Anatomy of Cobalt Strike’s DLL Stager

L blog.nviso.eu/2021/04/26/anatomy-of-cobalt-strike-dll-stagers/

April 26, 2021

NVISO recently monitored a targeted campaign against one of its customers in the financial
sector. The attempt was spotted at its earliest stage following an employee’s report
concerning a suspicious email. While no harm was done, we commonly identify any related
indicators to ensure additional monitoring of the actor.

The reported email was an application for one of the company’s public job offers and
attempted to deliver a malicious document. What caught our attention, besides leveraging an
actual job offer, was the presence of execution-guardrails in the malicious document.
Analysis of the document uncovered the intention to persist a Cobalt Strike stager through
Component Object Model Hijacking.

During my free time | enjoy analyzing samples NVISO spots in-the-wild, and hence further
dissected the Cobalt Strike DLL payload. This blog post will cover the payload’s anatomy,
design choices and highlight ways to reduce both log footprint and time-to-shellcode.

Execution Flow Analysis

To understand how the malicious code works we have to analyze its behavior from start to
end. In this section, we will cover the following flows:

1/25

https://blog.nviso.eu/2021/04/26/anatomy-of-cobalt-strike-dll-stagers/
https://attack.mitre.org/techniques/T1480/
https://attack.mitre.org/techniques/T1546/015/

1. The initial execution through D11Main .
2. The sending of encrypted shellcode into a named pipe by writeBufferToPipe .
3. The pipe reading, shellcode decryption and execution through PipeDecryptExec .

As previously mentioned, the malicious document’s DLL payload was intended to be used as
a COM in-process server. With this knowledge, we can already expect some known entry
points to be exposed by the DLL.

@ Choose an entry point O X

Mame Address Ordinal

DllGetClassObject 000000006BAC169B
¥ DiIMain 000000006BAC165T
‘ﬂ DlIRegisterServer 000000006BAC1695
DilUnregisterServer

i TisCallback_0 000000006BAC 1890 List
I ThisCallback_1 000000006BAC1860
DIEntryPoint 000000006BACT1 3250 [main entry]

Line 8 of &

0K Cancel Search
of available entry points as displayed in IDA.
While technically the malicious execution can occur in any of the 8 functions, malicious code
commonly resides in the l D11Main lfunction given, besides TLS callbacks, it is the function
most likely to execute.

D11Main : An optional entry point into a dynamic-link library (DLL). When the system
starts or terminates a process or thread, it calls the entry-point function for each loaded
DLL using the first thread of the process. The system also calls the entry-point function
for a DLL when it is loaded or unloaded using the LoadLibrary and FreeLibrary
functions.

docs.microsoft.com/en-us/windows/win32/dlls/dlimain

Throughout the following analysis functions and variables have been renamed to reflect their
usage and improve clarity.

The pllmain Entry Point

As can be seen in the following capture, the D11Main function simply executes another
function by creating a new thread. This threaded function we named D11MainThread is
executed without any additional arguments being provided to it.

2/25

https://docs.microsoft.com/en-us/windows/win32/com/inprocserver32
https://www.hex-rays.com/
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#tls-callback-functions
https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain

Ll e =]

3 Exported entry 3. D1lMain

cs:hinstDLL, rcx
; lpParameter
inThread ; lpStartAddress
X ; dwstackSize
+1pThreadId], ; 1pThreadId
X 1pThreadAttributes
onFlags], ; dwCreationFlags

D11Main endp

Graphed disassembly of D11Main .
Analyzing the Dl1lMainThread function uncovers itis an additional wrapper towards what

we will discover is the malicious payload’s decryption and execution function (called
DecryptBufferAndExec in the capture).

3/25

D11MainThread proc near

sub =p, Disassembly of

mov
call
Xor
add
retn
D11MainThread endp

Dl11lMainThread .
By going one level deeper, we can see the start of the malicious logic. Analysts experienced
with Cobalt Strike will recognize the well-known MSSE-%d-server pattern.

