
1/23

Jacob Pimental May 2, 2021

Sodinokibi Ransomware Analysis
goggleheadedhacker.com/blog/post/sodinokibi-ransomware-analysis

02 May 2021

Back in March, a new version of the Sodinokibi (AKA REvil) Ransomware was released.
Sodinokibi is a Ransomware-as-a-Service (RaaS) provider that has been covered in the
news quite a bit. With the new version out, I decided to give a technical analysis of how it
operates. I got the sample from an overview of the new features that R3MRUM gave in a
tweet towards the end of March. The file, whose hash is
12d8bfa1aeb557c146b98f069f3456cc8392863a2f4ad938722cd7ca1a773b39 , can be

found on VirusTotal or Any.Run.

https://www.goggleheadedhacker.com/blog/post/sodinokibi-ransomware-analysis
https://www.virustotal.com/gui/file/12d8bfa1aeb557c146b98f069f3456cc8392863a2f4ad938722cd7ca1a773b39/detection
https://app.any.run/tasks/41cee64f-b909-4eaf-a106-16865999db4f/

2/23

🆕 #REvil v2.05

-smode switch configures OS to boot into safe mode w/ networking via:

(pre-Vista) bootcfg /raw /a /safeboot:network /id 1
or
(Vista+) bcdedit /set {current} safeboot network

configures auto-lognn via WinLogon 🔑 w/ 'DTrump4ever' password

— R3MRUM (@R3MRUM) March 26, 2021

Background

Sodinokibi, or REvil, was first discovered in April of 2019 where it was seen exploiting a
vulnerability in Oracle WebLogic. It shares many similarities to the GandCrab ransomware
strain that retired around the same time Sodinokibi popped up, leading researchers to
speculate whether this ransomware is operated by the same people.

Being a Ransomware-as-a-Service means that clients will pay the operators for access to
the latest version and have the group operate the infrastructure for them. There are two
fields in Sodinokibi’s configuration that will keep track of the client and the particular client
campaign during which the ransomware is deployed. You can find this information in the
configuration section below.

Sodinokbi has been seen used in several notable breaches including Travelex and Acer. The
group has recently updated the strain to add a new feature that will reboot Windows into
Safe Mode to bypass AV.

Analysis TL;DR

Sodinokibi will start by dynamically building an import table to make it harder for analysts to
statically analyze the sample. It also uses encrypted strings throughout the binary to make it
difficult to analyze. During the initial startup phase, Sodinokibi will decrypt its configuration
using RC4 which contains information such as C2 domains and one of the public keys
Sodinokibi will use when encrypting files.

After the initial startup phase, Sodinokibi will check the user’s language and keyboard layout
to see if they are in a whitelisted location. If not, then the ransomware will generate a public
and private key pair using the Elliptic-Curve Diffie-Hellman algorithm. Sodinokibi stores
private and public keys as well as other important information in specific registry keys to use
next time the sample is run.

https://twitter.com/hashtag/REvil?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/R3MRUM/status/1375455360878669824?ref_src=twsrc%5Etfw
https://blog.talosintelligence.com/2019/04/sodinokibi-ransomware-exploits-weblogic.html
https://www.acronis.com/en-us/blog/posts/travelex-hit-powerful-sodinokibi-ransomware-attack
https://securityboulevard.com/2021/03/sodinokibi-revil-ransomware-gang-hit-acer-with-50m-ransom-demand/

3/23

This version of Sodinokibi comes with a new feature known as SafeMode which will reboot
the compromised computer into Windows Safe Mode with Networking. This will prevent most
antivirus software from running which means Sodinokibi can run without issue.

If the exp value in the configuration is set to true , Sodinokibi will attempt to escalate
privileges by prompting the user in an endless loop. After this, Sodinokibi will delete shadow
copies and kill any processes or services that match a list stored in its configuration. It will
also send information about the computer it is running on as well as the generated private
key to a list of C2 domains during this phase.

Finally, Sodinokibi will use Windows IO Completion Ports to quickly encrypt files on the
system, ignoring those that match the whitelisted filenames. The files are encrypted using
the Salsa20 algorithm with a metadata blob the attacker can use to decrypt the file being
appended to the end. Sodinokibi can walk through local drives as well as network shares
depending on if the -nolan and -nolocal command-line switches are set. After all the
files are encrypted, Sodinokibi will change the user’s background to tell them to read the
ransom note.

