Pingback: Backdoor At The End Of The ICMP Tunnel

%

Loading...

Blogs & Stories
SpiderLabs Blog

Attracting more than a half-million annual readers, this is the security community's go-to
destination for technical breakdowns of the latest threats, critical vulnerability disclosures
and cutting-edge research.

Introduction

In this post, we analyze a piece of malware that we encountered during a recent breach
investigation. What caught our attention was how the malware achieved persistence, how it
used ICMP tunneling for its backdoor communications, and how it operated with different
modes to increase its chances of a successful attack. Malware using ICMP is not new but is
relatively uncommon. Because of this, and the presence of certain strings, we decided to
name this malware ‘Pingback’. Below we demonstrate how Pingback’s protocols work and
also provide sample code on how we interacted with the malware.

1/14

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/backdoor-at-the-end-of-the-icmp-tunnel/

We begin by looking at how Pingback achieves persistence through DLL hijacking.

Persistence through DLL Hijacking

DLL (Dynamic Link Library) hijacking is a technique that involves using a legitimate
application to preload a malicious DLL file. Attackers commonly abuse the Windows DLL
Search Order and take advantage of this to load a malicious DLL file instead of the
legitimate one.

The file we investigated was a DLL file called oci.dll. We knew that the file was suspicious
during our initial triaging, but we could not figure how it was loaded into the system because
the DLL was not loaded through traditional rundll32.exe.

File Size: 66.00 KiB (67584 bytes)

File Entropy: 595211

Created: 03/23/2021 16:40:49:221

Modified: 03/18/2021 15:00:54:00

Accessed: 03/23/2021 16:40:4%:221

S5DEEP: 1536:bETTUkboMEmE4 G513 TdvdMNs5Dpgild52cbbET TLET36:0AY5r1d53
CRC32: BR535337

ImpHash: G9A0S0EBA2533E53F1 ABDESSSEAFB49D

MADS: 204 C2EDE23EDCT232067304748437969

SHAL: 019049500 C3BE6COEDBARBIDADBDSATEL 22EFBE3F

SHAZDE: ES094309F361830502 D FDBO0O971 CREETGRETT AAT 30652454 27 D81 7047523067 F

Authentihash(PE256):31 BCFA5DDEAC3DE40030DET DAL A9 CHEAT DTESEATDCADFICIETGED0164FI AR5
ProductVersion: 10,201

FileVersion: 10,201
FileDescription: Oracle Call interface
ProductMame: Cracle Call interface
InternalMame; QCI

LegalCopyright: Copyright (C) 2010

Figure 1: oci.dll file information

We found out later that it got loaded through a legitimate service called msdtc (a.k.a
Microsoft Distributed Transaction Coordinator). This service, as the name suggests,
coordinates transactions that span multiple machines, such as databases, message
queues, and file systems.

It turns out the msdtc service indirectly loads oci.dll through MSDTCTM.DLL that loads an
ODBC library to support Oracle databases called MTXOCI.DLL. This library searches for
and tries to load three Oracle ODBC DLLs which include oci.dll, SqILib80.dll, and xa80.dll.

2/14

https://npercoco.typepad.com/.a/6a0133f264aa62970b026bdecce858200c-pi

a malware drops ocl.dll in
Windows System foider

v

medtc service msdtem.dil MTxOCI.dil
malicious oci.dil

Legitimate Windows Service Malicious DLL is loaded

Figure 2: Malicious oci.dll is indirectly loaded by msdftc service

3/14

https://npercoco.typepad.com/.a/6a0133f264aa62970b02788024cbd1200d-popup

if (RegOpenKeyExA(HKEY_LOCAL_MACHINE, "SOFTWARE\\Microsoft\\MSDTC\\MTxOCI", @, @x2@@19u, &hKey))

VS = Bx181i64;

6 Data;

if (v5 == @xFFFFFFFF30000103ui64)
break;
v7 = v6["xad@.dll” - (char *)Data];
if (w7)
break;
*, _.'+_+ = v

3
-=Way

¥

while { v5);

if (Ivs)
--Vv63

*vb = 8;

vE = Bx101is4;

)

do
i
if (v@ == OxFFFFFFFF30000103uic4)
break;
vi® = va["SQLLib8®.d11" - (char *)v29];
if (lvie)
break;
*, _'|+_|. = ,_:'.\i

if (vl == BxFFFFFFFFE0@BR103uit4)
break;

vl2 = v11["oci.dll" - (char *)v23];

if (1viz)
break;