4/25

DecryptBufferAndExec proc near

mov
Xor
mov
div
oy Disassembly of
mov

mow

mov

mov

mov

MoW "

lea , ; Buffer

Mo ickCount],

lea , PipeFormat

call sprintf_1@

xor 3 lpThreadAttributes

Xor

xor d dx ; dwstackSize

mow Backs) 1], 3 1pThreadId

lea E peThread ; lpStartAddress

mow ot], ; dwCreationFlags

call N

Xor

add 5

jmp Pip

DecryptBuffer

DecryptBufferAndExec .
A couple of things occur in the above code:

1. The sample starts by retrieving the tick count through GetTickCount and then divides
it by 0x26AA . While obtaining a tick count is often a time measurement, the next
operation solely uses the divided tick as a random number.

5/25

https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-gettickcount

2. The sample then proceeds to call a wrapper around an implementation of the
sprintf function. Its role is to format a string into the PipeName buffer. As can be

observed, the formatted string will be \\.\pipe\MSSE-%d-server where %d will be
the result computed in the previous division (e.g.: \\.\pipe\MSSE-1234-server).
This pipe’s format is a well-documented Cobalt Strike indicator of compromise.

3. With the pipe’s name defined in a global variable, the malicious code creates a new
thread to run writeBufferToPipeThread . This function will be the next one we will
analyze.

4. Finally, while the new thread is running, the code jumps to the PipeDecryptExec
routine.

So far, we had a linear execution from our D11Main entry point until the
DecryptBufferAndexec function. We could graph the flow as follows:

. Dlinvtain
Diliviain ecryptBufferAndExe
[CreateThread Thread call W %
J.t.all J.c:all \J; CreateThread l’p'p

) WriteBufferToFipe)
‘ [Thread] [PipeDecrypiExec]

‘ GefTickCount ‘ ‘ sprintt

Execution flow from D11Main until DecryptBufferAndExec .
As we can see, two threads are now going to run concurrently. Let’s focus ourselves on the
one writing into the pipe (WriteBufferToPipeThread) followed by its reading counterpart
(PipeDecryptExec) afterwards.

The WwriteBufferToPipe Thread

The thread writing into the generated pipe is launched from DecryptBufferAndExec
without any additional arguments. By entering into the writeBufferToPipeThread
function, we can observe it is a simple wrapper to writeBufferToPipe except it
furthermore passes the following arguments recovered from a global Payload variable
(pointed to by the pPayload pointer):

1. The size of the shellcode, stored at offset 0x4 .
2. A pointer to a buffer containing the encrypted shellcode, stored at offset 0x14 .

6/25

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/sprintf-sprintf-l-swprintf-swprintf-l-swprintf-l?view=msvc-160

FFlE=

WriteBufferToPipeThread proc near

sub 'SPy

mov » gword ptr cs:pPayload i

mov edx, [rocx+4] ; nNumberOfBytesToWrite Disassembly of
add C ; lpBuffer

call WriteBufferToPipe

XOr = eax

add

retn

WriteBufferToPipeThread endp

WriteBufferToPipeThread .

Within the writeBufferToPipe function we can notice the code starts by creating a new
pipe. The pipe’s name is recovered from the PipeName global variable which, if you
remember, was previously populated by the sprintf function. The code creates a single
instance, outbound pipe (PIPE_ACCESS_OUTBOUND) by calling CreateNamedPipeA and
then connects to it using the ConnectNamedPipe call.

7/25

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-connectnamedpipe

[l s =

push

push

push

push

sub

Mo . ; NMaxInstances

xor B0 : dwPi Mode

moy be :

mov

Mo

lea

mov 1p urityAttributes], ; lpSecurityAttributes
mov ; dwOpenMode

mow nD imeQut], ; nDefaultTimeOut
mow { ; nInBuffersi

Mo e], ; noutBuffersiz
call

Mo

lea

cmp

ja

; lpOverlapped
mowv ; hNamedPipe
lea =5

call

test
jz

Graphed disassembly of writeBufferToPipe ‘s named pipe creation.
If the connection was successful, the writeBufferToPipe function proceeds to loop the
wWriteFile call as long as there are bytes of the shellcode to be written into the pipe.