Anti-Analysis Features Used in Sodinokibi

Dynamic Import Address Table (IAT)

Sodinokibi will manually load the import address table as an anti-analysis technique. It does
this by looping through a list of DWORDs and putting the correct function pointer into the IAT
depending on the value of the DWORD. To bypass this technique, I ran the binary in x64dbg
and dumped it after the call to the IAT population function using Scylla. This allowed me to
continue analyzing this sample statically without having to worry about which functions were
being called.

String Encryption

Most of the strings in the Sodinokibi sample were encrypted. The string decryption function
will take five arguments: an address in memory that is served as a base, the offset from that
base to the start of the key, the key length, the length of the ciphertext, and a pointer to the
target variable to populate with the decrypted string.

String Decryption Function

The function will then take the data from base + offset : base + offset + key_length
and store it in a buffer that it will use as a key. It will use that key to RC4 decrypt the data at
base + offset + key_length : base + offset + key_length + ciphertext_length .

It will store the RC4 decrypted result in the target variable.

4/23

Substitution Box generation algorithm which led me to believe this was RC4

Structure of the encrypted data

From this information, I created a small script in Python that will take the first four parameters
passed into the decryption function and return the resulting string. You can find that script on
my GitHub.

Configuration Information

The configuration for the Sodinokibi sample is stored as an RC4 encrypted JSON string in a
section of the binary appropriately named .cfg . The key for decrypting the configuration is
contained in the first 32 bytes of the section. After that section is a CRC hash of the
ciphertext that Sodinokibi uses to validate the data before decrypting. Below is a table of all
four parts of the section:

Offset (Bytes) Data

0x0 - 0x20 RC4 Key

0x20 - 0x24 CRC Hash of Ciphertext

0x24 - 0x28 Length of Ciphertext

https://github.com/JacobPimental/Malware-Analysis-Notes/blob/main/Sodinokibi/string_decrypt.py

5/23

Offset (Bytes) Data

0x28 - … Ciphertext

The configuration structure is stored in JSON and contains 19 keys. Below is a table of the
information stored in the config:

Field Description

pk Public Key stored as a Base64 encoded string

pid Unique value that identifies the client

sub Unique value that identifies the campaign

dbg Determines whether or not to check the keyboard layout and system language to
determine the user’s location

et Encryption type to use:
 0 - Encrypt all data in a file

1 - Encrypt only the first MB of a file
2 - Encrypt 1 MB then skip the next MBs specified by the spsize field

spsize Number of MBs to skip when et is set to 2

wipe Unused

wfld Unused

wht Contains three lists of whitelisted objects:
 fld: Whitelisted Folders

fls: Whitelisted Files
ext: Whitelisted Extensions

prc List of processes to terminate

dmn List of C2 domains separated by “;”

net Whether or not to send information to C2

svc List of services to close and delete

nbody Body of ransom note stored as a Base64 encoded string

nname Filename for the ransom note

exp Whether or not to attempt running the application with Administrator privileges

6/23

Field Description

img Text to add to the desktop background alerting users that their files are
encrypted. Stored as a Base64 encoded string

arn Whether or not to set a registry key to have the application run on startup

rdmcnt Maximum number of folders to write the ransom note to. If zero, write the ransom
note to all folders

An interesting thing to note is that both of the unused fields in the configuration were used in
previous versions of Sodinokibi. According to an analysis done from Panda Security, the
wipe value was used to determine if Sodinokibi would delete directories stored in the
wfld value.

The full config from this particular sample can be found here.

Command-line Arguments

The newest version of Sodinokibi has seven optional command-line switches that control
different aspects of the infection process. The table below gives an overview of the different
switches available:

Switch Description

nolan Do not encrypt network shares

nolocal Do not encrypt local files

path Specify directory to encrypt

smode Reboots the computer in Windows Safe Mode

silent Do not kill processes and services

fast Only encrypts the first MB of a file (sets et to 1)

full Encrypts entire file (sets et to 0)

Language Checks

One of the first things Sodinokibi will do is identify the user’s location based on the language
of the system and the user’s keyboard layout. Sodinokibi utilizes the
GetUserDefaultUILanguage and GetSystemDefaultUILanguage functions to get the

language code and then runs that code against a list of hardcoded values. If the system
language matches, then the program will exit.

https://www.pandasecurity.com/emailhtml/2007-CAM-RANSOMWARE-AD360-WG/2006-Report-Sodinokibi-EN.pdf
https://github.com/JacobPimental/Malware-Analysis-Notes/blob/main/Sodinokibi/config.json

7/23

List of languages that are whitelisted from being encrypted

Next, it will get a list of input locale identifiers for the system using the
GetKeyboardLayoutList function. It will take the last byte of these codes and compare

them to a hardcoded list of values. If any of the input locale identifiers match, then execution
is halted.