*, 114+ =

Figure 3: MTxOCI.DLL loads three plugin DLLs that support the Oracle ODBC interface

By default, the three Oracle DLLs do not exist in the Windows system directory. So, in
theory, an attacker with system privileges can drop a malicious DLL and save it using one of
the DLL filenames that MTxOCI loads. We have experimented with dropping all three DLL
filenames but only oci.dll was successfully loaded by the service.

a/14

https://npercoco.typepad.com/.a/6a0133f264aa62970b02788024cbff200d-pi

[]

2 Process Explorer - Sysinternals: www.sysinternals.com [WIN-1291FE15.., | = || (=] [ﬂ]
File Options View Process Find DLL Users Help

d @ EHEOS F X D

Process CPU Private Bytes =~ Working Set PID Descriptior *
(w1 SearchFiterHost exe 0.01 2,208 K 6036 K 3224 Microsoft W
[w T svchost exe 2532 K 16,244 K 1392 Host Proce:
(w7 ManagementAgentHos...| 0.09 5.804 K 10,768 K 2620 |
[m T svchost exe 65436 K 33,180 K 1740 Host Proce:

3616 K 5,756 K 3668 Host Proce:
4136 K 8,948 K 3244 Microsoft D

1,888 K 5976 K 3228 WMI Perfor
m 1 Isass me 4056 K 10904 K 556 Local Secu ™
w1 lsm exe 1| i | b
MName Description Compary Name Path &
aleaut 32 dil Microsoft Corparation CaWindow
ole32 dl Microsaft OLE for Windows Microsoft Comporation C:KWindn:nW| |
oci.dl Oracle Call inteface CA\Window
ntmarta.dll Windows NT MARTA provider Microsoft Corparation CAWindow
ritdll il MT Layer DLL Microsoft Corparation CAWindow
nsi.dll M5l Usermode inteface DLL Microsoft Corparation CHrWindow -
< | I | P

CPU Usage: 14.85% Commit Charge: 2560% Processes: 77 Physical Usage: 49.17%

Figure 4: oci.dll runs in the background loaded by msdtc.exe

msdtc by default does not run during start-up. To remain persistent, the msdtc service
needs to be configured to start automatically, so the attacker would need system privileges
to reconfigure the msdtc startup type. It can be done manually using SC command, via
malicious scripts, or through a malware installer.

Our theory is that a separate executable installed this malware. In fact, after a bit of hunting,
we found a sample in VirusTotal with similar IOCs that installs oci.dll into the Windows
System directory and then sets msdtc service to start automatically.

if (ws == -1 || (v5 & Bx18) == @)
¢ WinExec("sc config msdtc start= auto™, 8);
Sleep(@x1F4u);
WinExec(
"reg add HKLMM\ASYSTEMM\\CurrentcontrolSet\\Services\\msdtc /v objectname /t REG_SZ /d \"LocalSystem\" /f",
8);
}

else
WinExec("sc config msdtc obj= Localsystem start= autc”, @);

Sleep(500u);
WinExec("sc start msdtc”, @);

Figure 5: A loader configuring msdtc service to start automatically

5/14

https://npercoco.typepad.com/.a/6a0133f264aa62970b026bdeccdf7d200c-pi
https://www.virustotal.com/gui/file/4ff77ea841544569e9da8aa3990724d1473731e684a162014ad1ad54e8c8cef2/detection
https://npercoco.typepad.com/.a/6a0133f264aa62970b02788024cc2d200d-pi

We also observed during our analysis that in a VMware environment, the VM Tools service
also loads MTXOCI and eventually loads the malicious OCI.DLL.

[]

w7 Process Explorer - Sysinternals: www.sysinternals.com [WIN-1391FE15.. | — || = [ﬂ]
File Options View Process Find DLL Users Help

A @ =E OB F RS

Process CPU Private Bytes Working Set PID Descriptior *
|_"'|s1.rdﬂnst exe 12,076 K 15212 K 1268 Host Proce:
' 4,544 K 10,324 K 1468 VMware Gl.l |
0.60 10,800 K 22268 K 1556 VMware To
<0.01 3440 K 7.748 K 1592 VMware LIS
m]wl:d'lnut axe 0.03 1,908 K 4688 K 1900 Host Proca:
[m | svchost exe 2632K 6180 K 1940 Host Proce:
= B TPAutoConn 0.02 2272K 9620 K 1988 ThinPrnt A
. 'I.'!.'U"I l‘r.r';"'lﬁ K '||3-.E-E-E- K 2828 Thin F'rlntfu. i
Name Description Company Name Path -
pere. dl Perd Compatible Reqular Expressio... YMware C:MPragram
aleaut 32 dll Microsoft Carparation CAWindow |

ale 32 dil Microsoft OLE for Windows Microsoft Corparation CHhWindow —

; Oracle Call interface CA\Windo
ntmarta.dll Windows NT MARTA provider Microsoft Corporation CrWindow
ntlanmarn.dil Microsoft® Lan Manager Microsoft Corporation CrWindow -