8/25

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile

; lpNumberOfBytesWritten
; NiumberOfBytesToWrite
; lpBuffer

£

; hFi
) ; lpOverlapped

; hobject

t write pipe

exit:

add

pop

pop

pop

pop

retn

WriteBufferToPipe endp

Graphed disassembly of writeBufferToPipe writing to the pipe.

One important detail worth noting is that once the shellcode is written into the pipe, the
previously opened handle to the pipe is closed through CloseHandle . This indicates that
the pipe’s sole purpose was to transfer the encrypted shellcode.

Once the writeBufferToPipe function is completed, the thread terminates. Overall the
execution flow was quite simple and can be graphed as follows:

9/25

https://docs.microsoft.com/en-us/windows/win32/api/handleapi/nf-handleapi-closehandle

WriteBufferToPipe) .
[Thread]TD[WriteBufferToPipe]
J_call J_u:.all J_u:.all J_call

[CreateNamedF‘ipeﬂ] [CnnnectNamedF'ipe] [WriteFile] [CloseHandle]

Execution flow from writeBufferToPipe .

The PipeDecryptExec Flow

As a quick refresher, the PipeDecryptExec flow was executed immediately after the
creation of the writeBufferToPipe thread. The first task performed by

PipeDecryptExec is to allocate a memory region to receive shellcode to be transmitted
through the named pipe. To do so, a call to malloc is performed with as argument the
shellcode size stored at offset 0x4 of the global Payload variable.

Once the buffer allocation is completed, the code sleeps for 1024 milliseconds (©x400) and
calls FillBufferFromPipe with both buffer location and buffer size as argument. Should
the FillBufferFromPipe call fail by returning FALSE (©), the code loops again to the
Sleep call and attempts the operation again until it succeeds. These Sleep calls and
loops are required as the multi-threaded sample has to wait for the shellcode being written
into the pipe.

Once the shellcode is written to the allocated buffer, PipeDecryptExec will finally launch
the decryption and execution through XorDecodeAndCreateThread .

10/25

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/malloc?view=msvc-160
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep

push

push

push

sub

: pPayload

' bx+4] ; Size
call
mov
mov

wait for pipe: ; dwMilliseconds
Mo CX,

call leep Graphed disassembly of
mowv ; NNumberOfBytesToRead

Mo Cx, ri2 ; lpBuffer

call FillBufferFromPipe
test : (

jz

Mo (b ; 1pBufferLength
lea 3 Xorkey

Mo ; lpBuffer

call indCr Thread

Xor
add

pap

pop

pop

retn
PipeDecry

PipeDecryptExec .

To transfer the encrypted shellcode from the pipe into the allocated buffer,
FillBufferFromPipe opens the pipe in read-only mode (GENERIC READ) using
CreateFileA . As was done for the pipe’s creation, the name is retrieved from the global
PipeName variable. If accessing the pipe fails, the function proceeds to return FALSE (0),

resulting in the above described Sleep and retry loop.

11/25

https://docs.microsoft.com/en-us/windows/win32/secauthz/generic-access-rights
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

[l a5

FillBufferFromPipe proc near

push

push

push

push

sub

Xor

mowv

mowv

MmO

mov

lea PipeName ; 1lpFileName
mowv +hTemplateFile], ; hTemplateFile

Mo dx, siredAccess

lea I]

Mo =p dwF] , ; dwFlagsAndAttributes
Mo on] , ; dwCreationDisposition

call i

Mo
Xor
cmp
jz

Disassembly of FillBufferFromPipe ‘s pipe access.

Once the pipe opened in read-only mode, the FillBufferFromPipe function proceeds to

copy over the shellcode until the allocated buffer is filled using ReadFile . Once the buffer

filled, the handle to the named pipe is closed through CloseHandle and
FillBufferFromPipe returns TRUE (1).

12/25

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile

; lpNumberOfBytesRead
; NNumberOfBytesToRead
; lpBuffer
; hFile
+dw i tion], ; lpOverlapped

; hObject Ml read suc
mov Mo
call ‘ seHand] add
mov = sub
jmp - jmp

add
pop
pop
pap
pop
retn
FillBufferFromPipe endp

Graphed disassembly of FillBufferFromPipe copying data.
Once FillBufferFromPipe has successfully completed, the named pipe has completed its
task and the encrypted shellcode has been moved from one memory region to another.

