EMOTET: a State-Machine reversing exercise

O github.com/cecio/EMOTET-2020-Reversing

cecio

cecio/EMOTET-2020- >

Reversing

a State-Machine reversing exercise

A1 ®o w7 5 2 O
Contributor Issues Stars Forks
Intro

Around the 20th of December 2020, there was one of the "usual" EMOTET
email campaign hitting several countries. | had the possibility to get some
sample and | decided to make this little analysis, to deep dive some specific
aspects of the malware itself.

In particular | had a look to how the malware has been written, with an analysis
of the interesting techniques used.

There is a very good analysis done by Fortinet in 2019, where the also the first
stage has been analyzed. My exercise is more focused on the second stage on
a recent sample.

In this repository you will find all the DLLs, scripts and tools used for the
analysis, with the annotated Ghidra project file, with all the mapping to my
findings (API calls, program logic, etc). You can use this as starting point for
additional investigation on it. Enjoy ;-)

The Tools

o FireEye Speakeasy

1/14

https://github.com/cecio/EMOTET-2020-Reversing
https://www.fortinet.com/blog/threat-research/deep-dive-into-emotet-malware
https://github.com/fireeye/speakeasy

e Ghidra
» x64dbg
o PE Bear
e time :-)

The infection chain

EMOTET is usually spread by using e-mail campaign (in this case in Italian
language)

o | i > ¥ = Respuesta de Estoy ausente dicembre - Message (Flain Text) = B3
SE | Message Ceveloper [~
y %] o > i [
x) N '; f; Meeting 53 (3 Mark Unread a& 33 Find \l
g _d St il =
2] Actions = | B Categorize ~ 3 Related -
Delete Reply Reply Forward & pqare Move Translate Zoom
All % - ¥ Follow Up - - W Select -
Dielete Respond Quick Steps Move Tags a Editing Zoom

@ Extra line i thi
From: I sent Tue 12/2272020 812 AM
To:
ce
Subject: Respuesta de Estoy ausente dicembre

A Message | 8 doc 122020.zip (99 KE)

(305

Salve,

faccioriferimento alla piacevole telefonata intercorsa & mi
permetto di scrivervi ancora per sollecitare una risposta,
Password archivio: 1324

Cordiali saluti,

This particular sample is coming from what we can call the usual infection
chain:

1. delivery of an e-mail with a malicious zipped document
2. once opened, the document runs an obfuscated powershell script and
downloads the 2nd stage

3. the 2nd stage (in form of a DLL) is then executed
4. the 2nd stage establish some persistence and try to connect a C2

The initial triage

All the files used for this analysis are in the repository. The "dangerous" ones
are password protected (with the usual pwd).

The DLL (sg.d11) has the following characteristics:
File Name: sg.dll

Size: 340480
SHA1: b08e0®7b1d91f8724381e765d695601ea785d8276

2/14

https://ghidra-sre.org/
https://x64dbg.com/#start
https://hshrzd.wordpress.com/pe-bear/
https://github.com/cecio/EMOTET-2020-Reversing/blob/main/pictures/emotet_mail.png

This DLL exports a single function named RunDLL : once executed, it decrypts
"in-memory" an additional DLL. This one, dumped as dump_1_0418.bin ,is
the target of my analysis:

File Name: dump_1_0418.bin

Size: 122880
SHA1: 57cd8eac09714effa7b6f70b34039bbaced4a3e23

Disasm: kext General D3 Har Rich Hdr File Hdr Optional Hdr Section Hdrs 9 Exports 0 BaseReloc,

Offset Mame Walue beaning

1Ce1d Characteristics o

1C614 TimeDateStamp SFEQACOC Manday, 21.12.2020 14:02:32 UTC
1Ce18 hajorersion 0

106148 Minarersion Q

1CE1C Mame 1EQ42 xdll

1C620 Base 1

1C624 MumberOfFunc.,, 1

1C6E28 NumberOfMames 1

Exported Funckions [1 enkry]

Offset Ordinal Function R, Marne Ry, Marme Forwarder
10638 1 S6EB 1EQ48 FunDLL

An initial overview of the dumped DLL, shows immediately that we don't have
any string visible in it, no imports and a first look to the disassembly shows a
heavily obfuscated code. We need to do some work here.

