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May 18, 2021

ProblemChild: Detecting living-off-the-land attacks using
the Elastic Stack

elastic.co/blog/problemchild-detecting-living-off-the-land-attacks

When it comes to malware attacks, one of the more common techniques is “living off the
land” (LOtL). Utilizing standard tools or features that already exist in the target environment
allows these attacks to blend into the environment and avoid detection. While these
techniques can appear normal in isolation, they start looking suspicious when observed in
the parent-child context. This is where the ProblemChild framework can help. 

In this blog, we will talk about how you can use Elastic machine learning to create your own
ProblemChild framework to detect LOtL activity in Windows process event data (we will be
referring to Windows process events as just “events” throughout this blog). We will talk in
detail about the following:

Extracting features from event metadata
Training a supervised model to classify events as malicious vs. benign
Using the trained model to enrich event data at ingest time
Picking out the most unusual events for analysts to triage

If you would like to follow along with this blog, we recommend starting a free 14-day Elastic
trial. All the supporting materials for this blog are also available in the examples repository.

https://www.elastic.co/blog/problemchild-detecting-living-off-the-land-attacks
https://www.elastic.co/what-is/elasticsearch-machine-learning
https://cloud.elastic.co/registration
https://github.com/elastic/examples/tree/master/Machine%20Learning/ProblemChild
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Background

Living-off-the-land binaries (LOLBins) are Microsoft-signed binaries that come pre-installed
on the operating system. These binaries can sometimes have unexpected features outside
of their core functionality, which attackers can leverage. For example, the task scheduler in
Windows, which allows an admin to create, delete, run, and schedule tasks on a local
computer. However, attackers may leverage the binary to bypass User Account Control
(UAC) and escalate privileges. The use of these binaries complicates the discovery of the
attack, since adversary behavior is mixed with traditional benign operating system activity.

Things get a little interesting when viewed from a parent-child lens, since unusual child
processes spawned by a parent process can indicate malicious activity. For example,
word.exe spawning powershell.exe could indicate a Spearphishing Attachment. Current
solutions to detect LOtL attacks using parent-child relationships include writing rules and
heuristics. While these solutions work well, they can sometimes be either too rigid or too lax
and do not generalize well. There is also a significant amount of manual effort that goes into
writing them. 

With ProblemChild, the goal remains the same: we hope to provide better generalization
with the added advantage of ranking and prioritizing events for further investigation using
machine learning.

The ProblemChild framework

ProblemChild uses data frame analytics available in the Elastic Stack to build a supervised
model to classify events as malicious or benign using features extracted from event
metadata. It then uses anomaly detection to pick out “high priority” events for further
analysis from those detected as malicious by the supervised model.

Data

For the supervised model, we gathered Windows process event metadata from a variety of
sources like the Splunk Attack data, Splunk botsv1, Red Canary Atomic Red Team, and
several internal databases. An example of a raw sample used in training is as follows:

https://github.com/splunk/attack_data
https://github.com/splunk/botsv1
https://github.com/redcanaryco/atomic-red-team
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{ 
 "timestamp_utc": "2019-06-14 15:31:17Z",  
 "pid": 372,  
 "integrity_level": "system",  
 "elevation_type": "default",  
 "signature_status": "trusted",  
 "serial_event_id": 1007,  
 "elevated": true,  
 "signature_signer": "Microsoft Windows Publisher",  
 "event_subtype_full": "already_running",  
 "command_line": "C:\\Windows\\System32\\svchost.exe -k 
LocalSystemNetworkRestricted -p",  
 "parent_process_name": "services.exe",  
 "ppid": 620,  
 "sha256": "7fd065bac18c5278777ae44908101cdfed72d26fa741367f0ad4d02020787ab6", 
 "user_name": "SYSTEM",  
 "process_path": "C:\\Windows\\System32\\svchost.exe",  
 "user_sid": "S-1-5-18",  
 "timestamp": 132049998770000000,  
 "process_name": "svchost.exe",  
 "original_file_name": "svchost.exe",  
 "parent_process_path": "C:\\Windows\\System32\\services.exe",  
 "unique_pid": 1007,  
 "md5": "8a0a29438052faed8a2532da50455756",  
 "sha1": "a1385ce20ad79f55df235effd9780c31442aa234",  
 "unique_ppid": 1006,  
 "event_type_full": "process_event",  
 "opcode": 3,  
 "user_domain": "NT AUTHORITY"  
} 