8/23

 List of input locale

codes Sodinokibi looks for

Key Generation

Sodinokibi will use the elliptic curve algorithm Curve25519 to generate a public and private
key pair as well as shared keys that will be used for encryption. Once the key pair is
generated, Sodinokibi will take the new private key and encrypt it using the public key in the
configuration, pk , and another public key that is stored in the binary.

Code snippet that shows public/private key pair being generated and private key being
encrypted

9/23

The encryption process works by creating a new, temporary key pair we’ll call tmp_key and
creating a shared key between the private tmp_key and the public key passed into the
function. We will call this shared_key for simplicity’s sake. Next, Sodinokibi will generate a
random 16 byte IV value. It will then use the IV and shared_key to encrypt the data that is
passed into the function using AES. Finally, Sodinokibi will take the newly encrypted data
and append the value of shared_key , the IV, and the CRC hash of the encrypted data to
the end.

Function used to encrypt the private key

For the ransomware operator to decrypt the data, they would need to use the shared_key
and their own private key to generate a new Curve25519 shared key. They can use this
newly generated shared key to decrypt the data.

Analysts from Intel471 managed to find the exact open-source implementation of what
Sodinokibi is using to implement the Curve25519 algorithm. You can read their full report on
it here.

Persistence

Run On Startup

If the value of arn in Sodinokibi’s configuration info is set to true , then it will attempt to
make itself persistent by creating a registry key under
SOFTWARE\Microsoft\Windows\CurrentVersion\Run . It will create the key qZhotTgfr3

with the path to the binary as the value. This will allow the malware to run every time the user
reboots their machine.

https://github.com/vstakhov/opt-cryptobox/tree/master/curve25519
https://intel471.com/blog/revil-ransomware-as-a-service-an-analysis-of-a-ransomware-affiliate-operation/

10/23

Function that will allow the ransomware to run on startup

Reg Key Creation

Sodinokibi will also store important information such as generated keys in the registry to
retrieve them next time it runs. It will store these keys under
SOFTWARE\BlackLivesMatter . The table below shows the keys it creates and their values:

Key Value

54k Contains the value of pk from the configuration

Krdfp Contains the private key encrypted by the public key in the configuration

a0w0 Contains the public key generated from elliptic curve function

hq0G6X Contains the private key encrypted by the public key in the binary

XFx41h1r Contains an encrypted string containing information that is sent to C2 servers
(see C2 Communication section for more info)

x4WHjRs Contains the random file extension that gets appended to encrypted files

Sodinokibi SafeMode

One of the new features from this version of Sodinokibi is the -smode flag. When running
with this flag, Sodinokibi will reboot the computer into Windows Safe Mode with Networking.
The reason for this is that most Antivirus software will not run when Windows is in Safe
Mode. This allows Sodinokibi to bypass most Antivirus products easily.

To set up SafeMode, Sodinokibi will grab the current username and change its password to
“DTrump4ever”. It will then enable Autologon privileges for the user by editing the
SOFTWARE\Microsoft\Windows NT\CurrentVersion\winlogon registry key. It will also

enable the setting for the user to log in with Administrator privileges by default.

11/23

Code that sets automatic logon and changes user password

After this, the ransomware will set the SOFTWARE\Microsoft\CurrentVersion\RunOnce
registry key to set itself to run on the next startup. It will store this information in the registry
key AstraZeneca . It will then set the computer to boot into Windows Safe Mode on the
next startup using either bootcfg or bcdedit depending on the Windows version. You
can find the commands in the table below:

Windows Version Command

Win7 or Greater bcdedit /set {current} safeboot network

Vista or Below bootcfg /raw /a /safeboot:network /id 1

To ensure these changes aren’t permanent, the malware will set one more registry key under
RunOnce called MarineLePen . This will contain another bootcfg or bcdedit

command that will undo the changes on startup.

