
1/9

April 26, 2021

Linux Servers Hijacked to Implant SSH Backdoor
blogs.juniper.net/en-us/threat-research/linux-servers-hijacked-to-implant-ssh-backdoor

On February 1st, Juniper Threat Labs observed an attack that attempted to inject malicious
code into Secure Shell (SSH) servers on Linux. The attack begins with an exploit against the
Control Web Panel (CWP, formerly known as Centos Web Panel) server administration web
application, injects code via LD_PRELOAD, and uses a custom, encrypted binary command-
and-control protocol to exfiltrate credentials and machine capabilities. As of this writing, the
malware command-and-control server is still active.

Figure 1. Attack chain

Exploit

https://blogs.juniper.net/en-us/threat-research/linux-servers-hijacked-to-implant-ssh-backdoor
https://en.wikipedia.org/wiki/Secure_Shell_Protocol
https://control-webpanel.com/
https://jvns.ca/blog/2014/11/27/ld-preload-is-super-fun-and-easy/

2/9

The attack starts with a command injection against Control Web Panel:

Figure 2. HTTP request from initial attack
CWP has been plagued by security issues, including 37 0-day vulnerabilities disclosed by
the Zero Day Initiative in 2020. Among these is a failure to sanitize the service_restart
parameter, which follows a similar set of vulnerabilities in 2018.

Because of the number of vulnerabilities in CWP, the intentional encryption and obfuscation
of their source code ostensibly for security reasons, and CWP’s failure to respond to ZDI’s
recent disclosures, it is difficult to ascertain which versions of CWP are or remain vulnerable
to this attack. In 2020, there were over 215k CWP installations accessible from the open
internet, so the number of computers compromised in this campaign may be substantial.

Installation

On successful exploitation of the web panel, the following commands are executed.

Figure 3. Commands executed via CWP exploit
First, the “sshins” installer binary is retrieved, executed, and deleted. Then the CWP logs are
wiped of any mention of sshins and the shell history is cleared.

The sshins binary is a 64-bit Linux ELF executable. It is packed with UPX and the packed file
has garbage bytes appended to it in an attempt to hinder automated unpacking. It does 3
things:

1. Drops a Linux shared library to an architecture-specific location (in this case,
/lib64/libs.so).

https://www.zerodayinitiative.com/advisories/published/2020/
https://www.zerodayinitiative.com/advisories/ZDI-20-758/
https://www.exploit-db.com/exploits/45610
http://forum.centos-webpanel.com/index.php?topic=4130.0
https://zero.bs/sb-2022-multiple-rce-and-sqli-in-centos-web-panel-cwp.html
https://upx.github.io/

3/9

1. Writes the name of the dropped file to a text file at /etc/ld.so.preload

1. Restarts the OpenSSH service.

Figure 4. Console output from the installer

Hijacking the OpenSSH server process

Injecting the malicious code

The file /etc/ld.so.preload contains a directive to the dynamic linker telling it to load the
specified shared library first, and to give precedence to the exported functions from the ld-
preloaded library. Because the malicious libs.so library exports its own version of the bind()
function, applications will use the backdoored version of this function instead of the standard
implementation from Linux system libraries.

When the Open-SSH server daemon (sshd) restarts, libs.so will first execute an initialization
function as the library is loaded, and then has the ability to inject its own code whenever
sshd calls bind(). The sshd server processes use this hook in order to periodically beacon to
the command-and-control (C2) server and to exfiltrate data, including a listing of system
information such as CPU and OS details, amount of RAM, available disk space, and
OpenSSH configuration:

https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man2/bind.2.html

4/9

Figure 5. Strings from the disassembled library indicating data to be exfiltrated.
In addition to the continuously-running server processes, sshd forks() a pair of new
processes to handle each login connection. From these session-specific processes, the
malicious bind() function launches an additional temporary sshd process that exfiltrates the
incoming user’s login credentials.

Figure 6. User credentials and computer identifier exfiltrated by the malware.

C2 communication

The C2 communication involves the server 176[.]111.174.26 on port 443. Port 443 is typically
used for HTTPS but here the traffic is raw TCP, hiding in plain sight on a common port. The
server has a Russian IP address that is associated with a Bulgarian webhosting provider.

https://man7.org/linux/man-pages/man2/fork.2.html
http://bash.org/?244321

5/9

The client initiates communication with a simple directive, padded out to 8 bytes. (As we’ll
discuss below, the malware uses an encryption algorithm with an 8-byte block size, but even
unencrypted messages are always a multiple of 8 in length.) Following is the first packet sent
to the server after the TCP handshake, with the 8-byte message highlighted.