Sample raw document containing Windows process event metadata

Feature engineering

Since we wanted to focus on identifying LOtL activity using parent-child context, we started
by extracting features that capture information about the process itself, its parent, and
surrounding contextual information (e.g., elevation level, system user, etc.) from the raw
event metadata (shown above) as follows:

Process name 
Parent process name 
Commandline arguments
Process path 
Parent process path 
Event subtype 
Whether event is elevated 
Elevation type 
Integrity level 
Normalized process path 
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Whether process is signed 
Whether signer is trusted 
Whether user is running as system 
Filename mismatch 
Whether process name ends with exe 

All of the feature engineering was done using processors already available in the Elastic
Stack or using custom scripts written in Painless, which were then used in script
processors. A high-level breakdown of the featurization process is as follows:

Since the model supports Windows process events for the Elastic Endpoint Security
integration, Elastic Endgame, and Winlogbeat, we first use a script processor to
standardize the field names across the different agents. We did this so the model always
has the same set of input fields, regardless of the agent type.

We then used script processors to build features that were derived from the common set of
fields.

Example: The following script processor sets the feature feature_ends_with_exe  to
true  if the process name associated with the event ends with ".exe" and false

otherwise.

{ 
   "script": {  
       "lang": "painless",  
       "source": """  
   if(ctx.feature_process_name.contains(".exe")) {  
     ctx.feature_ends_with_exe = true  
       }  
   else {  
     ctx.feature_ends_with_exe = false  
       }  
 """  
   }  
} 

Example of using script processors for feature extraction
We noticed that minor variations like change in case, usernames, certain special characters
(mainly ", /, \), and appearance of random numbers/hexadecimal values in fields like
commandline arguments and process paths were affecting the performance of our models,
and needed to be normalized and/or obfuscated. We also found that replacing certain
Windows directories with appropriate tokens, for example replacing windows/system32
and windows/syswow64  with the token win_system_dir , further improved model
performance. These normalizations and obfuscations were done using the lowercase and
gsub processors available in the Elastic Stack.

https://www.elastic.co/guide/en/elasticsearch/reference/master/modules-scripting-painless.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/script-processor.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/lowercase-processor.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/gsub-processor.html
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Example: The following processor replaces text matched by the pattern defined in the
pattern field with the string 'process_id'  in the feature_command_line  field.

{ 
   "gsub": {  
       "field": "feature_command_line",  
       "pattern": "[0-9a-f]{4,}-[0-9a-f]{4,}-[0-9a-f]{4,}-[0-9a-f-]{4,}",  
       "replacement": "process_id"  
   }  
} 

Example of using pre-built Elastic Stack processors for normalization of features
Finally, we used a series of script processors to extract n-gram features from process and
parent process names and paths and commandline arguments. After experimenting with
different n-gram lengths, we concluded that bigrams were the most optimum fit and
provided the best trade-off between dimensionality of the feature set and model
performance.

Example: The following processor generates bigrams for the field
feature_process_name .

{ 
   "script": {  
       "id": "ngram-extractor",  
       "params": {  
           "ngram_count": 2,  
           "field": "feature_process_name",  
           "max_length": 100  
       }  
   }  
} 

Script processor for extracting n-grams
All the processors mentioned so far were a part of an ingest pipeline used to featurize raw
events from the source index and re-index them. Please refer to the examples repository for
detailed instructions on featurization and the relevant configurations, scripts, etc. An
example of features created by the ingest pipeline is as follows:

https://github.com/elastic/examples/tree/master/Machine%20Learning/ProblemChild
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{ 
         "feature_command_line_2-gram_feature10" : "",  
         "feature_process_parent_executable_2-gram_feature53" : ".e",  
         "feature_process_parent_executable_2-gram_feature54" : "ex",  
         "feature_process_parent_executable_2-gram_feature55" : "xe",  
         "feature_process_parent_executable_2-gram_feature56" : "",  
         "feature_process_executable_2-gram_feature49" : "ka",  
         "feature_process_executable_2-gram_feature48" : """\k""",  
         "feature_process_executable_2-gram_feature47" : """r\""",  
         "feature_command_line" : "kaps.exe -u",  
         "feature_process_executable_2-gram_feature46" : "er",  
         "feature_process_executable_2-gram_feature45" : "le",  
         "feature_process_executable_2-gram_feature44" : "ll",  
         "feature_process_executable_2-gram_feature43" : "il",  
         "feature_process_executable_2-gram_feature42" : "ki",  
         "feature_process_executable_2-gram_feature41" : """\k""",  
         "feature_process_executable_2-gram_feature40" : """s\""",  
         "feature_running_as_system" : false,  
         "feature_process_signer_trusted" : true,  
         "feature_process_parent_executable_2-gram_feature46" : "er",  
         "feature_process_parent_executable_2-gram_feature47" : """r\""",  
         "feature_process_parent_executable_2-gram_feature48" : """\k""",  
         "feature_process_parent_executable_2-gram_feature49" : "ka",  
         "feature_process_parent_executable_2-gram_feature42" : "ki",  
         "feature_process_parent_executable_2-gram_feature43" : "il",  
         "feature_process_parent_executable_2-gram_feature44" : "ll",  
         "feature_process_parent_executable" : 
"""c:\win_system_dir\drivers\rivetnetworks\killer\kaps.exe""",  
         "feature_process_parent_executable_2-gram_feature45" : "le",  
         "feature_process_parent_executable_2-gram_feature50" : "ap",  
         "feature_process_parent_executable_2-gram_feature51" : "ps",  
         "feature_process_parent_executable_2-gram_feature52" : "s.",  
         "feature_process_executable_2-gram_feature56" : "",  
         "feature_process_executable_2-gram_feature55" : "xe",  
         "feature_process_executable_2-gram_feature54" : "ex",  
         "feature_process_executable_2-gram_feature53" : ".e",  
         "feature_process_executable_2-gram_feature52" : "s.",  
         "feature_process_executable_2-gram_feature51" : "ps",  
         "feature_process_executable_2-gram_feature50" : "ap",  
         "feature_process_name" : "kaps.exe",  
         "feature_process_executable_2-gram_feature29" : "iv",  
         "feature_process_executable_2-gram_feature28" : "ri",  
         "feature_process_executable_2-gram_feature27" : """\r""",  
         "feature_process_executable_2-gram_feature26" : """s\""",  
         "feature_process_executable_2-gram_feature25" : "rs",  
         "feature_process_executable_2-gram_feature24" : "er",  
         "feature_process_executable_2-gram_feature23" : "ve",  
         "feature_process_executable_2-gram_feature22" : "iv",  
         "feature_process_executable_2-gram_feature21" : "ri",  
         "feature_process_executable_2-gram_feature20" : "dr",  
         "feature_process_name_2-gram_feature4" : ".e",  
         "feature_process_parent_name_2-gram_feature4" : ".e",  
         "feature_process_name_2-gram_feature5" : "ex",  
         "feature_process_parent_name_2-gram_feature3" : "s.",  
         "feature_process_name_2-gram_feature6" : "xe",  
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         "feature_process_parent_name_2-gram_feature2" : "ps",  
         "feature_process_name_2-gram_feature7" : "",  
         "feature_process_parent_name_2-gram_feature1" : "ap",  
         "feature_process_parent_name_2-gram_feature7" : "",  
         "feature_process_parent_name_2-gram_feature6" : "xe",  
         "feature_process_parent_name_2-gram_feature5" : "ex",  
         "feature_ends_with_exe" : true,  
         "feature_process_executable_2-gram_feature39" : "ks",  
         "feature_process_executable_2-gram_feature38" : "rk",  
         "feature_process_executable_2-gram_feature37" : "or",  
         "feature_process_executable_2-gram_feature36" : "wo",  
         "feature_process_executable_2-gram_feature35" : "tw",  
         "feature_process_executable_2-gram_feature34" : "et",  
         "feature_process_executable_2-gram_feature33" : "ne",  
         "feature_process_executable_2-gram_feature32" : "tn",  
         "feature_process_name_2-gram_feature0" : "ka",  
         "feature_process_parent_name_2-gram_feature0" : "ka",  
         "feature_process_executable_2-gram_feature31" : "et",  
         "feature_process_name_2-gram_feature1" : "ap",  
         "feature_process_executable_2-gram_feature30" : "ve",  
         "feature_process_name_2-gram_feature2" : "ps",  
         "feature_process_name_2-gram_feature3" : "s.",  
         "feature_process_parent_executable_2-gram_feature17" : "32",  
         "feature_process_parent_executable_2-gram_feature18" : """2\""",  
         "feature_process_parent_executable_2-gram_feature19" : """\d""",  