Windows Version Command

Win7 or Greater bcdedit /deletevalue {current} safeboot

Vista or Below bootcfg /raw /fastdetect /id 1

12/23

Code that sets the computer to boot into Windows Safe Mode

Finally, the function will restart the computer by running the command SHUTDOWN -r -f -t
02 .

Privilege Escalation

If the value of exp in Sodinokibi’s configuration is set to true , it will attempt to escalate
privileges to Administrator. First, the malware will get a handle to the current process using
GetCurrentProcess . It will then check the current permissions that the process is running

using OpenProcessToken and GetTokenInformation . If the application is already
running as Administrator, then the function will exit. If not, it will use the runas command
through the function ShellExecute to prompt the user to run the application with
Administrator privileges. It will continue to prompt the user in an endless loop until the user
finally accepts.

13/23

Function that will elevate Sodinokibi’s privileges

Service and Process Killing

If Sodinokibi is run without the -silent switch, it will attempt to kill processes and services
that match the values in the prc and svc lists in the configuration. It will start this by
spawning a thread that will create a COM Object for IWbemServices . Sodinokibi will use
this COM Object to search for newly created processes or modified services with the
following queries:

SELECT * FROM __InstanceCreationEvent WITHIN 1 WHERE TargetInstance ISA
'Win32_Process'
SELECT * FROM __InstanceModificationEvent WITHIN 1 WHERE TargetInstance ISA
'Win32_Service'

The IWbemServices::ExecMethodAsync function, shown as offset 0x5c of the created
COM Object, will send the results to an IWbemObjectSink Interface which runs them
through another function at offset 0xb32809 . This function will compare the process/service
name against the lists in the configuration and kill them if they match.

14/23

Function that kills processes and services using COM Objects

Next, Sodinokibi will use the Service Control Manager to loop through all active services and
kill them. It does this by getting a handle to the SCManager object by calling
OpenSCManager with “ServicesActive” as one of the arguments. Then it will use
EnumServicesStatusExW to enumerate the returned services and compare each service

name to the list in svc . If they match, then Sodinokibi will delete the service using the
DeleteService function.

Function that deletes services using Service Control Manager

Finally, Sodinokibi will loop through any active processes using the Process32FirstW and
Process32NextW functions and run the process name against the prc list. If the prc list

contains the process name, then the process will be terminated using the

15/23

TerminateProcess function.

Loop that will run active process handles through a function that will terminate them

Function that will take a process handle and terminate it if it’s in the prc list

Shadow Copy Deletion

When the -silent switch is not present, the Sodinokibi sample will spawn a thread that
will delete any shadow copies that are present on the system. It will do this by using COM
Objects similar to how it kills processes and services. Sodinokibi will run the query select
* from Win32_ShadowCopy to retrieve an IEnumWbemClassObject object. It will
enumerate each shadow copy object using the IEnumWbemClassObject::Next function,
grab each ID, and delete it using the IWbemServices::Delete function. The delete
function contains a string with the shadow copy’s ID in the form Win32_ShadowCopy.ID=
<ID> as the parameter.

16/23

Function that will delete shadow copies using COM Objects

C2 Communication

When the net value in the configuration info is set to true , Sodinokibi will reach out to
one of the Command and Control (C2) servers from the dmn list. First, it will split the list of
domains by the “;” character. For each C2 in the list, Sodinokibi will build up an information
string in the following format:

{
 "ver":"Version info (0x205, or 2.05 in this case)",
 "pid":"pid value from config",
 "sub":"sub value from config",
 "pk": "pk value from config, base64 decoded",
 "uid":"Volume Serial Number and CPU Info",
 "sk": "Private Key encrypted by the value of pk",
 "unm":"Account Username",
 "net":"Computer Name",
 "grp":"Computer Domain Name",
 "lng":"Language Used (i.e. en-us)",
 "bro":"Boolean returned by the language and keyboard check",
 "os": "Product Name",
 "bit":"Architecture Used (x32 or x64)",
 "dsk":"Base64 encoded information about the drives on the computer",
 "ext":"Generated extension used for encrypted files"
}

Sodinokibi will then take this JSON string and encrypt it using a third public key that is stored
in the binary. It will use the same encryption method that was used to encrypt the generated
secret key that was described earlier in this report. Once the JSON information is encrypted,
Sodinokibi will take the C2 domain and start to build a random URL in the following form:

17/23

https://<domain>/(wp-
content|static|content|include|uploads|news|data|admin)/(images|pictures|image|temp|tm
z]{2}){1,10}.(jpg|png|gif)

Sodinokibi will then send the data in a POST request with the following headers:

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/84.0.4147.125 Safari/537.36
Content-Type: application/octet-stream
Connection: close

Function that handles connection for C2 domain, with renamed functions to make it clear
what the function is doing

File Encryption

To perform file encryption, Sodinokibi uses I/O Completion Ports to speed up walking the file
system. This essentially allows the ransomware to create multiple threads that will wait for a
file handle. Once one is sent over, the first available thread will take it and encrypt the file
using the Salsa20 Algorithm.

