
1/15

May 5, 2021

VB6 P-Code Disassembly
decoded.avast.io/davidzimmer/vb6-p-code-disassembly/

by David ZimmerMay 5, 202118 min read

In this article we are going to discuss the inner depths of VB6 P-Code disassembly and the
VB6 runtime.

As a malware analyst, VB6 in general, and P-Code in particular, has always been a problem
area. It is not well documented and the publicly available tooling did not give me the clarity I
really desired.

In several places throughout this paper there may be VB runtime offsets presented. All
offsets are to a reference copy with md5: EEBEB73979D0AD3C74B248EBF1B6E770 [1].
Microsoft has been kind enough to provide debug symbols with this version for the
.ENGINE P-Code handlers.

To really delve into this topic we are going to have to cover several areas.

The general layout will cover:

how the runtime executes a P-Code stream
how P-Code handlers are written
primer on the P-Code instruction set
instruction groupings
internal runtime conventions
how to debug handlers

Native Opcode Handlers & Code Flow

Let’s start with how a runtime handler interprets the P-Code stream.

https://decoded.avast.io/davidzimmer/vb6-p-code-disassembly/
https://decoded.avast.io/author/davidzimmer/

2/15

While in future articles we will detail how the transition is made from native code to P-Code.
For our purposes here, we will look at individual opcode handlers once the P-Code
interpretation has already begun.

For our first example, consider the following P-Code disassembly:

Here we can see two byte codes at virtual address 0x401932 . These have been decoded
to the instruction LitI2_Byte 255 . 0xF4 is the opcode byte. 0xFF is the hardcoded
argument passed in the byte stream.

The opcode handler for this instruction is the following:

While in a handler, the ESI register will always start as the virtual address of the next byte
to interpret. In the case above, it would be 0x401933 since the 0xF4 byte has already
been processed to get us into this handler.

The first instruction at 0x66105CAB will load a single byte from the P-Code byte stream
into the EAX register. This value is then pushed onto the stack. This is the functional
operation of this opcode.

EAX is then cleared and the next value from the byte stream is loaded into the lower part
of EAX (AL) . This will be the opcode byte that takes us to the next native handler.

The byte stream pointer is then incremented by two. This will set ESI past the one byte
argument, and past the next opcode which has already been consumed.

Finally, the jmp instruction will transfer execution to the next handler by using the opcode
as an array index into a function pointer table.

Now that last sentence is a bit of a mouth full, so lets include an example. Below is the first
few entries from the _tblByteDisp table. This table is an array of 4 byte function pointers.

3/15

Each opcode is an index into this table. The *4 in the jump statement is because each
function pointer is 4 bytes (32 bit code).

The only way we know the names of each of these P-Code instructions is because
Microsoft included the handler names in the debug symbols for a precious few versions of
the runtime.

The snippet above also reveals several characteristics of the opcode layout to be aware of.
First note, there are invalid slots such as opcode 0x01-InvalidExCode . The reason for
this is unknown, but it also means we can have some fun with the runtime such as
introducing our own opcodes [5].

The second thing to notice is that multiple opcodes can point to the same handlers such as
the case with lblEX_Bos . Here we see that opcode 0 leads to the same place as opcode
2. There are actually 5 opcode sequences which point to the BoS (Beginning of
Statement) handler.

The next thing to notice is that the opcode names are abbreviated and will require some
deciphering to learn how to read them.

Finally from the LitI2_Byte handler we already analyzed, we can recognize that all of the
stubs were hand written in assembler.

From here, the next question is how many handlers are there? If each opcode is a single
byte, there can only be a maximum of 256 handlers right? That would make sense, but is
incorrect.

If we look at the last 5 entries in the _tblByteDisp table we find this:

The handler for each of these looks similar to the following:

4/15

Here we see EAX zeroed out, the next opcode byte loaded into AL and the byte code
pointer (ESI) incremented. Finally it uses that new opcode to jump into an entirely different
function pointer table.

This would give us a maximum opcode count of (6*256)-5 or 1531 opcodes.

Now luckily, not all of these opcodes are defined. Remember some slots are invalid, and
some are duplicate entries. If we go through and eliminate the noise, we are left with around
822 unique handlers. Still nothing to sneeze at.

So what the above tells us is that not all instructions can be represented as a single
opcode. Many instructions will be prefixed with a lead byte that then makes the actual
opcode reference a different function pointer table.