         "feature_process_parent_executable_2-gram_feature3" : "wi",  
         "feature_process_parent_executable_2-gram_feature13" : "st",  
         "feature_process_parent_executable_2-gram_feature2" : """\w""",  
         "feature_process_parent_executable_2-gram_feature14" : "te",  
         "feature_process_parent_executable_2-gram_feature5" : "nd",  
         "feature_process_parent_executable_2-gram_feature15" : "em",  
         "feature_process_parent_executable_2-gram_feature4" : "in",  
         "feature_process_parent_executable_2-gram_feature16" : "m3",  
         "feature_process_parent_executable_2-gram_feature7" : "ow",  
         "feature_process_parent_executable_2-gram_feature6" : "do",  
         "feature_process_parent_executable_2-gram_feature10" : """\s""",  
         "feature_process_parent_executable_2-gram_feature9" : """s\""",  
         "feature_process_parent_executable_2-gram_feature11" : "sy",  
         "feature_process_parent_executable_2-gram_feature8" : "ws",  
         "feature_process_parent_executable_2-gram_feature12" : "ys",  
         "feature_process_parent_executable_2-gram_feature1" : """:\""",  
         "feature_process_parent_executable_2-gram_feature0" : "c:",  
         "feature_process_signed" : true,  
         "feature_elevation_type" : "limited",  
         "feature_integrity_level" : "medium",  
         "feature_elevated" : false,  
         "feature_process_executable_2-gram_feature19" : """\d""",  
         "feature_process_executable_2-gram_feature18" : """2\""",  
         "feature_process_executable_2-gram_feature17" : "32",  
         "feature_process_executable_2-gram_feature16" : "m3",  
         "feature_process_executable_2-gram_feature15" : "em",  
         "feature_process_executable_2-gram_feature14" : "te",  
         "feature_process_executable_2-gram_feature13" : "st",  
         "feature_process_executable_2-gram_feature12" : "ys",  
         "feature_process_executable_2-gram_feature11" : "sy",  
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         "feature_process_executable_2-gram_feature10" : """\s""",  
         "feature_process_executable" : 
"""c:\win_system_dir\drivers\rivetnetworks\killer\kaps.exe""",  
         "feature_filename_mismatch" : false,  
         "feature_process_executable_2-gram_feature8" : "ws",  
         "feature_command_line_2-gram_feature4" : ".e",  
         "feature_process_executable_2-gram_feature7" : "ow",  
         "feature_command_line_2-gram_feature3" : "s.",  
         "feature_process_executable_2-gram_feature6" : "do",  
         "feature_command_line_2-gram_feature6" : "xe",  
         "feature_process_executable_2-gram_feature5" : "nd",  
         "feature_command_line_2-gram_feature5" : "ex",  
         "feature_process_parent_executable_2-gram_feature39" : "ks",  
         "feature_command_line_2-gram_feature0" : "ka",  
         "feature_command_line_2-gram_feature2" : "ps",  
         "feature_process_executable_2-gram_feature9" : """s\""",  
         "feature_command_line_2-gram_feature1" : "ap",  
         "feature_process_parent_executable_2-gram_feature35" : "tw",  
         "feature_normalized_ppath" : "win_system_dir",  
         "feature_process_parent_executable_2-gram_feature36" : "wo",  
         "feature_process_parent_executable_2-gram_feature37" : "or",  
         "feature_process_parent_executable_2-gram_feature38" : "rk",  
         "feature_process_parent_executable_2-gram_feature31" : "et",  
         "feature_process_parent_executable_2-gram_feature32" : "tn",  
         "feature_process_parent_executable_2-gram_feature33" : "ne",  
         "feature_process_parent_executable_2-gram_feature34" : "et",  
         "feature_process_parent_executable_2-gram_feature40" : """s\""",  
         "feature_process_parent_executable_2-gram_feature41" : """\k""",  
         "feature_event_action" : "creation_event",  
         "feature_process_executable_2-gram_feature0" : "c:",  
         "feature_process_executable_2-gram_feature4" : "in",  
         "feature_process_executable_2-gram_feature3" : "wi",  
         "feature_process_executable_2-gram_feature2" : """\w""",  
         "feature_process_parent_name" : "kaps.exe",  
         "feature_process_executable_2-gram_feature1" : """:\""",  
         "feature_process_parent_executable_2-gram_feature28" : "ri",  
         "feature_process_parent_executable_2-gram_feature29" : "iv",  
         "feature_process_parent_executable_2-gram_feature24" : "er",  
         "feature_process_parent_executable_2-gram_feature25" : "rs",  
         "feature_process_parent_executable_2-gram_feature26" : """s\""",  
         "label" : 0,  
         "feature_process_parent_executable_2-gram_feature27" : """\r""",  
         "feature_process_parent_executable_2-gram_feature20" : "dr",  
         "feature_process_parent_executable_2-gram_feature21" : "ri",  
         "feature_process_parent_executable_2-gram_feature22" : "iv",  
         "feature_process_parent_executable_2-gram_feature23" : "ve",  
         "feature_process_parent_executable_2-gram_feature30" : "ve",  
         "feature_command_line_2-gram_feature8" : " -",  
         "feature_command_line_2-gram_feature7" : "e ",  
         "feature_command_line_2-gram_feature9" : "-u"  
       } 