Code that will create a new completion port to use

Once the completion port is created, Sodinokibi will walk the local file system if the -
nolocal command-line switch is not set. It will start by enumerating drives and checking the
drive type using GetDriveTypeW . If the drive is valid, it will walk through the files in it using
FindFirstFileExW and FindFirstFileW depending on the Windows version. It will also

check each file and folder name against the fld , fls , and ext lists to see if it is
whitelisted from being encrypted. It will also not encrypt a file if it is already marked as
encrypted by the Windows File System.

If the nolan command-line switch is not set, then Sodinokibi will enumerate network
shares. It will use WNetOpenEnumW and WNetEnumResourceW to get shares to which is can
connect. To get permission to access these shares, Sodinokibi will attempt to impersonate
the current user using the ImpersonateLoggedOnUser function. Sodinokibi will first grab
the Process ID of “explorer.exe” and use that to grab the access token of the user. It can use
that access token to access objects for which the user already has access.

https://docs.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports

18/23

Function that will encrypt remote drives

For every folder that Sodinokibi finds while walking the file system, it will write a ransom note
to it. It will then compare a variable against the value of rdmcnt . If it is greater than
rdmcnt , it will not write the note. If rdmcnt is equal to zero, then it will write notes in every

folder regardless of the count. The count variable will then increment and the function will
exit. This count variable is reset on every drive that gets encrypted, leading me to believe
that the rdmcnt value dictates the maximum number of ransom notes Sodinokibi will write
to a drive.

For each file, Sodinokibi will build a metadata structure that it will append to the end of the
encrypted file. This value is part of the lpOverlapped structure that gets passed to the IO
Completion Port. The structure can be defined as the following:

19/23

struct rvl_struct {
 BYTE priv_key_encrypted_w_config_pk[88],
 BYTE priv_key_encrypted_w_bin_pk[88],
 BYTE generated_pub_key[32],
 BYTE salsa20_IV,
 DWORD crc_of_pub_key,
 DWORD value_of_et,
 DWORD spsize,
 DWORD salsa20_encrypted_null_value
}

This structure is used to verify that the file is encrypted and is used to decrypt the file by the
attacker. Using this structure, the operator can decrypt the generated private key and use
that with the salsa20 IV to decrypt the file.

Once this metadata structure is set up, the file will be posted to the IO Completion Port to be
encrypted by one of the spawned threads. Depending on the encryption type, Sodinokibi will
either encrypt the entire file (et =0), only encrypt the first MB (et =1), or encrypt one MB of
the file, skip spsize MBs then encrypt another MB and repeat (et =2). Once the file is
encrypted, Sodinokibi will append the metadata blob to the end and move to the next file.

Once all files are encrypted, Sodinokibi will set the background image to display the text from
the img value in the configuration. In this case, it will display:

All of your files are encrypted!

Find {EXT}-readme.txt and follow instuctions

Ransom Note Generation

The ransom note is stored as a Base64 encoded string in Sodinokibi’s configuration under
the nbody field. The note in this sample contains:

20/23

---=== Welcome. Again. ===---

[+] Whats Happen? [+]

Your files are encrypted, and currently unavailable. You can check it: all files on
your system has extension {EXT}.
By the way, everything is possible to recover (restore), but you need to follow our
instructions. Otherwise, you cant return your data (NEVER).

[+] Attention!!! [+]

Also your private data was downloaded.
We will publish it in case you will not get in touch with us asap.

[+] What guarantees? [+]

Its just a business. We absolutely do not care about you and your deals, except
getting benefits. If we do not do our work and liabilities - nobody will not
cooperate with us. Its not in our interests.
To check the ability of returning files, You should go to our website. There you can
decrypt one file for free. That is our guarantee.
If you will not cooperate with our service - for us, its does not matter. But you
will lose your time and data, cause just we have the private key. In practise - time
is much more valuable than money.