Back in the caller PipeDecryptExec function, once the FillBufferFromPipe call returns
TRUE the XorDecodeAndCreateThread function gets called with the following parameters:

1. The buffer containing the copied shellcode.

2. The length of the shellcode, stored at the global Payload variable’s offset 0x4 .

3. The symmetric XOR decryption key, stored at the global Payload variable’s offset
Ox8 .

13/25

Once invoked, the XorDecodeAndCreateThread function starts by allocating yet another

memory region using VirtualAlloc . The allocated region has read/write permissions

(PAGE_READWRITE) but is not executable. By not making a region writable and executable at

the same time, the sample possibly attempts to evade security solutions which only look for
PAGE EXECUTE READWRITE regions.

Once the region is allocated, the function loops over the shellcode buffer and decrypts each
byte using a simple xor operation into the newly allocated region.

index < len(buff)

Graphed disassembly of XorDecodeAndCreateThread .

When the decryption is complete, the GetModuleHandleAndGetProcAddressToArg

function is called. Its role is to place pointers to two valuable functions into memory:
GetModuleHandleA and GetProcAddress . These functions should enable the shellcode

to further resolve additional procedures without relying on them being imported. Before

14/25

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

storing these pointers, the GetModuleHandleAndGetProcAddressToArg function first
ensures a specific value is not FALSE (0). Surprisingly enough, this value stored in a
global variable (here called zero)is always FALSE , resulting in the pointers never being
stored.

ocAddressTodrg proc near

.t 3 o
m 2 M

etProcAddress0ffset,

Graphed disassembly

Mo
Mo
Mo
movsxd
mov

ModuleHandleAndGetProcAddressToArg endp

of GetModuleHandleAndGetProcAddressToArg .

Back in the caller function, XorDecodeAndCreateThread changes the shellcode’s memory
region to be executable (PAGE_EXECUTE READ) using VirtualProtect and finally creates
a new thread. This final thread starts at the JumpToParameter function which acts as a
simple wrapper to the shellcode, provided as argument.

15/25

https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

Disassembly of

JumpToParameter proc near
jmp rCX
JumpToParameter endp

JumpToParameter .

From here, the previously encrypted Cobalt Strike shellcode stager executes to resolve
WinINet procedures, download the final beacon and execute it. We will not cover the
shellcode’s analysis in this post as it would deserve a post of its own.

While this last flow contained more branches and logic, the overall graph remains quite

simple:
PipeDecryptExec
lcall call l'call

W

‘ malloc ‘ {FillBuﬁerFromF‘ipe} [XorDecodeAndCreateThread }

J-call call J.call J.call call CrealeThleadi
‘ CreateFileA ‘ ‘ ReadFile ‘ | CloseHandle ‘ ‘ VirutalAlloc | ‘ VirtualProtect ‘ [JumpToParameter}
Jmp

Shelicode

Execution flow from PipeDecryptExec until the shellcode.

Memory Flow Analysis

What was the most surprising throughout the above analysis was the presence of a well-
known named pipe. Pipes can be used as a defense evasion mechanism by decrypting the
shellcode at pipe exit or for inter-process communications; but in our case it merely acted as
a memcpy to move encrypted shellcode from the DLL into another buffer.

16/25

https://docs.microsoft.com/en-us/windows/win32/wininet/about-wininet
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/memcpy-wmemcpy?view=msvc-160

Thread 2 Thread 1

Named Pipe

Wirite Encrypted Shellcode Read Encrypted Shellcode

Malicious DLL

FillBufferFromPipe
~ Read Size
Shellcode Size
Read Size

Read

Shellcode XOR Key Size Wrzjl;orzgted
Read

T

5 . Encrypted Shellcode Shellcode
WriteBufferToPipe Read Encrypted Encrypted Shellcode malloc Bufer VirtuslAlioc Bufier
Shellcode
Read Encrypted Wirite Decoded
Shelicode Shellcode

