RedLine Stealer Masquerades as Telegram Installer

M blog.minerva-labs.com/redline-stealer-masquerades-as-telegram-installer

Minerva Labs Blog

News & Reports

o Tweet

1/5

https://blog.minerva-labs.com/redline-stealer-masquerades-as-telegram-installer
https://blog.minerva-labs.com/redline-stealer-masquerades-as-telegram-installer
https://twitter.com/share

Stealers are pieces of malicious code written with a hit and run mentality - their main purpose
is to find anything of value on an infected device and exfiltrate it back to its operator. The
common infection method of these nefarious viruses is either as a second stage payload or
by masquerading_as legitimate software. Redline Stealer is one such stealer which is
commonly used by attackers to harvest credentials from unsuspecting users. The .Net based
malware has recently been disguised as an installer of the popular secure messaging app,
Telegram. In this blog we will unpack RedLine Stealer and show the evasive techniques it
uses to bypass security products.

The Unpacking Process:

Like Most .Net malware, the fake setup file is packed and highly obfuscated. Using Detect-It-
Easy, no known packer is identified, which means the unpacking should be done manually.

Detect-It-Easy result:

—]
| B Detect It Easy v3.00 - O x|

File name
C: Users Mark Desktopfkaka Telegraminstaler exe

Fie type Entry point Base address

PE32 = 0042463 Disasm 00400000 Memory map
- : Hash
| [e— A | (T
Import REsouross . MET | Overlay f—

Sections TimeDateStamp SizeOfimac ge Resouroes
Enftropy
Do03 > 2095-10-02 14:55:24 00104000 Marsfest Version
%
Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE 32 1385

installer Mullsoft Scriptable Install Systemi(3.04)[-]
library NET({w4.0.30319)[-]
linker Microsoft Linker(43.0)[GUIZ2 signed]

Signatures

After decompiling the malware, we can see that most of the variable and function names
were scrambled, making it harder to understand the code. In order to induce a truly
miserable experience for any reverse engineering effort, the packer developer also decided
to introduce control flow flattening into the packer. Control flow flattening takes the normal
program control flow and modifies it using numerous if/while statements.

A mild example of the control flow obfuscation:

2/5

https://blog.minerva-labs.com/hancitor-malware?hsLang=en-us
https://blog.minerva-labs.com/preventing-fake-software-installers-with-minerva-labs?hsLang=en-us
https://github.com/horsicq/Detect-It-Easy

(num == 3)

£

Application.

num

{num

;_ |_ |:: 1
num

{num

A pp 1
num

{num

num

(num != 4};

Packers usually employ stenography or encryption in their arsenal, this sample successfully
uses both. In its resources directory lies what looks like malformed image files, but actually
contain the malicious payload, which will be decoded and decrypted by a custom algorithm.

The deobfuscated image decoding function:

> color_list = T >();
Color pixel;
for (i i=08; 1< img.Height; i++)
{
j = 8; j < img.Width; j++)

pixel img.GetPixel(j, 1i);
color_list.Add(pixel.R);
color list.Add(f 21.6);
color list.Add(pixel.B);

erter.ToInt32(color_list.GetRange(©, 4).ToArray(), 8);
= color list.GetRange(4, size).ToArray();

As can be seen in the graphic above, the payloads data is hidden inside the RGB values of
the image pixels. The first four pixels contain the size of meaningful data inside the image,
and the others are the actual data.

After decoding the image, the packer uses RC2 stream cipher to decipher the payload, a file
named “Lightning.dll” is revealed and loaded into the memory. From the in-memory DLL file,
an object named “GameCore.Core” is instantiated and in it a function named “Game”

3/5

receives yet another image file from the binary’s resources directory together with a
hardcoded key. The “Game” function decrypts the final payload and will later use process
injection to load the malware into the memory space of another process.

The RC2 decryption function (deobfuscated):

Finally, the actual payload is revealed, and to our luck, its entirely un-obfuscated, allowing us
to see its C&C address in cleartext:

Minerva prevents RedLine Stealer with our Memory Injection prevention module, thus
protecting the user’s sensitive data:

I0Cs:

[7384] C:\Windows\explorer.exe
= Apr 3rd 2021 02:02 pa

2lagh72b8elbi0l98adB0 3B65383079245562729702844783a3c39%achabcdBe

[8112] C:\Program Files\Google\Chromel\Application\chrome.exe
r L n Apr 14th 2021 03:04 pm
2fa8h72b3e1b30f 98edBD fIB6538307924556e729F0284478a3c39%echabcdBe

) [11788] C:\WUsers\""\Downloads\Telegraminstaller.exe
,\ : "C:\Users****\Downloads\Telegraminstaller.exe™
n Apr l4th 2021 02:21 pm
2fafh72b8elbi0f98edB0f IB6538307924556e729002844708a3c39%echbabedBe

4/5

https://minerva-labs.com/

Hashes:

D516FA60F75B21B424D2D8DEB6CCE51A6620A603AA2A69E42E59DEA1961F11B9
(Telegraminstaller)

d82ad08ebf2c6fac951aaabd96bdb481aadeab3cd725ea6358b39b1045789a25 (Unpacked
RedLine Stealer)

2ff5de07a6¢72fdc54ed5fh40e6bd3726bd7e272384¢c892f8950¢c760cae65948 (Lightning.dll)
DNS Names:
dilendekal[.]xyz:80

« Previous Post
Next Post »

Want to see how Minerva blocks Redline Stealer and other Malware?
Just book a quick demo

5/5

https://blog.minerva-labs.com/hancitor-malware?hsLang=en-us
https://blog.minerva-labs.com/rigging-a-windows-installation?hsLang=en-us

