
1/8

April 28, 2021

VB6 P-Code Obfuscation
decoded.avast.io/davidzimmer/vb6-p-code-obfuscation/

by David ZimmerApril 28, 20216 min read

Code obfuscation is one of the cornerstones of malware. The harder code is to analyze the
longer attackers can fly below the radar and hide the full capabilities of their creations.

Code obfuscation techniques are very old and take many many forms from source code
modifications, opcode manipulations, packer layers, virtual machines and more.

Obfuscations are common amongst native code, script languages, .NET IL , and Java
byte code .

As a defender, it’s important to be able to recognize these types of tricks, and have tools
that are capable of dealing with them. Understanding the capabilities of the medium is
paramount to determine what is junk, what is code, and what may simply be a tool error in
data display.

On the attackers side, in order to develop a code obfuscation there are certain prerequisites
required. The attacker needs tooling and documentation that allows them to craft and debug
the complex code flow.

For binary implementations such as native code or IL , this would involve specs of the
target file format, documentation on the opcode instruction set, disassemblers, assemblers,
and a capable debugger.

One of the code formats that has not seen common obfuscation has been the Visual
Basic 6 P-Code byte streams. This is a proprietary opcode set, in a complex file format,
with limited tooling available to work with it.

In the course of exploring this instruction set certain questions arose:

Can VB6 P-Code be obsfuscated at the byte stream layer?
Has this occurred in samples in the wild?

https://decoded.avast.io/davidzimmer/vb6-p-code-obfuscation/
https://decoded.avast.io/author/davidzimmer/

2/8

What would this look like?
Do we have tooling capable of handling it?

Background

Before we continue, we will briefly discuss the VB6 P-Code format and the tools
available for working with it.

VB6 P-Code is a proprietary, variable length, binary instruction set that is interpreted by
the VB6 Virtual Machine (msvbvm60.dll).

In terms of documentation, Microsoft has never published details of the VB6 file format
or opcode instruction set. The opcode handler names were gathered by reversers from the
debug symbols leaked with only a handful of runtimes.

At one time there was a reversing community, vb-decompiler.theautomaters.com, which
was dedicated to the VB6 file format and P-Code instruction set. Mirrors of this message
board are still available today [1].

On the topic of tooling the main disassemblers are p32Disasm , VB-Decompiler , Semi-
Vbdecompiler and the WKTVBDE P-Code debugger.

Of these only Semi-Vbdecompiler shows you the full argument byte stream, the rest display
only the opcode byte. While several private P-Code debuggers exist, WKTVBDE is the only
public tool with debugging capabilities at the P-Code level.

In terms of opcode meanings. This is still widely undocumented at this point. Beyond
intuition from their names you would really have to compile your own programs from source,
disassemble them, disassemble the opcode handlers and debug both the native runtime
and P-Code to get a firm grasp of whats going on.

As you can glimpse, there is a great deal of information required to make sense of P-Code
disassembly and it is still a pretty dark art for most reversers.

Do VB6 obfuscators exist?

While doing research for this series of blog posts we started with an initial sample set of
25,000 P-Code binaries which we analyzed using various metrics.

Common tricks VB6 malware uses to obfuscate their intent include:

junk code insertion at source level
inclusion of large bodies of open source code to bulk up binary
randomized internal object and method names

mostly commonly done at pre-compilation stage
some tools work post compilation.

3/8

all manner of encoded strings and data hiding
native code blobs launched with various tricks such as CallWindowProc

To date, we have not yet documented P-Code level manipulations in the wild.

Due to the complexity of the vector, P-Code obsfuscations could have easily gone
undetected to date which made it an interesting area to research. Hunting for samples will
continue.

Can VB P-Code even be obfuscated and what would that look like?

In the course of research, this was a natural question to arise. We also wanted to make
sure we had tooling which could handle it.

Consider the following VB6 source:

The default P-Code compilation is as follows:

4/8

 An obsfuscated sample may look like the following:

5/8

From the above we see multiple opcode obfuscation tricks commonly seen in native code.

It has been verified that this code runs fine and does not cause any problems with the
runtime. This mutated file has been made available on Virustotal in order for vendors to
test the capabilities of their tooling [2].

To single out some of the tricks:

Jump over junk:

6/8

 Jumping into argument bytes:

At runtime what executes is:

Do nothing sequences:

 Invalid sequences which may trigger fatal errors in disassembly tools:

7/8

Detection

The easiest markers of P-Code obfuscation are:

 jumps into the middle of other instructions
 unmatched for/next opcodes counts
 invalid/undefined opcodes
 unnatural opcode sequences not produced by the compiler
 errors in argument resolution from randomized data

Some junk sequences such as Not Not can show up normally depending on how a
routine was coded.

This level of detection will require a competent, error-free, disassembly engine that is aware
of the full structures within the VB6 file format.

Conclusion

Code obfuscation is a fact of life for malware analysts. The more common and well
documented the file format, the more likely that obfuscation tools are wide spread in the
wild.

This reasoning is likely why complex formats such as .NET and Java had many public
obfuscators early on.

This research proves that VB6 P-Code obfuscation is equally possible and gives us the
opportunity to make sure our tools are capable of handling it before being required in a time
constrained incident response.

The techniques explored here also grant us the insight to hunt for advanced threats which
may have been already using this technique and had flown under the radar for years.

We encourage researchers to examine the mutated sample [2] and make sure that their
frameworks can handle it without error.

8/8

References

[1] vb-decompiler.theautomaters.com mirror
 http://sandsprite.com/vb-reversing/vb-decompiler/

[2] Mutated P-Code sample SHA256 and VirusTotal link
 a109303d938c0dc6caa8cd8202e93dc73a7ca0ea6d4f3143d0e851cd39811261

Tagged ashidding, malware, obfuscation, P-Code, Research, series, VB

http://sandsprite.com/vb-reversing/vb-decompiler/
https://www.virustotal.com/gui/file/a109303d938c0dc6caa8cd8202e93dc73a7ca0ea6d4f3143d0e851cd39811261/details
https://decoded.avast.io/tag/hidding/
https://decoded.avast.io/tag/malware/
https://decoded.avast.io/tag/obfuscation/
https://decoded.avast.io/tag/p-code/
https://decoded.avast.io/tag/research/
https://decoded.avast.io/tag/series/
https://decoded.avast.io/tag/vb/