XorDecodeAndCreateThread

Memory flow from encrypted shellcode until decryption.
So why would this overhead be implemented? As pointed out by another colleague, the
answer lays in the Artifact Kit, a Cobalt Strike dependency:

Cobalt Strike uses the Artifact Kit to generate its executables and DLLs. The Artifact Kit
is a source code framework to build executables and DLLs that evade some anti-virus
products. [...] One of the techniques [see: src-common/bypass-pipe.c inthe
Artifact Kit] generates executables and DLLs that serve shellcode to themselves over a
named pipe. If an anti-virus sandbox does not emulate named pipes, it will not find the
known bad shellcode.

cobaltstrike.com/help-artifact-kit

As we can see in the above diagram, the staging of the encrypted shellcode in the malloc
buffer generates a lot of overhead supposedly for evasion. These operations could be
avoided should XorDecodeAndCreateThread instead directly read from the initial encrypted
shellcode as outlined in the next diagram. Avoiding the usage of named pipes will
furthermore remove the need for looped Sleep calls as the data would be readily available.

17/25

https://www.cobaltstrike.com/help-artifact-kit

Thread 1

Malicious DLL

Read
Size
Shellcode Size

Read
Key

Shellcode XOR Key

Shellcode

VWrite Decoded VirtualAlloc Buffer

Ter o Shelicode

Encrypted Shellcode XorDecodeAndCreateThread i
Shellcode i

Improved memory flow from encrypted shellcode until decryption.
It seems we found a way to reduce the time-to-shellcode; but do popular anti-virus solutions
actually get tricked by the named pipe?

Patching the Execution Flow

To test that theory, let’s improve the malicious execution flow. For starters we could skip the
useless pipe-related calls and have the D11MainThread function call PipeDecryptExec
directly, bypassing pipe creation and writing. How the assembly-level patching is performed
is beyond this blog post’s scope as we are just interested in the flow’s abstraction.

D11MainThread proc near
sub

Disassembly of the patched

Mo
call
Xor
add
retn
D11MainThread endp

Dl11MainThread .

The PipeDecryptExec function will also require patching to skip malloc allocation, pipe
reading and ensure it provides XorDecodeAndCreateThread with the DLL’'s encrypted
shellcode instead of the now-nonexistent duplicated region.

18/25

PipeDecr

push

push

push

sub

mov cs :pPayload
mov b

—dd ; 1pBuffer Disassembly of the patched

mov DX ; lpBufferLength
lea ; X f

call AndCreateT

xor

add

pop
pop
pop
retn

PipeDecryptExec .
With our execution flow patched, we can furthermore zero-out any unused instructions
should these be used by security solutions as a detection base.

When the patches are applied, we end up with a linear and shorter path until shellcode
execution. The following graph focuses on this patched path and does not include the leaves
beneath writeBufferToPipeThread.

19/25

Patched call

[DiiMain
L ecryptBufferAndExe
m CreateThread . UITEEL /| "
J-call J.call J]CrealeThread lrm

_) WriteBufferToPipe)
‘ GefTickCount ‘ | s printf ‘ [Thread] [PipeDecryptExec]
Fatched cal
{ XorDecodeAndCreateThread] ‘ malloc | {FillBuﬁ'erFromF‘ipe J
lcall call GeaIeThleadl’ lcall call lcall
‘ VirutalAlloc ‘ ‘ VirtualProtect ‘ [JumpToParameter } ‘ CreateFileA | ‘ ReadFile ‘ ‘ CloseHandle ‘
imp

Shellcode

Outline of the patched (red) execution flow and functions.
As we also figured out how the shellcode is encrypted (we have the xor key), we modified
both samples to redact the actual C2 as it can be used to identify our targeted customer.

To ensure the shellcode did not rely on any bypassed calls, we spun up a quick Python
HTTPS server and made sure the redacted domain resolved to 127.0.0.1 . We then can
invoke both the original and patched DLL through rund1132.exe and observe how the
shellcode still attempts to retrieve the Cobalt Strike beacon, proving our patches did not
affect the shellcode. The exported Startw function we invoke is a simple wrapper around
the Sleep call.

s C:
Capture of both the original and patched DLL attempting to fetch the Cobalt Strike beacon.

