
1/8

Alex Teixeira April 30, 2021

Detecting network beacons via KQL using simple spread
stats functions

ateixei.medium.com/detecting-network-beacons-via-kql-using-simple-spread-stats-functions-c2f031b0736b

Alex Teixeira

Apr 30, 2021

·

8 min read

What’s a network beacon? Why is that important? Well, let’s start with a quick definition
before jumping into detection design and KQL code.

As Google suggests, beacon is a visible object serving as a signal or warning. That’s what
we, as detection engineers, are looking for when deploying a new detection or analytic rule.

In our context, beacon is referred to as traffic leaving the network at somewhat regular
intervals with the purpose of communicating with a command-and-control server (C2).

This method can be used in a variety of ways: to ‘heartbeat’, to request new commands, or
to download updates by interacting with the C2 server. It also works over any protocol,
mostly leveraging outbound allowed network connections via the web proxy or firewall
(HTTP/S, DNS, etc).

What data or log telemetry to use?

https://ateixei.medium.com/detecting-network-beacons-via-kql-using-simple-spread-stats-functions-c2f031b0736b
https://ateixei.medium.com/?source=post_page-----c2f031b0736b--------------------------------
https://ateixei.medium.com/?source=post_page-----c2f031b0736b--------------------------------

2/8

While there are many methods to tackle the challenge of detecting beaconing traffic, among
the target data sources to use, web proxy, firewall and DNS log sources are figuring as top
candidates.

Moreover, any data source providing time series telemetry including the origin and target of
the network connection is also a potential candidate. Examples:

Host FW such as Windows Firewall (/ eventlogs)
EDR (some provide all external network connections)

In this example, we are going to pick Palo Alto events that are logged to the
CommonSecurityLog table in Log Analytics/Azure Sentinel. The events look like the
following (base query):

As it applies to many other NG FWs or UTMs, the user account is also logged and that
makes a big difference here.

Regardless of the (dynamic) IP address assigned to an affected host, tracking the origin via
the user account eases the process of doing Hostname lookups while also making it faster to
track the affected user.

Crafting a fully parameterized query

KQL (Kusto Query Language) allows us to define constants and variables to be used
throughout the code, just like a procedural programming language does.

https://knowledgebase.paloaltonetworks.com/KCSArticleDetail?id=kA10g000000ClYuCAK

3/8

That’s done via the statement:

Click to view
Here’s where we define all the parameters, from the query’s time period, to beacon’s
attributes, including which IP address ranges to ignore.

Some of those key parameters are explained further below and you can find all descriptions
in the query as comments.

The Beacons table

This dynamic table holds a list of beacon candidates. The CommonSecurityLog table is used
to store events from multiple products and vendors, therefore we need to narrow the query
down to our scope.

In this case, we look for related events coming from vendor which also provides a valid
value:

let Beacons = materialize(CommonSecurityLog| where TimeGenerated between
(start..end)| where DeviceVendor has "palo alto" and Activity =~ "traffic" and
isnotempty(SourceUserName)| where not(ipv4_is_private(DestinationIP))| evaluate
ipv4_lookup(ExcludedNets, DestinationIP, ExcludedNet, return_unmatched = true)| where
isempty(ExcludedNet)| project TimeGenerated, SourceUserName, DestinationIP,
DestinationPort, DeviceAction, ReceivedBytes, Protocol, SentBytes

After excluding unwanted traffic, we simply project the relevant fields, speeding up the
process. Another best practice we are leveraging here is the use of special function, which
enables results caching.

Calculating stats per beacon instance

First of all, there are probably many other ways to do that. Happy to discuss other ideas and
how we could improve it.

I’ve tried using the operator which enables sub-query over split-by results but unfortunately
given the high number of potential distinct tuples (cardinality), the max partitions limit (64) is
easily reached.

4/8

In Splunk (SPL), many commands do support that approach, including eventstats and
streamstats, which is what I leverage here.

In Kusto (KQL), there’s a super awesome list of resources provided by Ashwin Patil (Senior
Program Manager @Microsoft MSTIC) that covers an example of Network Beaconing
detection but using a different, much simpler approach:

ashwin-patil/blue-teaming-with-kql

Repository with Sample KQL Query examples for Threat Hunting This folder
has various KQL examples related to Threat…

github.com

The way to calculate those stats is basically by sorting the events by time and ‘tuple’ and
then using Windows Functions to reference fields from previous records matching the current
tuple at hand.