| fired up Ghidra and started to snoop around. Starting from the only exported
function RunDLL you quickly end up to FUN_10009716 where you can spot a
main loop with a kind of "State-Machine":

3/14

https://github.com/cecio/EMOTET-2020-Reversing/blob/main/pictures/DLL_exports.PNG

(N

&

@
<

Decornpile: FUN_10009716 - (dump_1_0418.5

3z i¥ar3 = O0xz2d9%6;

33 u¥arh = local_a0l:

34 |LAE_1000a%cc:

35 do |

36 if [iVarz < Oxldezdied) |

a7 if (iVarZ == Oxldezd3el) |
38 u¥arl = FUN_l00046c0() ;
39 if (uVarl == 0) {

40 return;

41 }

4z iVarz = Ox5cE0354;

43 goto LAE 1000a7cc:

44 }

45 if (iVarZ < OxfcczalZ) |

45 if (iVarZ == 0Oxfcczadl) {
47 FUN_100045258() :

43 return:

49 '

an if (iVars < Ox8773d11)
51 if [iVarz == 0x5773d410)
52 local 6o = FUON_10015b6&0():
53 iVarz = 0x390dda0;

5d goto LAB_1000a7%co:

55 }

It looks like that a given double-word (stored in ECX) is controlling what the
program is doing. But this looks convoluted and not very easy to unroll, since
nothing is really in clear. For example, if you try to isolate the library API call in
x64dbg, you will face something like this:

a/14

https://github.com/cecio/EMOTET-2020-Reversing/blob/main/pictures/ghidra_main.PNG
https://github.com/cecio/EMOTET-2020-Reversing/blob/main/pictures/xdbg_libcall.PNG

Every single API call is done in this way: there is a bunch of MOV, XOR, SHIFT
and PUSH followed by a call to xxx606F (first red box), which decode in EAX

the address of the function (called by the second red box). The number of

PUSH just before the CALL EAX are the parameters, which could be worth to

inspect.

The same "state" approach is also used in several sub-functions, not only in
the main loop. So, everything looks time consuming, and I'd like to find a way to
get the high level picture of it.

Speakeasy

This tool is a little gem: Speakeasy can emulate the execution of user and
kernel mode malware, allowing you to interact with the emulated code by using
quick Python scripts. What I'd like to do was to map every single state of the
machine (ECX value of the main loop), to something more meaningful, like
DLL API calls.

| had to work a bit to get what | wanted:

o the emulation was failing in more than one point, with some invalid read. |
investigated a bit the reason, and | saw that sometimes the CALL EAX
done in some location was not valid (EAX set to 0). | decided to get the
easy way and just skip these calls

| had to modify the call to a specific APl (CryptStringToBinary)

e | mapped the machine state

e added a --state switch to control the flow of the emulation. You can
use it to explore all the states (ex. --state 0x167196bc). You may
encounter errors if needed parts are not initialized, but you can
reconstruct the proper flow by looking at the Ghidra decompilation

¢ in a second iteration, knowing where strings are decrypted, | added a
dump of all the strings in clear (see following sections)

Then the execution of the final script (python emu_emotetdll.py -f
sg.dll) gave me something very interesting. The list of the imported DLLs
(with related addresses):

0x10017a4c: 'kernel32.LoadLibraryW("advapi32.d1l1l")' -> 0x78000000
0x10017a4c: 'kernel32.LoadLibraryW("crypt32.d11l")' -> 0x58000000
0x10017a4c: 'kernel32.LoadLibraryW("shell32.d11")' -> Ox69000000
0x10017a4c: 'kernel32.LoadLibraryW("shlwapi.dll")' -> Ox67000000
0x10017a4c: 'kernel32.LoadLibraryW("urlmon.dll")' -> 0x54500000
0x10017a4c: 'kernel32.LoadLibraryW("userenv.dll")' -> Ox76500000
0x10017a4c: 'kernel32.LoadLibraryW("wininet.d1ll")' -> Ox7bc0O00O00
0x10017a4c: 'kernel32.LoadLibraryW("wtsapi32.dll")' -> 0Ox63000000

5/14

and a lot of API calls, mapped to the machine state:

[+] State: 1de2d3e5

0x10010ba0®: 'kernel32.
0x10018080: 'kernel32
[+] State: 5c80354

0x10010bad: 'kernel32.
0x10018080: 'kernel32
0x10017a4c: 'kernel32.
0x10010ba0: 'kernel32.
0x10014b3a: 'kernel32.
0x10010ba®: 'kernel32.