Anti-Virus Review

20/25

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/rundll32

So do named pipes actually work as a defense evasion mechanism? While there are efficient
ways to measure our patches’ impact (e.g.: comparing across multiple sandbox solutions),
VirusTotal does offer a quick primary assessment. As such, we submitted the following
versions with redacted C2 to VirusTotal:

e wpdshext.dll.custom.vir which is the redacted Cobalt Strike DLL.
e wpdshext.dll.custom.patched.vir which is our patched and redacted Cobalt
Strike DLL without named pipes.

As the original Cobalt Strike contains identifiable patterns (the named pipe), we would expect
the patched version to have a lower detection ratio, although the Artifact Kit would disagree.

Z a0iebc2be23ba973f5393059ea276c245e6cealcdidc3013548c059e810b83e6 a 2~ 8 (O son €D

17 \ (1) 17 security vendors flagged this file as malicious - ::'J.

_/ Olebc2be23ba973f5393059ea276c245ebcealcd 1dc3013548c059e810b83
aé ebe @ © socealedioe cose 41,00 KB 2021-04-25 13:05:35 UTC Lo

Ze ute ag DLL
wpdshext.dll.custom.vir
bdbits assembly pedl

X R,
DETECTION DETAILS COMMUNITY
Ad-Aware _'j Generic.Exploit.Shellcode.2.721E040B AlYac '_', Generic.Exploit.Shellcode.2.721E040B
Arcabit :_';‘ Generic.Exploit.Shellcode.2.721E0408 BitDefender ":_': Generic.Exploit.Shellcode.2.721E0408B
ClamAV () WinTrojan.CobaltStrike-9044898-1 Cynet (D Malicious (score: 100)
Emsisoft (1) Generic.Exploit.Shellcode.2.721E0408 (B) eScan "_', Generic.Exploit.Shellcode. 2.721E040B
ESET-NOD32 :_';" A Variant Of Winé4/RiskWare.CobaltStrik... FireEye ":_'/ Generic.mg.b94bb2f8db7%e4c0
GData (1) Generic Exploit.Shellcode.2.721E040B Kaspersky (1) HEUR:Trojan.Winé4.Cobalt.gen
Malwarebytes (D) Malware.Al.2266394400 MAX () Malware (ai Score=80)
Microsoft _';" Trojan:Winé4/CobaltStrike SBRIMSR Rising "\’_'/ Trojan.Cobalt|8.C4EF (TFE:dGZIOgVmeF...
Sophos (1) ATK/Cobalt-G Acronis () Undetected
AegisLab /) Undetected AhnlLab-V3 (+) Undetected
Alibaba) Undetected Antiy-AVL () Undetected
SecureAge APEX) Undetected Avast (¥) Undetected
Avira (no cloud) /) Undetected Baidu () Undetected
BitDefenderTheta) Undetected Bkav Pro () Undetected
CAT-QuickHeal /) Undetected cMC () Undetected
Comodo /) Undetected CrowdStrike Falcon () Undetected Q
Cvlance <1 Undetected Cvren (+} Undetected

Capture of the original Cobalt Strike’s detection ratio on VirusTotal.

21/25

https://www.virustotal.com/gui/file/a01ebc2be23ba973f5393059ea276c245e6cea1cd1dc3013548c059e810b83e6/detection

Z e%dcbd7ac7659e99d2149f4eesf6fbI D5 fE73efd424d5f5572d93dee7 958346

DETECTION

Ad-Aware

Arcabit

ClamAV

Emsisoft

FireEye

Kaspersky

MAX

Rising

Acronis

AhnLab-V3

Antiy-AVL

Avast

Baidu

Bkav Pro

CMC

CrowdStrike Falcon

Cvren

(1) 16 security vendors flagged this file as malicious

e9dcbd7ac7659e99d2149f 4ee5f6fb9fb5fB7 3efd 424451557 2d93dee7 95834

&

wpdshext dll.custom.patched.vir

bdbits

DETAILS

=

assembly pedll

COMMUNITY

) Generic.Exploit.Shellcode.2.721E0408B
) Generic.Exploit.Shellcode.2.721EQ40B
\") Win.Countermeasure.LoaderWinGeneric.