What’s in a tuple?

In this context, it’s basically what identifies a distinct instance of a beacon candidate. That’s
defined in this example by the following line:

| extend tuple = strcat(SourceUserName, '->', Protocol, ' ', DestinationIP, ':',
DestinationPort, ' (', DeviceAction, ')')

That means tuple holds both the origin (username) and target (destination IP + Port) related
to a potential beacon. To make it even stricter, we also add the traffic outcome (allow/deny)
to the tuple identifier.

The delta and variance

The key detection design here, besides scoping on the important fields and other
enrichments (covered later) is on how to calculate the difference in time or delta between two
consecutive requests matching the same tuple, and later measuring how dispersed those
values are.

That’s done by referencing the TimeGenerated from previous/current record and later
calculating the standard deviation of those values split by tuple.

And here’s how we’ve done it with function:

| extend TimeGenerated_prev=prev(TimeGenerated)| extend diff=iff(tuple ==
prev(tuple), datetime_diff('second', TimeGenerated, TimeGenerated_prev), 9999)|
summarize EventCount=count(), stdevif(diff, diff != 9999), stdev(ReceivedBytes),
arg_max(TimeGenerated, *) by tuple, Bin=bin(TimeGenerated, bin_size)

https://github.com/inodee/threathunting-spl/blob/master/hunt-queries/Detecting_Beaconing.md
https://twitter.com/ashwinpatil
https://twitter.com/Microsoft
https://github.com/ashwin-patil/blue-teaming-with-kql#network-beaconing
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/query/windowsfunctions

5/8

Instead of standard deviation, we could have used variance but with the former, it’s easier to
describe what happened, more below.

As you can see, the first parameter is consumed here: . That is defined earlier in the query
via let statement and represents the size of each window for collecting deltas from
consecutive similar records.

let bin_size = 1h;

The idea is of course to enable easier code customization.

The last bit on beacon candidates is to filter on relevant flows only, and that’s done by using
the operator in combination with other parameters which behave as thresholds.

| where EventCount >= min_events_per_bin and stdevif_diff <= max_delta_deviation and
stdev_ReceivedBytes <= max_receive_bytes_deviation);

The most important here is the following:

let max_delta_deviation = 15; // delta = diff, in secs, between consecutive similar
requests, this = max stdev(delta)

Roughly speaking, setting that value to 15 and assuming the times are in seconds, we are
selecting network flows in which delta values observed are within 15s from their mean.

That enables us to tackle some jitter componentsand other simple evasion techniques
available from some C2 tools and attack frameworks.

The final part o the candidates table is shown below:

Click to enlarge

Increasing Fidelity

Here’s a list of additional enrichments and behavioral checks done in order to increase
detection efficacy, all made possible via ops:

“Are there multiple accounts matching the same destination IP address?” If there are
too many, that’s a Set this via ;
“Is the destination IP matching a Threat Intel feed?” In this example, we leverage the
table. In case you want to alert only when there are matches, set to 1;
“Is the beaconing traffic consistent?” Despite suggesting to detect beacons within 1h,
over how many hours is the traffic observed? Check the parameter for details on that
important setting;

6/8

In a common C2 scenario, data inflow (received bytes) tends to be fairly stable and
consistent, check how is used.

The output

Below is an expanded record, including a Description of the alert:

The query (rule template)

The full KQL code or rule template is available below and can easily be adapted to any other
data source — providing it contains the necessary fields.

You can also use this template to create a baseline, which enables detection of new
beacons as they happen by comparing their signature (tuple) to previously tracked ones.

Please feel free to reach out to exchange ideas on how to use and improve this method and
happy hunting!