GetProcessHeap()' -> 0x7280
.HeapAlloc (0x7280, 0x8, 0x4c)' -> 0x72a0
GetProcessHeap()' -> 0x7280
.HeapAlloc(0x7280, 0x8, 0x20)' -> Ox72f0

LoadLibraryw("advapi32.d11")'
GetProcessHeap()' -> 0x7280
HeapFree(0x7280, 0x0, 0x72f0)'
GetProcessHeap()' -> 0x7280

-> OXx78000000

-> Ox1

This list was not complete (because | skipped on purpose some failing calls
and probably some calls were not correctly intercepted), but it gave me an
overall picture of what was going on. Thanks FireEye!

Mapping

With the help of Speakeasy output and a combination of dynamic and static
analysis (done with x64gdb and Ghidra), | was able to reconstruct the main
flows of the Malware. Consider that these flows are not complete, they are high
level snapshot of what is going on for some (not all) the "states". I'm sure
something is missing. This is the "main" flow

Start

0x3753589A

Initial State 1)

0x1DE2D3E5 0x05C80354
2)
Decrypt and Load

Allocates Memory DLLs

0x30D775BC

|Go to "Persistency” flow,

3)
Try connection to
SCMgr and decide

with
0x116D33A8

Go to "C2" flow with
0x167196BC

Then we have the "Persistency"” flow (the yellow boxes are the interesting

ones):

6/14

https://github.com/cecio/EMOTET-2020-Reversing/blob/main/pictures/emotet_diag_general.png

Start
"Persistency™

0x116D33A8

4b)
read command line

0x2614D4C0

5b)
open file

0x075B7379

Gb)
try to open service

0x38750A8D

7b)
create temp folder
and filename for svc

0x2DF85915

8b)

create file for

service

Dx386A45E7

9b)

ADS file operations

0x25F1BC45

10b)
sets dropped file
properties

0x204C3ESE

11b)
create the service

And the initial "C2" communication flow:

Start
"ca"

0x167196BC

4a)
processes
fingerprinting

0x0B67DCBF

5a)

create thread

0x0038FCBY

6a)

timing and synch

calls

to be sent

and make conn

(" 0x2F9EDTAOQ 0x1C904052 0x1BE9918C 0x361AFGE7
7a) 10a)
NOP open RS.‘\ key NOP get tick counts
\
0x0038FCB7
0x0FC32371 0x268DB8AE 0x09773D10 0x0390DDA0
11a) 12a) 13a) 14a)
get system info sets a var get other get process and
system info session ID
0x0A272B1B Ox0E35770D 0x27F3EBSE Ox26EFDEEA
15a) 16a) 17a) 18a)
sets avar sets a var get running allocate buffer
processes
0x30446CDA 0x386459CE 0x375880E8 0x206488C6
19a) 20a) 21a) 22a)
prepare the buffer crypt, export key free resources free resources

0x1DCB1BF4

23a)

free resources

7/14

https://github.com/cecio/EMOTET-2020-Reversing/blob/main/pictures/emotet_diag_persistency.png
https://github.com/cecio/EMOTET-2020-Reversing/blob/main/pictures/emotet_diag_C2.png

Not all the states were explored. | focused on persistence and initial C2. The
great thing of this approach is that you can now alter the execution flow, by
setting the ECX value you want to explore or execute.

| added a lot of details in the Ghidra file, by renaming the API calls and
inserting comments. Every number reported in the graphs (ex 19a) are in the
comments, so you can easily track the code section.

