
1/25

April 26, 2021

Anatomy of Cobalt Strike’s DLL Stager
blog.nviso.eu/2021/04/26/anatomy-of-cobalt-strike-dll-stagers/

NVISO recently monitored a targeted campaign against one of its customers in the financial
sector. The attempt was spotted at its earliest stage following an employee’s report
concerning a suspicious email. While no harm was done, we commonly identify any related
indicators to ensure additional monitoring of the actor.

The reported email was an application for one of the company’s public job offers and
attempted to deliver a malicious document. What caught our attention, besides leveraging an
actual job offer, was the presence of execution-guardrails in the malicious document.
Analysis of the document uncovered the intention to persist a Cobalt Strike stager through
Component Object Model Hijacking.

During my free time I enjoy analyzing samples NVISO spots in-the-wild, and hence further
dissected the Cobalt Strike DLL payload. This blog post will cover the payload’s anatomy,
design choices and highlight ways to reduce both log footprint and time-to-shellcode.

Execution Flow Analysis

To understand how the malicious code works we have to analyze its behavior from start to
end. In this section, we will cover the following flows:

https://blog.nviso.eu/2021/04/26/anatomy-of-cobalt-strike-dll-stagers/
https://attack.mitre.org/techniques/T1480/
https://attack.mitre.org/techniques/T1546/015/

2/25

1. The initial execution through DllMain .
2. The sending of encrypted shellcode into a named pipe by WriteBufferToPipe .
3. The pipe reading, shellcode decryption and execution through PipeDecryptExec .

As previously mentioned, the malicious document’s DLL payload was intended to be used as
a COM in-process server. With this knowledge, we can already expect some known entry
points to be exposed by the DLL.

List

of available entry points as displayed in IDA.
While technically the malicious execution can occur in any of the 8 functions, malicious code
commonly resides in the DllMain function given, besides TLS callbacks, it is the function
most likely to execute.

DllMain : An optional entry point into a dynamic-link library (DLL). When the system
starts or terminates a process or thread, it calls the entry-point function for each loaded
DLL using the first thread of the process. The system also calls the entry-point function
for a DLL when it is loaded or unloaded using the LoadLibrary and FreeLibrary
functions.

docs.microsoft.com/en-us/windows/win32/dlls/dllmain

Throughout the following analysis functions and variables have been renamed to reflect their
usage and improve clarity.

The DllMain Entry Point

As can be seen in the following capture, the DllMain function simply executes another
function by creating a new thread. This threaded function we named DllMainThread is
executed without any additional arguments being provided to it.

https://docs.microsoft.com/en-us/windows/win32/com/inprocserver32
https://www.hex-rays.com/
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#tls-callback-functions
https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain

3/25

Graphed disassembly of DllMain .
Analyzing the DllMainThread function uncovers it is an additional wrapper towards what
we will discover is the malicious payload’s decryption and execution function (called
DecryptBufferAndExec in the capture).

4/25

Disassembly of

DllMainThread .
By going one level deeper, we can see the start of the malicious logic. Analysts experienced
with Cobalt Strike will recognize the well-known MSSE-%d-server pattern.

5/25

Disassembly of

DecryptBufferAndExec .
A couple of things occur in the above code:

1. The sample starts by retrieving the tick count through GetTickCount and then divides
it by 0x26AA . While obtaining a tick count is often a time measurement, the next
operation solely uses the divided tick as a random number.

https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-gettickcount

6/25

2. The sample then proceeds to call a wrapper around an implementation of the
sprintf function. Its role is to format a string into the PipeName buffer. As can be

observed, the formatted string will be \\.\pipe\MSSE-%d-server where %d will be
the result computed in the previous division (e.g.: \\.\pipe\MSSE-1234-server).
This pipe’s format is a well-documented Cobalt Strike indicator of compromise.

3. With the pipe’s name defined in a global variable, the malicious code creates a new
thread to run WriteBufferToPipeThread . This function will be the next one we will
analyze.

4. Finally, while the new thread is running, the code jumps to the PipeDecryptExec
routine.

So far, we had a linear execution from our DllMain entry point until the
DecryptBufferAndExec function. We could graph the flow as follows:

Execution flow from DllMain until DecryptBufferAndExec .
As we can see, two threads are now going to run concurrently. Let’s focus ourselves on the
one writing into the pipe (WriteBufferToPipeThread) followed by its reading counterpart
(PipeDecryptExec) afterwards.

The WriteBufferToPipe Thread

The thread writing into the generated pipe is launched from DecryptBufferAndExec
without any additional arguments. By entering into the WriteBufferToPipeThread
function, we can observe it is a simple wrapper to WriteBufferToPipe except it
furthermore passes the following arguments recovered from a global Payload variable
(pointed to by the pPayload pointer):

1. The size of the shellcode, stored at offset 0x4 .
2. A pointer to a buffer containing the encrypted shellcode, stored at offset 0x14 .