Example of features created by the featurization ingest pipeline
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The nice thing about data frame analytics is that it automatically encodes boolean and
categorical features (even features like n-grams), thus eliminating the need for you to
manually convert these features into numerical values for the model. It also examines the
features and automatically selects the most important features for classification.

Training the supervised model

The next step was to train a classification model based on the features extracted above. We
used the data frame analytics UI to create the classification job. A snippet of what the
process looks like in the UI is shown below:

 
An overview of the process shown in the video is as follows:

Choose the source index pattern for your job
Choose the job type as “Classification”
Choose the dependent variable as the field containing the ground truth label
Set the training percentage: we recommend that you take an iterative approach to

training. Start with a smaller training percentage, evaluate the performance and decide if
you need to train on more data. A training percentage of ~55 worked for us. We didn’t see
any gains in performance beyond this percentage for our dataset

Keep only the fields required for training and exclude the rest by unchecking the boxes
next to the fields. We only retained the following fields:
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List of features to include in training (* indicates all features matching the pattern)
Set the number of feature importance values you would like to see once the model has

trained: We chose 20
Set a prediction field name of your choice: We chose y_pred
Set an appropriate job name and description under job ID and description respectively
Set a destination index and click “Continue”, followed by “Create”

Evaluating the trained model

Once the model has trained, you can navigate to the data frame analytics results UI to
analyze the performance of the model on the test set. The UI displays the confusion matrix,
a key metric in evaluating the overall model performance. Additionally, you can also view a
data table of the results, which shows how the model performed on individual data points in
the dataset. You can toggle between the training and testing results by using the
Training/Testing filters to the top right in the UI.
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Confusion matrix for our testing dataset 

 

Data table of individual results
We focused mainly on the confusion matrix for model evaluation. The confusion matrix
displays the percentage of data points that were classified as true positives(malicious
events that the model identified as malicious and that were actually malicious) and true
negatives (benign events that the model identified as benign and that were actually benign).
The matrix also displays the percentage of events that the model misclassified as malicious
(false positives) and vice versa (false negatives).

As seen in the figure above, our model had a 98% true positive rate on the testing data,
which is pretty good, considering malicious process events are generally tricky to identify.
The false positive rate was low, which is also a good sign. This means that the model will
not generate a large number of alerts if deployed to production in our environment.

One thing to note here is that the performance of your model could look very different from
ours based on the training data. You might need to tune your model, increase the training
percentage, add more training data or features, etc.

Enriching incoming events on ingest

Once you have a model you like, you can use it to enrich incoming events with a prediction
of whether or not the event is likely to be malicious, along with a probability score of how
confident the model is in its prediction.

This can be done by configuring an ingest pipeline for the new events with an inference
processor. However, for the trained model to make predictions, the incoming events need to
be featurized using the same set of processors as discussed in the Feature Engineering
section of this blog. Hence the ingest pipeline for these new events consists of all the
processors mentioned previously, with the inference processor added after all the feature
generating processors. A snippet of an enriched document looks as follows:

https://www.elastic.co/guide/en/elasticsearch/reference/current/inference-processor.html
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An example of an enriched document
The complete ingest pipeline configuration and additional configuration details can be found
in the examples repository. You might also note that the document shown above does not
have any of the features created by the featurization processors. This is because the ingest
pipeline here contains a script processor that removes all the features created for inference,
as well as any other superfluous features, once inference is done. Of course, you can
choose to keep the features in by excluding this script processor from the ingest pipeline.

An additional feature that you can configure to complement the supervised model is a
blocklist. The blocklist can be used to catch known offenders in your environment that the
trained model might miss based on certain keywords present in the commandline
arguments. This is configured as a script invoked by a script processor after the inference
processor in the ingest pipeline. A starter list of keywords is provided in the examples
repository. You can also add to the list, but make sure to update the blocklist script
processor in your ingest pipeline if you do.