,ile: __main_loop_FUN_10009716 - {dump_1_0418.bin) S 0| E | -
112 else |

113 if (iVar2 == 0xaz7Zblb) !

114 4% 15a) Bet war and change conmand */
115 local 64 = 0x135346150;

116 iVard = Oxe357704;

117 goto LAB 1000a7Ycc:

115 1

119 if (iVarZ == Oxbe7dchf) |

1z=0 f* ha) - GetProcessHeap

121 - 4llocateHeap

l=2 - CreateEwent

123 - CreateThread on §e79

124 - GetTickCountedEerneliz */
125 FON_100042%af() ;

126 iVars = OxzZ£9ed7al;

127 4% Leawe count in EDI +/

126 u¥arh = _GetTickCountéd FUN_1000£aS0();

125 |LAB_1000a%f4:

130 iVarz = Ox35fch7:

131 goto LAR 1000a7cc;

132 1

133 if (iVarz == Oxe35770d4) |

154 J% laa) Fet war and change conmand 7
135 local 60 = 4000;

| renamed the functions with this standard:

 a single underscore in front of API calls
e a double underscore in front of internal function calls

Interesting findings: encrypted strings

All the strings are encrypted in a BLOB, located, in this particular dumped
sample, at 0x1C800

8/14

https://github.com/cecio/EMOTET-2020-Reversing/blob/main/pictures/Ghidra_commented.PNG

[

4

-
4

[=

.|

-
E s

[us]

Ln

T

The green box is the XOR key and the yellow one is the length of the string.
The function used to perform the decryption is the

__decrypt_buffer_string_FUN_10006aba and
__decrypt_headers_footer_FUN_100033f4

17
13
19
20
21
22
23
24
25
Z6
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4]
42
43
44

Decompile: ypk_buffer_string_FUR_10006aba - (d

¢

_Just return FUN 1000e171():
uvarsd = *extraout EDX:

puvarll = extraout EDX + Z»
u¥ard = extraout EDX[1] *~ uVara;
uvar® = uvard + 1;

if ((uVar® & 3) !'= 0) {

uvard = [(u¥var® & Ox£ELEfE£Ffc) + 4;

pu¥ars = (ushort *)_ call get_and allocate_heap FUN_10019eZh(uVard *= 2);
if (pu¥Varb !'=s [ushort *)0x0) {

uvars = 0;
puVarl = (uint *) ((int)puVarld + (u¥Var9 & Ox<EEEELEFe)) ;
uvar? = [uint) ((int)puV¥arl + (3 - (inc)paVarll)) »»= 27
if (puWVarl £ pu¥Warlo)] {
uvard = 0;
}
pu¥ar? = puWarh;
if (uVar® !'= 0) {
dao
uVarg = *puVarll;
puVarld = pu¥arl0 + 1:
uvarg = u¥ars ~ uVarzZ;
*Fpu¥ary = (ushort)uVarc & OxEL;
puVar?[1l] = f{ushort)(uvars »» &) & OxE£E:
uVar? = (ushort) (uVard => 0x10):
uvard = u¥ard + 1;
pu¥ar7[2] = uVar? & Ox££:
pu¥ar7[3] = uVard »>» &;

9/14

https://github.com/cecio/EMOTET-2020-Reversing/blob/main/pictures/encrypted_blob.png
https://github.com/cecio/EMOTET-2020-Reversing/blob/main/pictures/Ghidra_6aba.PNG

Every single string is decrypted and then removed from memory after usage.
This is true even for C format strings. So you will not find anything in memory if
you try to inspect the mapped sections at runtime.

As said before, | added a specific section in the Speakeasy script to dump
those strings.

Interesting findings: list of C2 servers

IP of C2 are dumped form the same BLOB (in this case at 0x1CA00) just after
the decryption in step 20a .

As stated in Fortinet Analysis, this list is made of IP (green box) and port
(yellow box). You can decode the whole list if you pass this part of the binary in
the following python code:

import sys
import struct

b = bytearray(sys.stdin.buffer.read())
for x in range(0,len(b),8):

print('%u.%u.%u.%u:%u' %
(b[x+3],b[x+2],b[x+1],b[x], struct.unpack('<H', bytes(b[x+4:x+6]))[0]))

You can find the full list extracted in loC section.