Here is a clip from the second tblDispatch pointer table:

To reach lblEX_ImpUI1 we would need to encode 0xFB as the lead byte and 0x01 as
the opcode byte.

This would first send execution into the _lblBEX_Lead0 handler, which then loads the
0x01 opcode and uses tblDispatch table to execute lblEX_ImpUI1 .

A little bit confusing, but once you see it in action it becomes quite clear. You can watch it
run live for yourself by loading a P-Code executable into a native debugger and setting a
breakpoint on the lead* handlers.

Byte stream argument length

Before we can disassemble a byte stream, we also need to know how many byte code
arguments each and every instruction takes. With 822 instructions this can be a big job!
Luckily other reversers have already done much of the work for us. The first place I saw this
table published was from Mr Silver and Mr Snow in the WKTVBDE help file.

A codified version of this can be found in the Semi-VbDecompiler source [2] which I have
used as a reference implementation. The opcode sizes are largely correct in this table,
however some errors are still present. As with any reversing task, refinement is a process of

5/15

trial and error.

Some instructions, 18 known to date, have variable length byte stream arguments. The
actual size of the byte stream to consume before the next opcode is embedded as the two
bytes after the opcode. An example of this is the FFreeVar instruction.

In this example we see the first two bytes decode as 0x0008 (little endian format), which
here represents 4 stack variables to free.

Opcode Naming Conventions

Before we continue on to opcode arguments, I will give a brief word on naming conventions
and opcode groupings.

In the opcode names you will often see a combination of the following abbreviations. The
below is my current interpretation of the less intuitive specifiers:

Opcode abbreviation Description

Imp Import

Address

St / Ld Store / Load

I2 Integer/Boolean

I4 Long

UI1 Byte

Lit Literal(ie “Hi”,2,8)

Cy Currency

R4 Single

R8 Double

Str String

Fn Calls a VBA export function

FPR Floating point register

PR Uses ebp-4C as a general register

6/15

Var Variant

Rf Reference

VCall VTable call

LateID Late bound COM object call by method ID

LateNamed Late bound COM Object call by method name

Specifiers are often combined to denote meaning and opcodes often come in groups such
as the following:

An opcode search interface such as this is very handy while learning the VB6 instruction
set.

Opcode Groups

The following shows an example grouping:

Opcode abbreviation Description

ForUI1 Start For loop with byte as counter type

ForI2 With integer counter, default step = 1

ForI4 Long type as counter

ForR4

7/15

ForR8

ForCy

ForVar

ForStepUI1 For loop with byte counter, user specified step

ForStepI2

ForStepI4

ForStepR4

ForStepR8

ForStepCy

ForStepVar

ForEachCollVar For each loop over collection using variant

ForEachAryVar For each loop over array using variant

ForEachCollObj For each loop over collection using object type

ForEachCollAd

ForEachVar

ForEachVarFree

A two part series on the intricacies of how For loops were implemented is available [3] for
the curious.

As you can see, the opcode set can collapse down fairly well once you take into account
the various groupings. While I have grouped the instructions in the source, I do not have an
exact number as the lines between them can still be a bit fuzzy. It is probably around 100
distinct operations once grouped.

Now onto the task of argument decodings. I am not sure why, but most P-Code tools only
show you the lead byte, opcode byte, mnemonic. Resolved arguments are only displayed if
it is fully handled.

Everything except Semi-VBDecompiler [6] skips the display of the argument bytes.

The problem arises from the fact no tool decodes all of the arguments correctly for all of the
opcodes yet. If you do not see the argument byte stream, there is no indication other than a
subtle jump in virtual address that anything has been hidden from you.

8/15

Consider the following displays:

The first version shows you opcode and mnemonic only. You don’t even realize anything is
missing. The second version gives you a bigger hint and at least shows you no argument
resolution is occurring. The third version decodes the byte stream arguments, and resolves
the function call to a usable name.

Obviously the third version is the gold standard we should expect from a disassembler. The
second version can be acceptable and shows something is missing. The first version leaves
you clueless. If you are not already intimately familiar with the instruction set, you will never
know you are missing anything.

Common opcode argument types

In the Semi-VbDecompiler source many opcodes are handled with custom printf type
specifiers [4]. Common specifiers include:

Format specifier Description

%a Local argument

%l Jump location

%c Proc / global var address stored in constant pool

%e Pool index as P-Code proc to call

%x Pool index to locate external API call

%s Pool index of string address

%1/2/4 Literal byte, int, or long value

%t Code object from its base offset

%v VTable call

%} End of procedure

Many opcodes only take one or more simple arguments, %a and %s being the most
common.