) Generic.Exploit.Shellcode.2.721E0408B (B)

Generic.mg.823fddbbé2333c48

HEUR:Trojan.Winé4.Cobalt.gen

(L) Malware (ai Score=85)

Trojan.Cobalt!8.C4AEF (TFE:dGZIOgVmeF...

) Undetected

/) Undetected

) Undetected

") Undetected

*) Undetected

/) Undetected

) Undetected

/) Undetected

| Undetected

Capture of the patched Cobalt Strike’s detection ratio on VirusTota'I‘.

Qa ~» B8 O SR Sion up)
a
.
41.00 KB 2021-04-25 16:07:09 UTC
- moment ack DLL

AlYac (1) Generic.Exploit.Shellcode.2.721E0408

BitDefender (1) Generic Exploit.Shellcode,2.721E040B

Cynet (1) Malicious (score: 100)

eScan (1) Generic.Exploit.Shellcode.2.721E0408

GData '\’_" Generic.Exploit.Shellcode.2.721E040B

Malwarebytes (D) Malware.Al.2266394400

Microsoft (1) Trojan:Winé4/Meterpreter.E

ZoneAlarm by Check Point _"
AegisLab

Alibaba
SecureAge APEX
Avira (no cloud)
BitDefenderTheta
CAT-QuickHeal
Comodo

Cylance

Driveb

HEUR:Trojan.Winé4.Cobalt.gen

Undetected

) Undetected

Undetected

Undetected

(¥) Undetected

Undetected

) Undetected

/) Undetected @

Undetected

As we expected, the named-pipe overhead leveraged by Cobalt Strike actually turned out to
act as a detection base. As can be seen in the above captures, while the original version
(left) obtained only 17 detections, the patched version (right) obtained one less for a total of
16 detections. Among the thrown-off solutions we noticed ESET and Sophos did not manage
to detect the pipe-less version, whereas ZoneAlarm couldn’t identify the original version.

One notable observation is that an intermediary patch where the flow is adapted but unused
code is not zeroed-out turned out to be the most detected version with a total of 20 hits. This
higher detection rate occurs as this patch allows pipe-unaware anti-virus vendors to also
locate the shellcode while pipe-related operation signatures are still applicable.

22/25

https://www.virustotal.com/gui/file/e9dc6d7ac7659e99d2149f4ee5f6fb9fb5f873efd424d5f5572d93dee7958346/detection
https://www.virustotal.com/gui/file/a01ebc2be23ba973f5393059ea276c245e6cea1cd1dc3013548c059e810b83e6/detection
https://www.virustotal.com/gui/file/e9dc6d7ac7659e99d2149f4ee5f6fb9fb5f873efd424d5f5572d93dee7958346/detection
https://www.virustotal.com/gui/file/f2458d8d9c86a8cb4a5ef09ad4213419f70728f69f207464c4b3c423ba7ae3c4/detection

Z f2458d8d9c8ba8cbd4abef09ad4213419f70728f69f207464c4b3c423ba7ae3cd

DETECTION

Ad-Aware

AlLYac

BitDefender

Cynet

eScan

FireEye

Kaspersky

MAX

Rising

Symantec

Acronis

Alibaba

SecureAge APEX

Avira (no cloud)

BitDefenderTheta

CAT-QuickHeal

Comodo

(1) 20 security vendors flagged this file as malicious

fo)

f2458dBd9cBbabeb4asef09ad4213419f70728f691207464c4b3c423baTae3c

4

wpdshext dll.custom.patched.vir

bdbits

DETAILS

assembly pedll

COMMUNITY

Generic.Exploit.Shellcode.2.721E040B

Generic.Exploit,Shellcode.2.721E0408

Generic.Exploit.Shellcode.2.721E040B

Malicious (score: 100)

Generic.Exploit.Shellcode.2.721E040B

Generic.mg.5%e2bcbc25%dbel10

HEUR:Trojan.Winé4.Cobalt.gen

Malware (ai Score=85)

Trojan.Cobalt!8.C4EF (TFE:dGZIOgVmeF...