Interesting findings: persistence

This particular sample obtain persistency by installing a System Service. This
campaign deployed different versions of the DLL using also different
techniques: Run Registry Key is one of them.

The section installing the service is the 20a (state 0x204C3E9E). The high
level steps are the following:

10/14

https://github.com/cecio/EMOTET-2020-Reversing/blob/main/pictures/ip_list.png

e decrypt the format string %s.%s

e generates random chars to build the service name (which results in
something like xzyw.qwe)

» get one random "Service Description" from the existing ones, and use it
as description of the new service

Interesting findings: encrypted communications with C2

In section 8a (state ©0x1C904052) we can spot out the load of a RSA public

After this we have a call to CryptGenKey with algo CALG_AES 128 . So it
looks that the sample is going to use a symmetric key to encrypt
communication.

In section 20a (state 0x386459ce) we see how the communication is
encrypted:

e CryptGenKey

» CryptEncrypt of the buffer to send, with the previous key

o CryptExportKey encrypted with the RSA public key

¢ the exported and encrypted symmetric key is then prepended to the
buffer sent via HTTP

Wrap up

The analysis is far to be complete, there are a lot of unexplored part of the
sample. At the end my goal was to build a procedure to make the analysis
easier, even for different or future samples, where it would be faster to
understand the overall picture.

Appendix: loC

11/14

https://github.com/cecio/EMOTET-2020-Reversing/blob/main/pictures/RSA_key.png

C2 |P list:

12/14

118.38.110.192:80
181.136.190.86:80
167.71.148.58:443
211.215.18.93:8080
1.234.65.61:80
209.236.123.42:8080
187.162.250.23:443
172.245.248.239:8080
60.93.23.51:80
177.144.130.105:443
93.148.247.169:80
177.144.130.105:8080
110.39.162.2:443
87.106.46.107:8080
83.169.21.32:7080
191.223.36.170:80
95.76.153.115:80
110.39.160.38:443
45.16.226.117:443
46.43.2.95:8080
201.75.62.86:80
190.114.254.163:8080
12.162.84.2:8080
46.101.58.37:8080
197.232.36.108:80
185.94.252.27:443
70.32.84.74:8080
202.79.24.136:443
2.80.112.146:80
202.134.4.210:7080
105.209.235.113:8080
187.162.248.237:80
190.64.88.186:443
111.67.12.221:8080
5.196.35.138:7080
50.28.51.143:8080
181.30.61.163:443
103.236.179.162:80
81.215.230.173:443
190.251.216.100:80
51.255.165.160:8080
149.202.72.142:7080
192.175.111.212:7080
178.250.54.208:8080
24.232.228.233:80
190.45.24.210:80
45.184.103.73:80
177.85.167.10:80
212.71.237.140:8080
181.120.29.49:80
170.81.48.2:80
68.183.170.114:8080
35.143.99.174:80
217.13.106.14:8080
168.121.4.238:80

13/14

172.104.169.32:8080
111.67.12.222:8080
62.84.75.50:80
77.78.196.173:443
177.23.7.151:80
213.52.74.198:80
12.163.208.58:80
1.226.84.243:8080
113.163.216.135:80
188.225.32.231:7080
191.182.6.118:80
81.213.175.132:80
104.131.41.185:8080
152.169.22.67:80
185.183.16.47:80
192.232.229.54:7080
186.146.13.184:443
178.211.45.66:8080
122.201.23.45:443
70.32.115.157:8080
190.24.243.186:80
51.15.7.145:80
46.105.114.137:8080
81.214.253.80:443
192.232.229.53:4143
59.148.253.194:8080
191.241.233.198:80
181.61.182.143:80
190.195.129.227:8090
68.183.190.199:8080
138.97.60.140:8080
138.97.60.141:7080
137.74.106.111:7080
85.214.26.7:8080
71.58.233.254:80
94.176.234.118:443
188.135.15.49:80
80.15.100.37:80
82.76.111.249:443
155.186.9.160:80
189.2.177.210:443

14/14

