
1/6

Let’s set ice on fire: Hunting and detecting IcedID
infections

telekom.com/en/blog/group/article/let-s-set-ice-on-fire-hunting-and-detecting-icedid-infections-627240

Blog.Telekom

05‑17‑2021
Thomas Barabosch

0 Comments

Share Share
Two clicks for more data privacy: click here to activate the button and send your
recommendation. Data will be transfered as soon as the activation occurs.

Print
Read out

With the fall of the infamous Emotet botnet earlier this year, there are several cybercrime
gangs competing to fill out the void that it left behind. One of these malware families that
positions itself as a replacement is IcedID.

Learn how to hunt for IcedID samples and detect local infections.

https://www.telekom.com/en/blog/group/article/let-s-set-ice-on-fire-hunting-and-detecting-icedid-infections-627240
https://www.telekom.com/en/blog/592636-592636
https://app-eu.readspeaker.com/cgi-bin/rsent?customerid=4779&lang=en&readid=readspeakercontent&url=https://www.telekom.com/en/blog/group/article/let-s-set-ice-on-fire-hunting-and-detecting-icedid-infections-627240
https://therecord.media/icedid-malware-gang-positioning-itself-as-one-of-the-emotet-replacements/


2/6

IcedID - also known as BokBot - emerged in late 2017. First, it served as a banking Trojan,
which was common for this time. However, banking Trojans already faced several difficulties
like two-factor authentication (2FA) introduced by many banks. Consequently, the IcedID
developers transformed it into a downloader and it became part of the Malware-as-a-Service
ecosystem (MaaS).

As of 2021, more and more ransomware operators use the service provided by IcedID’s
operators. Telekom Security as well as others observed ransomware deployment after
IcedID infections. This is in line with the general trend towards human-operated ransomware
operations.

In this blog post, I will present ways how to hunt for IcedID samples and detect local IcedID
infections. This allows on one side blue teamers to proactively find latent infections that could
turn into ransomware deployment and on the other side incident responders to quickly find a
patient zero during an investigation. In addition to this blog post, I recommend to read this
technical analysis of IcedID core and a recent technical analysis of the initial IcedID GZIP
loader. All scripts, YARA signatures and, additional IoCs mentioned in this blog post can be
found in our Github repository.

Our Incident Response Service at Deutsche Telekom Security GmbH can quickly investigate
and remediate ongoing IcedID-related intrusions. Please contact security-info@t-
systems.com for more information.

IcedID infection chain overview

IcedID infection chain is quite complex when compared to other common malware families.
The initial infection vector is email. Over the last months, several threat actors delivered
spam that led to IcedID infections. This includes the Qakbot affiliate “TR” and TA551 /
Shatak. Attachment types are as of now malicious Word / Excel documents or zipped
JavaScript files.

Figure 1 Example maldoc delivering IcedID requesting the user to activate macros

In the case of a malicious document, the infection chain goes on as follows. After the user
has enabled the macro in the maldoc, the initial IcedID GZIP loader is fetched. This is a
binary code component deployed as DLL. It is run using a command line similar to
“rundll32.exe DLL_FILENAME,DllRegisterServer”. This DLL with internal name
“loader_dll_64.dll” conducts an initial reconnaissance and fingerprints the target system. It
sends this data to its command and control server (CC) and the CC may respond with a fake
GZIP payload.

The GZIP loader decrypts this payload, which contains information on how to run the
payload (e.g. command line to execute), another loader with internal name “sadl_64.dll”, and
another encrypted payload currently with filename “license.dat”, which is the IcedID core

https://malpedia.caad.fkie.fraunhofer.de/details/win.icedid
https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://www.fireeye.com/blog/threat-research/2021/02/melting-unc2198-icedid-to-ransomware-operations.html
https://www.group-ib.com/blog/icedid
https://www.binarydefense.com/icedid-gziploader-analysis/
https://github.com/telekom-security/icedid_analysis
https://www.binarydefense.com/icedid-gziploader-analysis/
https://www.malware-traffic-analysis.net/2021/04/29/index.html
https://www.malware-traffic-analysis.net/2021/04/29/index.html
https://www.malware-traffic-analysis.net/2021/04/09/index.html
https://www.binarydefense.com/icedid-gziploader-analysis/


3/6

module with internal name “fixed_loader64.dll”. The DLL with internal name “sadl_64.dll” is
run with, for instance, with rundll32 using a similar command line to “rundll32.exe
DLL_FILENAME,update /i:"FOLDER_NAME\license.dat"”, where in our case
DLL_FILENAME was “Haimaw2.dll” and FOLDER_NAME was “GlacePlay”.

It decrypts the encrypted IcedID core module license.dat, loads it, and executes it.
Noteworthy is that the core “fixed_loader64.dll” does not comprise configuration parameters
like domain names of CC servers. This information is stored in the core loader “sadl_64.dll”
and loaded by the core “fixed_loader64.dll” upon execution.

Figure 2 Decrypted configuration from "sadl_64.dll" decrypted by IcedID core

Hunting for IcedID samples

Proactively tracking adversaries helps us to follow their recent changes of their tooling and to
improve their detection. As I’ve described in the last section, there are several stages
involved in IcedID’s complex infection chain. Hence, there are several (binary) tools that are
worth to hunt for.

Even though the developers of IcedID chose to encrypt strings (as described here), there are
still many plain text strings allowing high confidence detection. This includes the internal
project names.