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/sprintf-sprintf-l-swprintf-swprintf-l-swprintf-l?view=msvc-160

7/25

Disassembly of

WriteBufferToPipeThread .
Within the WriteBufferToPipe function we can notice the code starts by creating a new
pipe. The pipe’s name is recovered from the PipeName global variable which, if you
remember, was previously populated by the sprintf function. The code creates a single
instance, outbound pipe (PIPE_ACCESS_OUTBOUND) by calling CreateNamedPipeA and
then connects to it using the ConnectNamedPipe call.

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createnamedpipea
https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-connectnamedpipe

8/25

Graphed disassembly of WriteBufferToPipe ‘s named pipe creation.
If the connection was successful, the WriteBufferToPipe function proceeds to loop the
WriteFile call as long as there are bytes of the shellcode to be written into the pipe.

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile

9/25

Graphed disassembly of WriteBufferToPipe writing to the pipe.
One important detail worth noting is that once the shellcode is written into the pipe, the
previously opened handle to the pipe is closed through CloseHandle . This indicates that
the pipe’s sole purpose was to transfer the encrypted shellcode.

Once the WriteBufferToPipe function is completed, the thread terminates. Overall the
execution flow was quite simple and can be graphed as follows:

https://docs.microsoft.com/en-us/windows/win32/api/handleapi/nf-handleapi-closehandle

10/25

Execution flow from WriteBufferToPipe .

The PipeDecryptExec Flow

As a quick refresher, the PipeDecryptExec flow was executed immediately after the
creation of the WriteBufferToPipe thread. The first task performed by
PipeDecryptExec is to allocate a memory region to receive shellcode to be transmitted

through the named pipe. To do so, a call to malloc is performed with as argument the
shellcode size stored at offset 0x4 of the global Payload variable.

Once the buffer allocation is completed, the code sleeps for 1024 milliseconds (0x400) and
calls FillBufferFromPipe with both buffer location and buffer size as argument. Should
the FillBufferFromPipe call fail by returning FALSE (0), the code loops again to the
Sleep call and attempts the operation again until it succeeds. These Sleep calls and

loops are required as the multi-threaded sample has to wait for the shellcode being written
into the pipe.

Once the shellcode is written to the allocated buffer, PipeDecryptExec will finally launch
the decryption and execution through XorDecodeAndCreateThread .

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/malloc?view=msvc-160
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep

11/25

Graphed disassembly of

PipeDecryptExec .
To transfer the encrypted shellcode from the pipe into the allocated buffer,
FillBufferFromPipe opens the pipe in read-only mode (GENERIC_READ) using
CreateFileA . As was done for the pipe’s creation, the name is retrieved from the global
PipeName variable. If accessing the pipe fails, the function proceeds to return FALSE (0),

resulting in the above described Sleep and retry loop.

https://docs.microsoft.com/en-us/windows/win32/secauthz/generic-access-rights
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

12/25

Disassembly of FillBufferFromPipe ‘s pipe access.
Once the pipe opened in read-only mode, the FillBufferFromPipe function proceeds to
copy over the shellcode until the allocated buffer is filled using ReadFile . Once the buffer
filled, the handle to the named pipe is closed through CloseHandle and
FillBufferFromPipe returns TRUE (1).

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-readfile

13/25

Graphed disassembly of FillBufferFromPipe copying data.
Once FillBufferFromPipe has successfully completed, the named pipe has completed its
task and the encrypted shellcode has been moved from one memory region to another.

Back in the caller PipeDecryptExec function, once the FillBufferFromPipe call returns
TRUE the XorDecodeAndCreateThread function gets called with the following parameters:

1. The buffer containing the copied shellcode.
2. The length of the shellcode, stored at the global Payload variable’s offset 0x4 .
3. The symmetric XOR decryption key, stored at the global Payload variable’s offset

0x8 .

14/25

Once invoked, the XorDecodeAndCreateThread function starts by allocating yet another
memory region using VirtualAlloc . The allocated region has read/write permissions
(PAGE_READWRITE) but is not executable. By not making a region writable and executable at
the same time, the sample possibly attempts to evade security solutions which only look for
PAGE_EXECUTE_READWRITE regions.

Once the region is allocated, the function loops over the shellcode buffer and decrypts each
byte using a simple xor operation into the newly allocated region.

Graphed disassembly of XorDecodeAndCreateThread .
When the decryption is complete, the GetModuleHandleAndGetProcAddressToArg
function is called. Its role is to place pointers to two valuable functions into memory:
GetModuleHandleA and GetProcAddress . These functions should enable the shellcode

to further resolve additional procedures without relying on them being imported. Before

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

15/25

storing these pointers, the GetModuleHandleAndGetProcAddressToArg function first
ensures a specific value is not FALSE (0). Surprisingly enough, this value stored in a
global variable (here called zero) is always FALSE , resulting in the pointers never being
stored.

