
1/6

@cryptax May 20, 2021

A native packer for Android/MoqHao
cryptax.medium.com/a-native-packer-for-android-moqhao-6362a8412fe1

@cryptax

May 18, 2021

·

3 min read

Update May 20, 2021. Added info on Pinterest URLs + Kudos to + actually was discovered
on May 12 not May 13.

On May 12, 2021 a new sample of Android/MoqHao (aka XLoader, Wroba) banking trojan
was detected. There are several changes compared to 2019: new commands,
communicating CnC URL through malicious Pinterest accounts etc. See below.

sha256: aad80d2ad20fe318f19b6197b76937bf7177dbb1746b7849dd7f05aab84e6724

Comparing sample of 2021 (sha256:
aad80d2ad20fe318f19b6197b76937bf7177dbb1746b7849dd7f05aab84e6724) with sample
of 2019

https://cryptax.medium.com/a-native-packer-for-android-moqhao-6362a8412fe1
https://cryptax.medium.com/?source=post_page-----6362a8412fe1--------------------------------
https://cryptax.medium.com/?source=post_page-----6362a8412fe1--------------------------------
https://twitter.com/malwrhunterteam/status/1392415481261330444
https://securelist.com/roaming-mantis-part-iv/90332/

2/6

This is the part of the malicious payload that processes (malicious) Pinterest accounts to
retrieve information on the CnC. For each targeted bank, the malware searches for the
corresponding package on the smartphone, displays a given Pinterest URL and “hint”
message. See this of .
In this article, we will focus on the packer which is quite interesting because it uses a
native library + the decryption algorithm has changed (see table above).

Decrypting the payload

The malware is packed. The unpacking process consists in processing correctly an
encrypted file in an asset directory named ./whrlrsu . The asset is encrypted with an XOR
key, and zipped. The XOR key is memorized in the encrypted file at the 12th byte.

3/6

Payload decryption process
I implemented a payload decryptor, available on GitHub.

Preparing dynamic class

Loading dynamic classes is typically done via the DexClassLoader class, from the Android
API. To conceal it loads a dynamic class, the malware does not directly call
DexClassLoader . Instead, it implements a native library (libgdx.so) that calls
DexClassLoader from the native layer.

https://github.com/cryptax/misc-code/blob/master/MoqHaoUnpacker.java

4/6

A DexClassLoader object is instantiated by function nd(). This consists in (1) calling
FindClass, (2) searching for a constructor, and (3) using the constructor to create a new
object.
The native library implements the following low level tasks:

Object cr(Class class) : calls create() for the given class (com.Loader). This
actually instantiates a Loader object.
Object lrd(int arg0, Object arg1, String classname, String arg3) : call
loadClass() on the given class name and return the loaded class object.
String g(int arg0) : returns a different string depending on the argument. Beware,

JEB currently decompiles it incorrectly: you must read the assembly.

5/6

If the integer is 0, the routine returns “dalvik.system.DexClassLoader”, for 1 it returns
“com.Loader”, for 2 “()Ljava/lang/Object;” and for 3 “java.util.zip.InflaterInputStream”
In our case, the malware uses the routine with argument 1, so g() returns “com.Loader”.
This is provided to lrd() , so the malware will load a class named com.Loader and
contained in the dynamic DEX. Finally, it locates the method create() within
com.Loader .

There are some other native functions, but they are not used in the next stage. Note that up
to know, the malware does not execute its payload, it only “prepares” things. This is all
OmApplication.onCreate() does. Execution is within the next stage.

Executing the payload

The next stage occurs when the main activity is launched. Actually, strangely, the manifest
references 2 main activities: adlbect.kvActivity and adlbect.BnActivity , but
actually adlbect.kvActivity does nothing more than calling adlbect.BnActivity .

Silly kvActivity does nothing more than starting BnActivity.
BnActivity starts the WqService — we’ll discuss it later — and calls native function
a.ed() . The method decompiles in JEB quite nicely, and we quickly recognize code to hide

an application icon.

6/6

Hiding an application icon consists in calling setComponentEnabledSetting method (name is
truncated on the image above) on the PackageManager class, with special flags
PackageManager.COMPONENT_ENABLED_STATE_DISABLED and
PackageManager.DONT_KILL_APP. This is a well known trick to run an app while hiding its
application icon.
As for the WqService, it launches start() of com.Loader — this is how the banking
trojan payload actually starts — and sets an alarm in 30 seconds.

This is onStartCommand() of WqService. This method is automatically called by Android
when the WqService starts. a_set_alarm calls native function a.snc() to set an alarm. I don’t
actually know what it uses this alarm for.
The implementation hardens the reversing because it does not call methods directly but
delegates the work to 2 native functions: a.start() calls com.Loader.start() , and
a.snc() to set the alarm.

List of native functions, and their description, in libgdx.so
Kudos to @MalwareHunterTeam and @bl4ckh0l3z.

— Cryptax

https://twitter.com/malwrhunterteam
https://twitter.com/bl4ckh0l3z