[+] How to get access on website? [+]

You have two ways:

1) [Recommended] Using a TOR browser!
 a) Download and install TOR browser from this site: https://torproject.org/
 b) Open our website:
http://aplebzu47wgazapdqks6vrcv6zcnjppkbxbr6wketf56nf6aq2nmyoyd.onion/{UID}

2) If TOR blocked in your country, try to use VPN! But you can use our secondary
website. For this:
 a) Open your any browser (Chrome, Firefox, Opera, IE, Edge)
 b) Open our secondary website: http://decoder.re/{UID}

Warning: secondary website can be blocked, thats why first variant much better and
more available.

When you open our website, put the following data in the input form:
Key:

{KEY}

!!! DANGER !!!
DONT try to change files by yourself, DONT use any third party software for restoring
your data or antivirus solutions - its may entail damge of the private key and, as

21/23

result, The Loss all data.
!!! !!! !!!
ONE MORE TIME: Its in your interests to get your files back. From our side, we (the
best specialists) make everything for restoring, but please should not interfere.
!!! !!! !!!

The note contains three template variables: {UID} , {KEY} , and {EXT} . The {UID}
variable will correspond with the CRC of the infected computer’s volume serial number and
other information about the CPU. This data is used as a distinct identifier that Sodinokibi can
use to keep track of the computer. The {EXT} value will correspond with the randomly
generated extension that Sodinokibi will append to encrypted files. Finally, the {KEY} value
is the encrypted JSON string that Sodinokibi will send to the Command and Control server.
You can see how this is generated in the C2 Communication section of this post.

Function that will generate the ransom note body

Once the ransom note string is generated, Sodinokibi will write it to the filename specified in
the nname field of the configuration, which in this sample is {EXT}-readme.txt . It will
replace the {EXT} value of the filename with the randomly created extension, just like it
does for the ransom note body.

Conclusion

22/23

Sodinokibi is a complex ransomware strain with many different features that the group
continues to add to all the time. This latest version added the new SafeMode feature which is
a smart way to bypass AV. There is definitely a lot to write about when it comes to this
ransomware, and unfortunately, I could not cover it all in a single post. If you have any
questions or comments about this analysis, feel free to reach out to me on my Twitter or
LinkedIn.

Thanks for reading and happy reversing!

IOCs

SHA-256: 12d8bfa1aeb557c146b98f069f3456cc8392863a2f4ad938722cd7ca1a773b39

Registry Keys:

SOFTWARE\BlackLivesMatter\54k
SOFTWARE\BlackLivesMatter\Krdfp
SOFTWARE\BlackLivesMatter\a0w0
SOFTWARE\BlackLivesMatter\hq0G6X
SOFTWARE\BlackLivesMatter\XFx41h1r
SOFTWARE\BlackLivesMatter\x4WHjRs

Mutexes:

Global\F69C27FF-AB15-CCAA-A2D6-7F7ADA90E7E3

HTTP Headers:

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/84.0.4147.125 Safari/537.36
Content-Type: application/octet-stream
Connection: close

URL Regex:

https:\/\/[^\/]+\/(wp-
content|static|content|include|uploads|news|data|admin)\/(images|pictures|image|temp|t
[a-z]{2}){1,10}\.(jpg|png|gif)

ATT&CK Methodologies

ATT&CK ID ATT&CK Technique

T1098 Account Manipulation

T1547 Boot or Logon Autostart Execution

T1548 Abuse Elevation Control Mechanism

T1134 Access Token Manipulation

https://twitter.com/jacob_pimental
https://www.linkedin.com/in/jacobpimental/
https://attack.mitre.org/techniques/T1098/
https://attack.mitre.org/techniques/T1547/
https://attack.mitre.org/techniques/T1548/
https://attack.mitre.org/techniques/T1134/

23/23

ATT&CK ID ATT&CK Technique

T1112 Modify Registry

T1027 Obfuscated Files or Information

T1083 File and Directory Discovery

T1135 Network Share Discovery

T1486 Data Encrypted for Impact

T1489 Service Stop

Malware Analysis, Sodinokibi, Ransomware, Cutter, Automation

More Content Like This:

https://attack.mitre.org/techniques/T1112/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1135/
https://attack.mitre.org/techniques/T1486/
https://attack.mitre.org/techniques/T1489/