4| 1 | b

CPU Usage: 16.32% Commit Charge: 2562% Processes: 7 Physical Usage: 49.19%

Figure 6: In Process Explorer, we found that OCI.DLL is also loaded by VMTools service in
a VMware Environment

So that is the DLL loading part. But before turning our attention to Pingback itself and its
operation, let us first lay out what is ICMP and how ICMP tunneling works.

ICMP Foundation

The Internet Control Message Protocol (ICMP) is a network layer protocol mainly used by
network devices for diagnostic and control purposes. It is used in utilities such as ping to
determine reachability and roundtrip time, traceroute, and path MTU discovery to avoid
packet fragmentation and enhance performance. It can also be misused by malicious actors
to scan and map a target’s network environment. This is one of the reasons why there are
some debates over whether ICMP should be disabled or not. In most cases, users do not
pay attention to ICMP packets either as they do not manifest open ports on the machine.

6/14

https://npercoco.typepad.com/.a/6a0133f264aa62970b026bdeccdf98200c-pi

The malware, Pingback, at the center of our investigation, oci.dll, uses the ICMP protocol
for its main communication. This has the effect of being hidden from the user as ports
cannot be listed by netstat. Below we detail how Pingback uses the ICMP protocol to pass
data back and forth between the infected host and the attacker’s host. A technique called
ICMP tunneling.

To explain ICMP tunneling, let us first understand an ICMP packet:

IPv4 Header (20 bytes)
ICMP Header (8 bytes)

Figure 7: A diagram of an ICMP packet. ICMP
ICMP Data (Payload)

(1472 bytes)

data size varies, we assume that the IP maximum transmission unit is 1500 bytes. The
packet size limit for an ICMP Data is maximum allowed size of an IPv4 network packet,
minus the 20 byte IP header and 8 byte ICMP header.

An ICMP packet is built on top of the IP layer and has an 8 byte ICMP header. The packet
size limit for ICMP data is a maximum allowed size of an IPv4 network packet, minus the 20
byte IP header and 8 byte ICMP header. Or approximately 64K. The ICMP data is
determined by the message type. The message types are defined here:
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

An ICMP tunnel mainly uses these two types:

Code Type Description
0 Echo Reply ping reply
8 Echo ping

In the diagram below, A echo packet header defines the ICMP type, code, checksum,
identifier and sequence number. And lastly, the ICMP data section is where an attacker can
piggyback an arbitrary data to be sent to a remote host. The remote host replies in the
same manner, by piggyback an answer into another ICMP packet and sending it back.

7/14

https://npercoco.typepad.com/.a/6a0133f264aa62970b02788024ccc1200d-pi
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

ICMP Packet
IPvd4 Header (20 bytes)

ICMP Header (8 bytes)

ICMP Data (Payload)
(788 bytes)

Figure 8: ICMP packet. The size of the ICMP data sent by the attacker is always 788 bytes

ICMP Echo and Echo Reply

ICMF TYPE
Size: 8 bit
Value: 0 - Echo Reply Type
8 - Echo Type

ICMP Code (Subtype)
Size: 8 bit

ICMP Header Checksum
Size: 16 bit

Identifier
Size: 16 bit

ICMP Sequence Number
Size: 16 bits

12351 1236

ICMF Data

Packet size from attacker to malware (788 bytes)

This is the section where an attacker piggyback's
bot commands and other data

The malware expects sequence number = 1234 |

8/14

https://npercoco.typepad.com/.a/6a0133f264aa62970b026bdecd0c5c200c-pi

MNo. Time Source Destination Protocol Length Info™
15 47.831394572 192.168.38.131 192.168.38.133 830 Ec.