7/8

// Excluded networks, RFC 1918 are excluded via ipv4_is_private()let ExcludedNets =
datatable(ExcludedNet: string) ['200.1.0.0/16', // Pub range 1
'200.2.0.0/16' // Pub range 2];// Query schedule parameterslet time_offset =
2h; // how far back the needle should end?let time_window = 8h;
// how much time to look back from there?let end = ago(time_offset); // latest
(TimeGenerated)let start = end - time_window; // earliest (TimeGenerated)// Beacon
detection parameters let threat_match_only = 0; // set to 1 to alert
only when there's also a match from ThreatIntelligenceIndicatorlet bin_size = 1h;
// what's the size of each window for collecting deltas of consecutive similar
flowslet min_bins = 8; // how many distinct hours (within
time_window) needed to consider it a consistent beacon flowlet min_events_per_bin =
60; // how many events (minimum) needed within each bin (bin_size) to
consider it a beaconlet max_delta_deviation = 15; // delta = diff, in secs,
between consecutive similar requests, this = max stdev(delta)let max_victims = 2;
// how many max distinct SourceUserName values should be seen linked to an external
IP addresslet max_receive_bytes_deviation = 1024; // max deviation on
stdev(ReceivedBytes), assuming the bytes received should not change muchlet Beacons =
materialize(CommonSecurityLog | where TimeGenerated between (start..end) |
where DeviceVendor has "palo alto" and Activity =~ "traffic" and
isnotempty(SourceUserName) | where not(ipv4_is_private(DestinationIP)) |
evaluate ipv4_lookup(ExcludedNets, DestinationIP, ExcludedNet, return_unmatched =
true) | where isempty(ExcludedNet) | project TimeGenerated, SourceUserName,
DestinationIP, DestinationPort, DeviceAction, ReceivedBytes, Protocol, SentBytes |
extend tuple = strcat(SourceUserName, '->', Protocol, ' ', DestinationIP, ':',
DestinationPort, ' (', DeviceAction, ')') | extend
TimeGenerated=bin(TimeGenerated, 1s) // this and next keep only one event per tuple -
in case the request is made in the same second | distinct TimeGenerated,
SourceUserName, DestinationIP, DestinationPort, DeviceAction, ReceivedBytes,
Protocol, SentBytes, tuple | sort by tuple asc, TimeGenerated asc | extend
TimeGenerated_prev=prev(TimeGenerated) | extend diff=iff(tuple == prev(tuple),
datetime_diff('second', TimeGenerated, TimeGenerated_prev), 9999) | summarize
EventCount=count(), stdevif(diff, diff != 9999), stdev(ReceivedBytes),
StartTime=min(TimeGenerated), EndTime=arg_max(TimeGenerated, *) by tuple,
Bin=bin(TimeGenerated, bin_size) | where EventCount >= min_events_per_bin and
stdevif_diff <= max_delta_deviation and stdev_ReceivedBytes <=
max_receive_bytes_deviation);let InfrequentDestinationIPs = Beacons | summarize
VictimCount=dcount(SourceUserName) by DestinationIP | where VictimCount <=
max_victims;let ConsistentBeacons = Beacons | summarize BinCount=dcount(Bin) by
tuple | where BinCount >= min_bins;Beacons| lookup kind=inner
(InfrequentDestinationIPs) on DestinationIP| lookup kind=inner (ConsistentBeacons) on
tuple| join kind=leftouter (ThreatIntelligenceIndicator | where TimeGenerated >
ago(90d) and ConfidenceScore >= 75 | where isnull(KillChainReconnaissance) and
ConfidenceScore >= 30 and not(Description matches regex "(?i)(brute.*force)") |
extend DestinationIP = coalesce(NetworkDestinationIP, NetworkIP, NetworkSourceIP)
| where DestinationIP matches regex '[0-9]' | summarize
ConfidenceScore=max(ConfidenceScore), LastSeen=max(TimeGenerated) by DestinationIP,
ThreatDescription=Description, ThreatType | sort by LastSeen desc, ConfidenceScore
desc) on DestinationIP| where ConfidenceScore > 0 or 0 == threat_match_only|
summarize arg_min(StartTime, EndTime, stdevif_diff, VictimCount, EventCount,
stdev_ReceivedBytes, BinCount, Protocol, DestinationIP, DestinationPort,
DeviceAction, ThreatType, ConfidenceScore, ThreatDescription),
TotalEventCount=sum(EventCount), TotalBytesSent=sum(SentBytes),
TotalBytesReceived=sum(ReceivedBytes) by tuple| sort by stdevif_diff asc,
stdev_ReceivedBytes asc, EventCount desc| extend Description=strcat('Between ',
StartTime, ' and ', EndTime, ', potential beaconing traffic matching [', tuple, ']

8/8

has generated ', EventCount, ' events in ', bin_size, ' with ~',
round(stdevif_diff,1), 's deviation among beacons and ', TotalEventCount, ' total
events observed in the entire window checked.')