 Graphed disassembly

of GetModuleHandleAndGetProcAddressToArg .
Back in the caller function, XorDecodeAndCreateThread changes the shellcode’s memory
region to be executable (PAGE_EXECUTE_READ) using VirtualProtect and finally creates
a new thread. This final thread starts at the JumpToParameter function which acts as a
simple wrapper to the shellcode, provided as argument.

https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

16/25

 Disassembly of

JumpToParameter .
From here, the previously encrypted Cobalt Strike shellcode stager executes to resolve
WinINet procedures, download the final beacon and execute it. We will not cover the
shellcode’s analysis in this post as it would deserve a post of its own.

While this last flow contained more branches and logic, the overall graph remains quite
simple:

Execution flow from PipeDecryptExec until the shellcode.

Memory Flow Analysis

What was the most surprising throughout the above analysis was the presence of a well-
known named pipe. Pipes can be used as a defense evasion mechanism by decrypting the
shellcode at pipe exit or for inter-process communications; but in our case it merely acted as
a memcpy to move encrypted shellcode from the DLL into another buffer.

https://docs.microsoft.com/en-us/windows/win32/wininet/about-wininet
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/memcpy-wmemcpy?view=msvc-160

17/25

Memory flow from encrypted shellcode until decryption.
So why would this overhead be implemented? As pointed out by another colleague, the
answer lays in the Artifact Kit, a Cobalt Strike dependency:

Cobalt Strike uses the Artifact Kit to generate its executables and DLLs. The Artifact Kit
is a source code framework to build executables and DLLs that evade some anti-virus
products. […] One of the techniques [see: src-common/bypass-pipe.c in the
Artifact Kit] generates executables and DLLs that serve shellcode to themselves over a
named pipe. If an anti-virus sandbox does not emulate named pipes, it will not find the
known bad shellcode.

cobaltstrike.com/help-artifact-kit

As we can see in the above diagram, the staging of the encrypted shellcode in the malloc
buffer generates a lot of overhead supposedly for evasion. These operations could be
avoided should XorDecodeAndCreateThread instead directly read from the initial encrypted
shellcode as outlined in the next diagram. Avoiding the usage of named pipes will
furthermore remove the need for looped Sleep calls as the data would be readily available.

https://www.cobaltstrike.com/help-artifact-kit

18/25

Improved memory flow from encrypted shellcode until decryption.
It seems we found a way to reduce the time-to-shellcode; but do popular anti-virus solutions
actually get tricked by the named pipe?

Patching the Execution Flow

To test that theory, let’s improve the malicious execution flow. For starters we could skip the
useless pipe-related calls and have the DllMainThread function call PipeDecryptExec
directly, bypassing pipe creation and writing. How the assembly-level patching is performed
is beyond this blog post’s scope as we are just interested in the flow’s abstraction.

Disassembly of the patched

DllMainThread .
The PipeDecryptExec function will also require patching to skip malloc allocation, pipe
reading and ensure it provides XorDecodeAndCreateThread with the DLL’s encrypted
shellcode instead of the now-nonexistent duplicated region.

19/25

Disassembly of the patched

PipeDecryptExec .
With our execution flow patched, we can furthermore zero-out any unused instructions
should these be used by security solutions as a detection base.

When the patches are applied, we end up with a linear and shorter path until shellcode
execution. The following graph focuses on this patched path and does not include the leaves
beneath WriteBufferToPipeThread.

20/25

Outline of the patched (red) execution flow and functions.
As we also figured out how the shellcode is encrypted (we have the xor key), we modified
both samples to redact the actual C2 as it can be used to identify our targeted customer.

To ensure the shellcode did not rely on any bypassed calls, we spun up a quick Python
HTTPS server and made sure the redacted domain resolved to 127.0.0.1 . We then can
invoke both the original and patched DLL through rundll32.exe and observe how the
shellcode still attempts to retrieve the Cobalt Strike beacon, proving our patches did not
affect the shellcode. The exported StartW function we invoke is a simple wrapper around
the Sleep call.

Capture of both the original and patched DLL attempting to fetch the Cobalt Strike beacon.

Anti-Virus Review

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/rundll32

21/25

So do named pipes actually work as a defense evasion mechanism? While there are efficient
ways to measure our patches’ impact (e.g.: comparing across multiple sandbox solutions),
VirusTotal does offer a quick primary assessment. As such, we submitted the following
versions with redacted C2 to VirusTotal:

wpdshext.dll.custom.vir which is the redacted Cobalt Strike DLL.
wpdshext.dll.custom.patched.vir which is our patched and redacted Cobalt

Strike DLL without named pipes.

