Mi  1.4Gi     9%    1668 4294965611    0%   / 
devfs        168Ki     0Bi   100%     580          0  100%   /dev 
 

View network interfaces with ifconfig:

 

bash-3.2# ifconfig 
ALF, old data swfs_pid_entry , updaterules_msg < ptr >, updaterules_state < ptr 
>lo0: flags=8049< UP,LOOPBACK,RUNNING,MULTICAST > mtu 16384 
       options=1203< RXCSUM,TXCSUM,TXSTATUS,SW_TIMESTAMP > 
       inet 127.0.0.1 netmask 0xff000000 
       inet6 ::1 prefixlen 128 
       inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1 
       nd6 options=201< PERFORMNUD,DAD > 
gif0: flags=8010< POINTOPOINT,MULTICAST > mtu 1280 
stf0: flags=0<> mtu 1280 
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Finally, the full output of a shutdown command:

 

bash-3.2# shutdown -h now 
Shutdown NOW! 
System shutdown time has arrived 
Thu Jan  1 00:06:11 1970 localhost com.apple.xpc.launchd[1] 
(com.apple.xpc.launchd.domain.system) : System shutdown initiated by: shutdown.10<-
bash.3<-launchd.1 
Thu Jan  1 00:06:11 1970 localhost com.apple.xpc.launchd[1] 
(com.apple.xpc.launchd.domain.system) < Notice >: committing to system shutdown 
Kext loading now disabled. 
Kext unloading now disabled. 
Kext autounloading now disabled. 
Kernel requests now disabled. 
System shutdown; requesting immediate kernelmanagerd exit. 
ASP: System is shutting down, preventing further ASP upcalls 
ASP: ASP: shutting down, drained 
bash-3.2# Thu Jan  1 00:06:41 1970 localhost com.apple.xpc.launchd[1] 
(com.apple.xpc.launchd.domain.system) : shutdown UNINITIALIZED -> COMMITTED 
Thu Jan  1 00:06:41 1970 localhost com.apple.xpc.launchd[1] 
(com.apple.xpc.launchd.domain.system) < Notice >: shutdown already committed 
Thu Jan  1 00:06:41 1970 localhost com.apple.xpc.launchd[1] 
(com.apple.xpc.launchd.domain.system) < Notice >: shutdown COMMITTED -> COMMITTED 
Thu Jan  1 00:06:41 1970 localhost com.apple.xpc.launchd[1] 
(com.apple.xpc.launchd.domain.system) < Notice >: shutdown COMMITTED -> 
WAITING_ON_SERVICES 
ASP: System is shutting down, (SIP is ENABLED) allowing process at path: 
/usr/sbin/spindump 
Thu Jan  1 00:06:43 1970 localhost com.apple.xpc.launchd[1] < Notice >: Generating 
report... 
dyld: dyld cache load error: shared cache file open() failed 
dyld: Library not loaded: 
/System/Library/PrivateFrameworks/CoreSymbolication.framework/Versions/A/CoreSymbolic

 Referenced from: /usr/sbin/spindump 
 Reason: image not found 
AMFI: Denying core dump for pid 11 (spindump)Thu Jan  1 00:06:44 1970 localhost 
com.apple.xpc.launchd[1] < Warning >: shutdown-stall: non-boot task exited with 
status 6 
Thu Jan  1 00:06:44 1970 localhost com.apple.xpc.launchd[1] < Notice >: Report 
generated in 0 seconds. 
Thu Jan  1 00:06:44 1970 localhost com.apple.xpc.launchd[1] < Error >: Host-level 
exception raised: pid = 11, thread = 0x50f, exception type = 0xd, codes = { 
25769803777 }, states = { 0 } 
syncing disks... Killing all processes 
continuing 
hfs: unmount initiated on GoldenGateC20C69.arm64eSURamDisk on device b(2, 0) 
done 
CPU halted 
ASP: ASP: shutting down 
panic(cpu 0 caller 0xfffffe0008289f38): "Halt/Restart Timed Out" 
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Yes, that is a panic at the end. Add “fatal shutdown” to the list of issues awaiting a fix.

Resources

Setup Guide

https://github.com/cylance/macos-arm64-emulation

Aleph Research

Running iOS in QEMU to an interactive bash shell (1): tutorial

https://github.com/alephsecurity/xnu-qemu-arm64

https://github.com/alephsecurity/xnu-qemu-arm64-tools

XNU

XNU source tarballs - https://opensource.apple.com/tarballs/xnu/

XNU source - https://github.com/apple-opensource/xnu

Tools

QEMU 5.1.0 - https://www.qemu.org/download/#source

OSX-KVM - https://github.com/kholia/OSX-KVM

xar - https://github.com/mackyle/xar

apfs-fuse - https://github.com/sgan81/apfs-fuse

Links

https://landley.net/aboriginal/presentation.html

https://developer.android.com/studio/run/emulator-commandline

https://developer.arm.com/documentation/dui0801/g/A64-Data-Transfer-Instructions/LDAPR

https://developer.arm.com/architectures/instruction-sets/base-isas/a64

https://worthdoingbadly.com/xnuqemu3/

 

https://github.com/cylance/macos-arm64-emulation
https://alephsecurity.com/2019/06/17/xnu-qemu-arm64-1/
https://github.com/alephsecurity/xnu-qemu-arm64
https://github.com/alephsecurity/xnu-qemu-arm64-tools
https://opensource.apple.com/tarballs/xnu/
https://github.com/apple-opensource/xnu
https://www.qemu.org/download/%23source
https://github.com/kholia/OSX-KVM
https://github.com/mackyle/xar
https://github.com/sgan81/apfs-fuse
https://landley.net/aboriginal/presentation.html
https://developer.android.com/studio/run/emulator-commandline
https://developer.arm.com/documentation/dui0801/g/A64-Data-Transfer-Instructions/LDAPR
https://developer.arm.com/architectures/instruction-sets/base-isas/a64
https://worthdoingbadly.com/xnuqemu3/
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