Figure 3 Plain text string of the internal project name "sadl_64.dll"

In our Github repository, you can find several YARA rules to detect all binary code stages of
IcedID:

IcedID GZIP loader (“loader_dll_64.dll”)
IcedID core module loader (“sadl_64.dll”)
IcedID core module (“fixed_loader64.dll”)

Note that the string encryption was slightly changed in recent versions. The following
screenshot shows the decompiled string decryption function. An encrypted string is
prepended with its size, conceptually similar to Pascal-type strings. However, the first two
WORDs have to be XORed in order to get the string size. Subsequently, the string is
decrypted character after character in a for loop. In each round of the loop, first, a new key is
generated based on a custom random function using x64 assembly ROR and ROL
operations. Next, the character is XORed with the round’s new key.

Figure 4 Decompiled string decryption function

Detecting IcedID infections

https://www.group-ib.com/blog/icedid
https://github.com/telekom-security/icedid_analysis


4/6

Apart from using YARA rules to perform, for instance, memory scans, another way to detect
IcedID infections reliably is searching for the registry keys it creates. The names of these
registry keys are account-specific since they are derived from the bot ID, which is derived
from the current user’s SID.

I implemented the bot ID computation and the derivation of the registry keys names in
Python. They are also provided in our Github repository.

Computing the Bot ID

One of the first things that IcedID’s core module does is computing a bot ID. This bot ID is
used heavily across the code base, e.g. it is also send to the CC server as a way to identify
bots and as we later will see to derive account-specific registry key names.

In a nutshell, the function “compute_bot_id” (see next screenshot) derives the bot ID from the
currently logged-in account’s SID (security identifier, e.g. “S-1-5-21-1984500107-304187221-
49949575”). If the bot is not able to acquire this SID, it defaults to the MachineGuid. In the
following, I assume that the bot can acquire the account’s SID. It hashes the SID string using
the FNV hash (as described here). The resulting hash value is XORed with a constant. The
function returns a DWORD value.

Later, this DWORD value is negated using the x64 assembly instruction “not”. For instance,
the SID “S-1-5-21-1984500107-304187221-49949575” yields the bot ID 0x9c80033f and the
negated bot ID 0x637ffcc0. Curiously, both bot IDs are used across the code base. However,
the negated bot ID has the lion’s share of the usages.

Figure 5 Decompiled function for computing the bot ID

Deriving Machine-Specific Registry Key Names

IcedID’s core stores configuration information (e.g. domain names) in account-specific
registry keys. All of them are subkeys of “Software\\Classes\\CLSID\\”. The registry key
names are derived from hard-coded GUIDs and the account-specific bot ID. Hence, they are
also account-specific.

Once we know how to derive the registry keys, we can reliably detect IcedID infections for an
account. Blue teamers can use this knowledge to proactively scan for infections and incident
responders to find a patient zero during an IcedID-related investigation.

Recent samples derived their registry key names from the following hard-coded GUIDs:

{0ccac395-7d1d-4641-913a-7558812ddea2}
{d65f4087-1de4-4175-bbc8-f27a1d070723}
{e3f38493-f850-4c6e-a48e-1b5c1f4dd35f}

https://github.com/telekom-security/icedid_analysis
https://www.group-ib.com/blog/icedid


5/6

To derive a registry key name from one of the hard-coded GUIDs, IcedID computes a simple
hash of the GUID. Each character is rotated to the right by 13/0xD. This results in a DWORD
value. This is then XORed with the negated bot ID. Next, it hashes the hardcoded GUID as
well as the above DWORD value using the MD5 hash sum. This results in a value of 16
bytes. Finally, it formats these 16 bytes as a GUID.

For instance, for the above SID and bot IDs, we can derive the registry key name
“{404FE54D-A5F1-3480-D7E1-2463C1FC62FD}” from the input “{0ccac395-7d1d-4641-
913a-7558812ddea2}“.

Figure 6 Decompiled function of registry key derivation

Conclusion

IcedID is one of the uptrending malware families that tries to fill the void that Emotet left
behind. Initially a banking Trojan, it soon became a downloader. Recently, more and more
ransomware deployments are associated with initial IcedID infections. It’s rather complex
infection chain increases analysis difficulty and ensures that an easy IoC extraction with off-
the-shelf sandbox systems is not possible.

In this blog post, I’ve given a quick overview of IcedID current infection chain, focusing on the
binary payloads and showed how to detect IcedID infections based on its use of the registry.
In a nutshell, each bot computes a bot ID based on the current user’s SID. This is utilized to
as a seed to derive a handful of account-specific registry key names, where it stores
configuration parameters like CC domains. The blog post’s companion YARA rules, Python
scripts, and additional IoCs can be found in our repository on Github. 

Appendix: IoCs

IoC Description

fc148647bf11e143f44e89ba3b229aca GZIP loader dump

acc57b939ac8bb9bd4bf18f76e779977 GZIP loader

92fdfe61cf977a7e5bed5ceeabdf895f Core loader dump

11965662e146d97d3fa3288e119aefb2 IcedID core unpacked

ameripermanentno[.]website IcedID core CC server

https://github.com/telekom-security/icedid_analysis


6/6

odichaly[.]space IcedID core CC server

Further information:

IcedID (Malware Family) – Malpedia

Technical Analysis of IcedID

https://malpedia.caad.fkie.fraunhofer.de/details/win.icedid
https://blog.group-ib.com/icedid