116 139.9211/2608 192.168.38.131 192.168.38.133 ICMP 830 Ec..~
4

» Frame 15: 830 bytes on wire (6640 bits), 830 bytes captured (6648 bits) on inter=~
~ Ethernet II, Src: VMware_ec:e3:52 (00:0c:29:ec:e3:52), Dst: Broadcast (ff:ff:ff:
» Destination: Broadcast (ff:ff:ff:ff:ff:ff)
b Source: VMware_ec:e3:52 (00:0c:29:ec:e3:52)
Type: IPv4 (0x0880)
» Internet Protocol Version 4, Src: 192.168.38.131, Dst: 192.168.38.133
~ Internet Control Message Protocol
Type: 8 (Echo (ping) request)

Code: ©

Checksum: @xfc7® [correct]

[Checksum Status: Good] ICMP
Identifier (BE): 1 (@xe001) Header

Identifier (LE): 256 (Gx0180)

Sequence number (BE): 53764 (0xd204)

Sequence number (LE): 1234 (8@x04d2)
» [Mo response seen]

Data: 7368656c6cOOO00ROEOBEOO 1000000000000 0... |

[Length: 788] ICMP Data

ae2ae 85 fc dz 73
CEE:EO0 00 00 00 B0 GO 00 P 68 08 00
R40 [s[caclc] o]0 B B
CELTAEO0 00 00 00 B0 B0 G0 PO Be
CEGIDEOE 00 00 R B0 G0 G0 PO B8
CEFCEOE 00 00 @R B0 G0 00 e B
GG 00 00 00 80 B 60 O 66
olel[DIEE G0 00 00 A0 8O B0 B0 00 B
CEET MO0 00 EI -E EE o 8e nn 00 0O B0
ebe [l [e]s A0 00 A0 068 08 00

oe
[o]¢]

Figure 9 Packet capture of the attacker's ICMP packet

ICMP Tunneling

Now that we have laid out the foundation and how an attacker can piggyback data on the
ICMP packets, we are ready to explain exactly how exactly this malware works.

Pingback specifically uses the echo (ping) request or type 8 ICMP message. It starts a
sniffer for every IP address on the host, spawning a thread to sniff packets on each
individual IP address. To distinguish between its own packets and other packets, the sniffer
ignores anything else that’s not an ICMP echo packet and does not contain the ICMP
sequence number 1234, 1235 or 1236. It also ignores packets not destined for the specified
IP address.

It then interprets the data in the following format:

9/14

https://npercoco.typepad.com/.a/6a0133f264aa62970b02788024f831200d-800wi

struct ICMPData {
cmd [18] ;
args[512];

cmd_1line [258];
wed long dest_port;
dest_addr[4];

Figure 10: Malware's ICMP data is represented by this C structure. See appendix below for
detailed information of the cmd and ecmd_line fields.

The sequence is used as a message type for each ICMP data. It currently supports 3
message types:

e 1234 — the packet contains a command or data

e 1235 and 1236 — used for pure ICMP packet communication only. 1235 being the data
has been received at the other end, and 1236 as new data has been received by the
malware.

Pingback supports several commands including:

e shell — execute a shell
o download — 3 different modes of download are provided:
o Mode 1: Infected host connects back to the attacker’s host (works well if
incoming TCP connections are blocked by firewall)
o Mode 2: Infected host opens a socket on a specified port and waits for the
attacker to connect.
o Mode 3: Purely ICMP-based, but this is very slow and the current
implementation is not very reliable in terms of flow control.
» upload — also supports 3 different modes, similar to the Download command.
e exec — execute a command on the infected host.

This is interesting, you can see Pingback uses a combination of ICMP for initiating any of
the commands and TCP for better performance and reliability. A pure ICMP mode is also
provided but is not very reliable.

Protocol example

To download a file in mode 1, the attacker performs:

o Create a socket and listen on a port
e Send the following ICMP packet:
o ICMP echo request with sequence 1234
o Payload contains: “download”, name of file to download and, IP address and
port of the newly created socket, this is where the malware will stream the file to
o Wait for connections and receive data. There is an additional protocol here which
includes is reasonably simple (send and receive) and wait for “END\x00” string.

10/14

https://npercoco.typepad.com/.a/6a0133f264aa62970b026bdecce0d1200c-pi

We have provided a source to demonstrate all three modes and most of the commands
supported by Pingback.

Source available here:

https://github.com/SpiderLabs/pingback

We have also prepared a video to demonstrate how our client interacts with the malware
running in an isolated infected system.