9/15

Consider "LitVarStr %a %s" which loads a variant with a literal BSTR string, and then
pushes that address to the top of the stack:

The %a decoder will read the first two bytes from the stream and decode it as follows:

Interpreting 0xFF68 as a signed 2 byte number is -0x98 . Since it is a negative value, it is
a local function variable at ebp-0x98 . Positive values denote function arguments.

Next the %s handler will read the next two bytes which it interprets as a pool index. The
value at pool index 0 is the constant 0x40122C . This address contains an embedded
BSTR where the address points to the unicode part of the string, and the preceding 4

bytes denoting its length.

A closer look at run time data for this instruction is included in the debugging section later
on.

Another common specifier is the %l handler used for jump calculations. It can be seen in
the following examples:

In the first unconditional jump the byte stream argument is 0x002C . Jump locations are all
referenced from the function start address, not the current instruction address as may be
expected.

0x4014E4 + 0x2C = 0x401510
 0x4014E4 + 0x3A = 0x40151E

Since all jumps are calculated from the beginning of a function, the offsets in the byte
stream must be interpreted as unsigned values. Jumps to addresses before the function
start are not possible and represent a disassembly error.

10/15

Next lets consider the %x handler as we revisit the "ImpAdCallFPR4 %x" instruction:

The native handler for this is:

Looking at the P-Code disassembly we can see the byte stream of 24001000 is actually
two integer values. The first 0x0024 is a constant pool index, and the second 0x0010 is
the expected stack adjustment to verify after the call.

Now we haven’t yet talked about the constant pool or the house keeping area of the stack
that VB6 reserves for state storage. For an abbreviated description, at runtime VB uses the
area between ebp and ebp-94h as kind of a scratch pad. The meaning of all of these
fields are not yet fully known however several of the key entries are as follows:

Stack position Description

ebp-58 Current function start address

11/15

ebp-54 Constant pool

ebp-50 Current function raw address (RTMI structure)

ebp-4C PR (Pointer Register) used for Object references

In the above disassembly we can see entry 0x24 from the constant pool would be loaded.

A constant pool viewer is a very instructive tool to help decipher these argument byte
codes.

It has been found that smart decoding routines can reliably decipher constant pool data
independent of analysis of the actual disassembly.

One such implementation is shown below:

If we look at entry 0x0024 we see it holds the value 0x4011CE . If we look at this address
in IDA we find the following native disassembly:

0x40110C is the IAT address of msvbvm60.rtcImmediateIf import. This opcode is how
VB runtime imports are called.

12/15

While beyond the scope of this paper, it is of interest to note that VB6 embeds a series of
small native stubs in P-Code executables to splice together the native and P-Code
executions. This is done for API calls, call backs, inter-modular calls etc.

The Constant Pool

The constant pool itself is worth a bit of discussion. Each compilation unit such as a
module, class, form etc gets its own constant pool which is shared for all of the functions in
that file.

Pool entries are built up on demand as the file is processed by the compiler from top to
bottom.

The constant pool can contain several types of entries such as:

string values (BSTRs specifically)
VB method native call stubs
API import native call stubs
COM GUIDs
COM CLSID / IID pairs held in COMDEF structures
CodeObject base offsets
blank slots which represent internal COM objects filled out at startup by the runtime
(ex: App.)

More advanced opcode processors

More complex argument resolutions require a series of opcode post processors. In the
disassembly engine I am working on there are currently 13 post processors which handle
around 30 more involved opcodes.

Things start to get much more complex when we deal with COM object calls. Here we have
to resolve the COM class ID , interface ID , and discern its complete VTable
layout to determine which method is going to be called. This requires access to the COM
objects type library if its an external type, and the ability to recreate its function prototype
from that information.

For internal types such as user classes , forms and user controls , we also need to
understand their VTable layout . For internal types however we do not receive the aid of
tlb files. Public methods will have their names embedded in the VB file format structures
which can be of help.

Resolution of these types of calls is beyond the scope of what we can cover in an
introductory paper, but it is absolutely critical to get right if you are writing a disassembler
that people are going to rely upon for business needs.

13/15

More on opcode handler inputs

Back to opcode arguments. It is also important to understand that opcodes can take
dynamic runtime stack arguments in addition to the hard coded byte stream arguments.
This is not something that a disassembler necessarily needs to understand though. This
level of knowledge is mainly required to write P-Code assembly or a P-Code decompiler.