As the original Cobalt Strike contains identifiable patterns (the named pipe), we would expect
the patched version to have a lower detection ratio, although the Artifact Kit would disagree.

Capture of the original Cobalt Strike’s detection ratio on VirusTotal.

https://www.virustotal.com/gui/file/a01ebc2be23ba973f5393059ea276c245e6cea1cd1dc3013548c059e810b83e6/detection

22/25

Capture of the patched Cobalt Strike’s detection ratio on VirusTotal.
As we expected, the named-pipe overhead leveraged by Cobalt Strike actually turned out to
act as a detection base. As can be seen in the above captures, while the original version
(left) obtained only 17 detections, the patched version (right) obtained one less for a total of
16 detections. Among the thrown-off solutions we noticed ESET and Sophos did not manage
to detect the pipe-less version, whereas ZoneAlarm couldn’t identify the original version.

One notable observation is that an intermediary patch where the flow is adapted but unused
code is not zeroed-out turned out to be the most detected version with a total of 20 hits. This
higher detection rate occurs as this patch allows pipe-unaware anti-virus vendors to also
locate the shellcode while pipe-related operation signatures are still applicable.

https://www.virustotal.com/gui/file/e9dc6d7ac7659e99d2149f4ee5f6fb9fb5f873efd424d5f5572d93dee7958346/detection
https://www.virustotal.com/gui/file/a01ebc2be23ba973f5393059ea276c245e6cea1cd1dc3013548c059e810b83e6/detection
https://www.virustotal.com/gui/file/e9dc6d7ac7659e99d2149f4ee5f6fb9fb5f873efd424d5f5572d93dee7958346/detection
https://www.virustotal.com/gui/file/f2458d8d9c86a8cb4a5ef09ad4213419f70728f69f207464c4b3c423ba7ae3c4/detection

23/25

Capture of the intermediary patched Cobalt Strike’s detection ratio on VirusTotal.
While these tests focused on the default Cobalt Strike behavior against the absence of
named pipes, one might argue that a customized named pipe pattern would have had the
best results. Although we did not think of this variant during the initial tests, we submitted a
version with altered pipe names (NVISO-RULES-%d instead of MSSE-%d-server) the day
after and obtained 18 detections. As a comparison, our two other samples had their
detection rate increase to 30+ over night. We however have to consider the possibility that
these 18 detections are influenced by the initial shellcode being burned.

Conclusion

https://www.virustotal.com/gui/file/f2458d8d9c86a8cb4a5ef09ad4213419f70728f69f207464c4b3c423ba7ae3c4/detection
https://www.virustotal.com/gui/file/5f2b3f855ffb78d91fc2e35377f50c579d31956bf0e39d97e36fbec968fdb7aa/detection

24/25

Reversing the malicious Cobalt Strike DLL turned out to be more interesting than expected.
Overall, we noticed the presence of noisy operations whose usage weren’t a functional
requirement and even turn out to act as a detection base. To confirm our hypothesis, we
patched the execution flow and observed how our simplified version still reaches out to the
C2 server with a lowered (almost unaltered) detection rate.

So why does it matter?

The Blue

First and foremost, this payload analysis highlights a common Cobalt Strike DLL pattern
allowing us to further fine-tune detection rules. While this stager was the first DLL analyzed,
we did take a look at other Cobalt Strike formats such as default beacons and those
leveraging a malleable C2, both as Dynamic Link Libraries and Portable Executables.
Surprisingly enough, all formats shared this commonly documented MSSE-%d-server pipe
name and a quick search for open-source detection rules showed how little it is being hunted
for.

The Red

Besides being helpful for NVISO’s defensive operations, this research further comforts our
offensive team in their choice of leveraging custom-built delivery mechanisms; even more so
following the design choices we documented. The usage of named pipes in operations
targeting mature environments is more likely to raise red flags and so far does not seem to
provide any evasive advantage without alteration in the generation pattern at least.

To the next actor targeting our customers: I am looking forward to modifying your samples
and test the effectiveness of altered pipe names.

Maxime Thiebaut

https://www.cobaltstrike.com/help-malleable-c2
https://blog.cobaltstrike.com/2021/02/09/learn-pipe-fitting-for-all-of-your-offense-projects/
https://grep.app/search?q=MSSE-&case=true

25/25

Maxime Thiebaut is a GCFA-certified intrusion analyst in NVISO’s Managed Detection &
Response team. He spends most of his time investigating incidents and improving detection
capabilities. Previously, Maxime worked on the SANS SEC699 course. Besides his coding
capabilities, Maxime enjoys reverse engineering samples observed in the wild.

Twitter

https://twitter.com/0xThiebaut