Figure 7. Initial TCP packet to C2 server, with payload highlighted.
The C2 server replies with the following message (TCP packet omitted for clarity):

Figure 8. Server response.
The response consists of a header with the payload length (24 bytes), a command (0x0201),
and the CRC32 checksum of the payload. The 24-byte payload is used to encrypt the
exfiltrated data that is then sent back to the C2 server, as we’ll see in the next section.

Cryptography

Data sent back to the C2 server is encrypted using a variant of the Blowfish encryption
algorithm that was used to secure game assets on the Nintendo and, more recently,
incorporated into a reverse-engineering challenge from Kaspersky Lab. Below is publicly
available encryption code that was reverse-engineered from the DS:

https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://www.schneier.com/academic/blowfish/
https://www.akkit.org/info/gbatek.htm#dsencryptionbygamecodeidcodekey1
https://sudonull.com/post/7577-We-solve-crackme-from-Kaspersky-Lab

6/9

Figure 9. Reverse-engineered Nintendo DS encryption routine, from
https://github.com/RocketRobz/NTR_Launcher_3D/blob/master/twlnand-
side/BootLoader/source/encryption.c.
Then we have the decompiled encryption routine from the preloaded library:

7/9

Figure 10. Corresponding encryption routine from the malware.
Note, in particular, the use of the constants 0x12, 0x112, 0x212, and 0x312, which differs
from the standard Blowfish implementation. (The decompiled code is functionally identical to
the Gameboy routine, differing only due to loop-unrolling and other compiler optimizations.)

While the underlying encryption routine is taken directly from publicly available code, the
malware authors incorporate some additional tricks to thwart analysis and decryption. Both
Blowfish and the Nintendo variant require an S-box lookup table that remains constant
throughout the encryption and decryption processes. But unlike the Nintendo
implementation, the malware mutates its S-box prior to use. First, as the table is loaded from
program memory, it is subject to several static transformations that make it harder to
correlate the stored table with the one used for encryption. Then the encryption algorithm is
run against portions of its own S-box, transforming it at each step. This process is initialized
using part of the 24-byte payload received from the C2 server.

Once the table has been fixed, the actual encryption begins. The malware improves upon the
Nintendo implementation by adding cipher-block chaining (CBC). With CBC, each 8-byte
plaintext block is first XORed against the encrypted output from the previous block, and then
that value is encrypted. The result is a chain where the encrypted value of each block
depends on the value of the previous block. To start this process, the first block is XORed
against an initialization vector (IV). Here, the IV is itself the XOR of the first and last 8 bytes
of the payload from the C2 server.

https://en.wikipedia.org/wiki/Loop_unrolling
https://github.com/RocketRobz/NTR_Launcher_3D/blob/master/twlnand-side/BootLoader/source/encryption.c
https://en.wikipedia.org/wiki/S-box
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_block_chaining_(CBC)
https://en.wikipedia.org/wiki/Initialization_vector

8/9

Without CBC, a symmetric encryption algorithm is vulnerable to frequency analysis when the
block size is small as well as other attacks in the general case. It appears that the authors of
this malware went to a surprising amount of trouble to strengthen the Nintendo DS
encryption, in stark contrast to the noisy behavior of their sshins installer.

Conclusion

Without allowing our compromised test machine to remain connected to the internet and be
used for malicious purposes, it’s difficult to ascertain the exact motivations of the authors. But
because the malware catalogs detailed system information and credentials but does not
immediately begin mining cryptocurrency or amplifying the attack by attempting to spread
further, we suspect that access to the compromised machines will be sold or rented as part
of a botnet.

Detection

The malware and C2 server used in this campaign are detected and blocked by Juniper ATP
and Juniper ATP Cloud, and the malicious traffic is detected by the IDP rule
SSL:VULN:CWP-LINUX-C2-BACKDOR.

Figure 11. Detection on Juniper ATP Cloud

IOCs

176[.]111.174.26 C2 server

ab9cc4ee82aa6f57ba2a113aab905c33e278c969399db4188d0ea5942ad3bb7d sshins (as
delivered)

936ca431d17d738beab9735a3d6e658ff29f8337f52353fd60e286c94dd2c06b sshins
(unpacked by UPX, after deleting appended data)

c8df513e9e4848e35af5246a2ba797540b68a9379a1df17e34550cb0258960e8 sshins
(manually unpacked)

f51e83a53dd3a364709b1d0b93489f7a114b529268c3bab726ed288eba036bca
/lib64/libs.so

948b6c5fc1ba74ed57388241d1e8656e0ca082d10ff834c628d01c592764926d /lib64/libs.so

56ce53b6c32beacd8864258c81bf276304a8da20bc0011f5e09d37b95a3e5def /lib64/libs.so

https://en.wikipedia.org/wiki/Frequency_analysis
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#ECB

9/9

b5e29bdb105ae0e76d75c3d3959954c4f6610cd39aaa8f3aa852dd624e662480
/etc/ld.so.preload