Some special cases however do require the context of the previous disassembly in order to
resolve properly. Consider the following multistep operation:

Here the LateIdLdVar resolver needs to know which object is being accessed. Scanning
back and locating the VCallAd instruction is required to find the active object stored in
PR .

Debugging handlers

When trying to figure out complex opcode handlers, it is often helpful to watch the code run
live in a debugger. There are numerous techniques available here. Watching the handler
itself run requires a native debugger.

Typically you will figure out how to generate the opcode with some VB6 source which you
compile. You then put the executable in the same directory as your reference copy of the vb
runtime and start debugging.

Some handlers are best viewed in a native debugger, however many can be figured out just
by watching it run through a P-Code debugger.

A P-Code debugger simplifies operations showing you its execution at a higher level. In one
step of the debugger you can watch multiple stack arguments disappear, and the stack diff
light up with changes to other portions. Higher level tools also allow you to view complex
data types on the stack as well as examine TLS memory and keep annotated offsets.

In some scenarios you may actually find yourself running both a P-Code debugger and a
native debugger on the target process at the same time.

One important thing to keep in mind is that VB6 makes heavy use of COM types.

Going back to our LitVarStr example:

14/15

You would see the following after it executes:

0019FC28 ebp-120 0x0019FCB0 ; ebp-98 - top of stack
 ...

 0019FCB0 ebp-98 0x00000008
 0019FCB4 ebp-94 0x00000000
 0019FCB8 ebp-90 0x0040122C

A data viewer would reveal the following when decoding ebp-98 as a variant:

Variant 19FCB0
 VT: 0x8(Bstr)
 Res1: 0

 Res2: 0
 Res3: 0
 Data: 40122C

 String len: 9 -> never hit

Debugging VB6 apps is a whole other ball of wax. I mention it here only in passing to give
you a brief introduction to what may be required when deciphering what opcodes are doing.
In particular recognizing Variants and SafeArrays in stack data will serve you well
when working with VB6 reversing.

Conclusion

In this paper we have laid the necessary ground work in order to understand the basics of a
VB6 P-Code disassembly engine. The Semi-VbDecompiler source is a good starting point
to understand its inner workings.

We have briefly discussed how to find and read native opcode handlers along with some of
the conventions necessary for understanding them. We introduced you to how opcodes flow
from one to the next, along with how to determine the number of byte stream arguments
each one takes, and how to figure out what they represent.

There is still much work to be done in terms of documenting the instruction set. I have
started a project where I catalog:

VB6 source code required to generate an opcode
byte stream arguments size and meaning
stack arguments consumed
function outputs

15/15

Unfortunately it is still vastly incomplete. This level of documentation is foundational and
quite necessary for writing any P-Code analysis tools.

Still to be discussed, is how to find the actual P-Code function blobs within the VB6
compiled executable. This is actually a very involved task that requires understanding a
series of complex and nested file structures. Again the Semi-VbDecompiler source can
guide you through this maze.

While VB6 is an old technology, it is still commonly used for malware. This research is
aimed at reducing gaps in understanding around it and is also quite interesting from a
language design standpoint.

[1] – VB6 runtime with symbols
[2] – Semi-VbDecompiler opcode table Source
[3] – A closer look at the VB6 For Loop implementation
[4] – Semi-VBDecompiler opcode argument decodings
[5] – Introducing a one byte NOP opcode
[6] – Semi-VBDecompiler

Tagged asdisassembly, P-Code, Research, series, VB

http://sandsprite.com/vb-reversing/files/msvbvm60.zip
https://github.com/VBGAMER45/Semi-VB-Decompiler/blob/master/Semi%20VB%20Decompiler/modPCode.bas#L653
http://sandsprite.com/blogs/index.php?uid=7&pid=483&year=2020
https://github.com/VBGAMER45/Semi-VB-Decompiler/blob/master/Semi%20VB%20Decompiler/modPCode.bas#L550
http://sandsprite.com/blogs/index.php?uid=7&pid=472&year=2019
https://github.com/VBGAMER45/Semi-VB-Decompiler
https://decoded.avast.io/tag/disassembly/
https://decoded.avast.io/tag/p-code/
https://decoded.avast.io/tag/research/
https://decoded.avast.io/tag/series/
https://decoded.avast.io/tag/vb/