As mentioned at the beginning of this blog, the ProblemChild framework is currently built
only for Windows process events. There are other operating systems (macOS, Linux) as
well as different types of events (network, registry) for each OS. It would be ideal to make
the ingest pipeline execute conditionally only when the incoming document contains the

https://github.com/elastic/examples/blob/master/Machine%20Learning/ProblemChild/problemchild_inference.json
https://github.com/elastic/examples/blob/master/Machine%20Learning/ProblemChild/problemchild_inference.json#L262-L271
https://github.com/elastic/examples/blob/master/Machine%20Learning/ProblemChild/blocklist.json
https://github.com/elastic/examples/blob/master/Machine%20Learning/ProblemChild/problemchild_inference.json#L250-L261
https://github.com/elastic/examples/blob/master/Machine%20Learning/ProblemChild/blocklist_keywords.txt
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desired fields. For this, we used a pipeline processor and checked for specific fields in the
document before deciding whether or not to direct it to the ingest pipeline. A sample of such
a processor is as follows:

PUT _ingest/pipeline/problemchild_pipeline  
{ 
 "description": "A pipeline of pipelines for ProblemChild detection",  
 "processors": [  
   {  
     "pipeline": {  
       "if": "ctx.containsKey('event') && ctx['event'].containsKey('kind')  && 
ctx['event'].containsKey('category') && ctx['event']['kind'] == 'event' && 
ctx['event']['category'].contains('process') && ctx.containsKey('host') && 
ctx['host'].containsKey('os') && (ctx['host']['os'].containsKey('family') || 
ctx['host']['os'].containsKey('type') || ctx['host']['os'].containsKey('platform')) 
&& (ctx['host']['os']['type'] == 'windows' || ctx['host']['os']['type'] == 'Windows' 
|| ctx['host']['os']['family'] == 'windows' || ctx['host']['os']['family'] == 
'Windows' || ctx['host']['os']['platform'] == 'windows' || ctx['host']['os']
['platform'] == 'Windows')  
       "name": "problemchild_inference"  
     }  
   }  
 ]  
} 

A conditional pipeline of pipelines to detect only on Windows process events
For a production use case, you might want to consider some error handling for the above
pipeline as well.

Anomaly detection for second-order analytics

With ProblemChild, our goal was to not only classify malicious events, but go a step further
and identify the creme de la creme of the malicious events. In environments working with a
large amount of data, even a small false positive rate can result in a large number of alerts.
Picking out the rarest events for analysts can help them prioritize events and catalyze the
triage process.

The Elastic Stack has an anomaly detection module, which we leveraged to build an
additional layer of analytics on top of our supervised model results. We made use of the
rare  detector to create anomaly detection jobs to identify rare processes spawned by a

particular parent process/user/host, as well as the high_count  detector to identify groups
of suspicious processes spawned by a particular parent process/user/host. The
configurations and datafeeds required to set up these jobs can be found in the examples
repository as well. 

The Anomaly Explorer is a good place to view anomalies detected by your anomaly
detection jobs. You can see an overall visualization of anomalies across a given time
period, as well as an individual breakdown of the anomalies with the associated anomaly
score and relevant context in the form of influencers. 

https://www.elastic.co/guide/en/elasticsearch/reference/current/pipeline-processor.html
https://github.com/elastic/examples/tree/master/Machine%20Learning/ProblemChild/job_configs
https://github.com/elastic/examples/tree/master/Machine%20Learning/ProblemChild/datafeeds
https://www.elastic.co/guide/en/machine-learning/current/ml-influencers.html
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Swimlane view of overall anomalies

Individual drill-down of anomalies
You can also go a step further and convert these unsupervised machine learning jobs into
rules to generate actual detections. We will talk more about this in a future blog post. 

Conclusion

In this blog post, we trained a classification model to identify malicious Windows process
events and used anomaly detection to further uncover rare events. We will also be
releasing our models and configurations for ProblemChild in the detection-rules repository.
Watch that space for future updates to ProblemChild. Also, stay tuned for a future blog post
to find out how to use these in the Elastic SIEM app. 

In the meantime, experience the latest version of Elasticsearch Service on Elastic Cloud
and follow along with this blog to build the ProblemChild framework from scratch on your
Windows process event data. Also be sure to take advantage of our Quick Start training to
set yourself up for success. Happy experimenting!

We're hiring
Work for a global, distributed team where finding someone like you is just a Zoom
meeting away. Flexible work with impact? Development opportunities from the start?

https://github.com/elastic/detection-rules/releases/
https://www.elastic.co/siem
https://www.elastic.co/elasticsearch/service
https://www.elastic.co/training/elastic-security-quick-start