OCI.DLL

ICMP Tunneling Client Demo

https://youtu.be/OlzgEVk3dig

Final Words

ICMP tunneling is not new, but this particular sample piqued our interest as a real-world
example of malware using this technique to evade detection. ICMP is useful for diagnostics
and performance of IP connections in the real world. It is very useful to have them enabled
but must be balanced by real-world threats. While we are not suggesting that ICMP should
be disabled, we do suggest putting in place monitoring to help detect such covert
communications over ICMP.

For network administrators and technical audience, a rule can be implemented to check if a
packet is an ICMP echo (type 8), the data size is 788 bytes or greater and check for ICMP
sequence number: 1234, 1235 or 1236. Backdoor command strings such as “download”,

“‘upload”, “exec”, “exep”, “rexec”, “shell” that found in an ICMP data packet can also be
flagged. Trustwave Managed IDS devices can also detect this malicious traffic.

11/14

https://github.com/SpiderLabs/pingback
https://youtu.be/OlzgEVk3dig
https://www.trustwave.com/en-us/services/technology/intrusion-detection-and-prevention/

Finally, this malware did not get into the network through ICMP but rather utilizes ICMP for
its covert bot communications. The initial entry vector is still being investigated.

Appendix

cmd — bot commands and may be any of the following:

e exep (execute process) — execute a binary/command on the remote host

e download (download mode 1) - attacker’s initial connection is done via ICMP and
appears as a ping packet. The ICMP echo packet contains data that specifies the
attacker’s host and port to where the malware connects back. The ICMP data also
contains a file path that the attacker requests. Using the host and port information, the
malware creates a new socket, then transmits the requested file back to the attacker.

e upload (upload mode 1) — attacker’s initial connection is done via ICMP. The malware
receives the initial connection then connects back to attacker’s host and port specified
in the ICMP Echo packet. It then receives the file from the attacker to be saved in the
infected system’s local disk

e download?2 — (download mode 2), initial ICMP packet is sent by the attacker. The
ICMP echo packet contains the requested filename and path in the infected system. It
also contains a port number where the malware will bind and listen to. The malware
then waits for the attacker to connect, afterward, it begins transmitting the requested
file.

e upload2 — (upload mode 2), initial ICMP packet is sent by the attacker. The ICMP
echo packet contains the filename of the file to be received. It also contains a port
number where the malware will bind and listen to. The malware then creates the file in
the remote host and waits for the attacker to connect. Once connection is established,
the attacker begins transmitting the file content to the remote host

e download3 — (download mode 3), a file is sent to the attacker purely through ICMP
data. Although this mode is more covert as it appears as ping packets only, this is
slower than using TCP directly as only 1 packet can be transmitted at a time. The
malware has to wait for acknowledgment from the attacker’s end.

e upload3 — (upload mode 3), same as download mode 3 — although the attacker
uploads the file purely through ICMP. Also slower and unreliable but more covert than
other modes.

» shell — request malware to connect back to the attacker with a shell. Initial request is
done via ICMP packet containing information including attacker’s host IP and port to
where the malware makes a TCP connection.

cmd_line -In exep command, this variable holds the command to be executed on the
remote host. While in download and upload command, this variable contains the remote file
name.

10C:

12/14

File:

Filename: Oci.dll

SHA256: E50943D9F361830502DCFDB00971CBEE76877AA73665245427D817047523667F
PDB path: c:\Users\XL\Documents\Visual Studio
2008\Projects\PingBackService0509\x64\Release\PingBackService0509.pdb

Network:

Source: <Attacker IP address>
Destination: <Target host>

ICMP Type: 8

Sequence Number: 1234|1235|1236
Data size: 788 bytes

PCAP: https://github.com/SpiderLabs/IOCs-IDPS/tree/master/Pingback

Yara:

rule PingBack
{
meta:
description = "This rule detects PingBack malware"
author = "Trustwave SpiderLabs"
date = "May 4th, 2021"

strings:
$string1 = "Sniffer ok!" ascii
$string2 = "lock2" ascii
$string3 = "recvfrom failed" ascii
$string4 = "rexec" ascii
$string5 = "exep" ascii
$string6= "download" ascii
$string7 = "download2" ascii
$string8 = "download3" ascii
$string9 = "upload" ascii
$string10 = "upload2" ascii
$string11 = "upload3" ascii
$string12 = "cmd.exe" ascii
$string13 = "PingBackService" ascii

condition:
all of them

13/14

https://github.com/SpiderLabs/IOCs-IDPS/tree/master/Pingback

14/14