Backdoor.Cobalt

Undetected

/) Undetected

) Undetected

Undetected

/) Undetected

/) Undetected

/) Undetected

Capture of the intermediary patched Cobalt Strike’s detection ratlo on VirusTotal.

41.00 KB

AhnLab-V3

Arcabit

ClamAvV

Emsisoft

ESET-NOD32

GData

Malwarebytes

Microsoft

Sophos

ZoneAlarm by Check Point

AegisLab

Antiy-AVL

Avast

Baidu

Bkav Pro

cMmC

Crowd5Strike Falcon

[

2021-04-25 13:05:41UTC Lo

ment ag DLL

Malware/Win.Generic.R374111

\’J. Generic.Exploit.Shellcode.2.721E0408B

) Win.Trojan.CobaltStrike-9044898-1

Generic.Exploit.Shellcode.2.721E0408 (B)

_:' A Variant Of Winé4/RiskWare.CobaltStrik...

) Generic.Exploit.Shellcode.2.721E040B

Malware AlL.2266394400

Trojan:Winé4/Meterpreter.E

(1) ATK/Cobalt-G

HEUR:Trojan.Winé4.Cobalt.gen

) Undetected

Undetected

v) Undetected

Undetected

() Undetected

) Undetected

Undetected

While these tests focused on the default Cobalt Strike behavior against the absence of
named pipes, one might argue that a customized named pipe pattern would have had the
best results. Although we did not think of this variant during the initial tests, we submitted a
version with altered pipe names (NVISO-RULES-%d instead of MSSE-%d-server)the day
after and obtained 18 detections. As a comparison, our two other samples had their
detection rate increase to 30+ over night. We however have to consider the possibility that
these 18 detections are influenced by the initial shellcode being burned.

Conclusion

23/25

https://www.virustotal.com/gui/file/f2458d8d9c86a8cb4a5ef09ad4213419f70728f69f207464c4b3c423ba7ae3c4/detection
https://www.virustotal.com/gui/file/5f2b3f855ffb78d91fc2e35377f50c579d31956bf0e39d97e36fbec968fdb7aa/detection

Reversing the malicious Cobalt Strike DLL turned out to be more interesting than expected.
Overall, we noticed the presence of noisy operations whose usage weren’t a functional
requirement and even turn out to act as a detection base. To confirm our hypothesis, we
patched the execution flow and observed how our simplified version still reaches out to the
C2 server with a lowered (almost unaltered) detection rate.

So why does it matter?

The Blue

First and foremost, this payload analysis highlights a common Cobalt Strike DLL pattern
allowing us to further fine-tune detection rules. While this stager was the first DLL analyzed,
we did take a look at other Cobalt Strike formats such as default beacons and those
leveraging a malleable C2, both as Dynamic Link Libraries and Portable Executables.
Surprisingly enough, all formats shared this commonly documented MSSE-%d-server pipe
name and a quick search for open-source detection rules showed how little it is being hunted
for.

The Red

Besides being helpful for NVISO’s defensive operations, this research further comforts our
offensive team in their choice of leveraging custom-built delivery mechanisms; even more so
following the design choices we documented. The usage of named pipes in operations
targeting mature environments is more likely to raise red flags and so far does not seem to
provide any evasive advantage without alteration in the generation pattern at least.

To the next actor targeting our customers: | am looking forward to modifying your samples
and test the effectiveness of altered pipe names.

Maxime Thiebaut

24/25

https://www.cobaltstrike.com/help-malleable-c2
https://blog.cobaltstrike.com/2021/02/09/learn-pipe-fitting-for-all-of-your-offense-projects/
https://grep.app/search?q=MSSE-&case=true

Maxime Thiebaut is a GCFA-certified intrusion analyst in NVISO’s Managed Detection &
Response team. He spends most of his time investigating incidents and improving detection
capabilities. Previously, Maxime worked on the SANS SEC699 course. Besides his coding
capabilities, Maxime enjoys reverse engineering samples observed in the wild.

Twitter

25/25

https://twitter.com/0xThiebaut

