
1/9

April 22, 2021

Binary Data Hiding in VB6 Executables
decoded.avast.io/davidzimmer/binary-data-hiding-in-vb6-executables/

by David ZimmerApril 22, 20219 min read

Overview

This is part one in a series of posts that focus on understanding Visual Basic 6.0
(VB6) code, and the tactics and techniques both malware authors and researchers use
around it.

Abstract

This document is a running tally covering many of the various ways VB6 malware can
embed binary data within an executable.

There are 4 main categories:

string based encodings
data hidden within the actual opcodes of the program
data hidden within parts of the VB6 file format
data in or around normal PE structures

Originally I was only going to cover data hidden within the file format itself but for the sake
of documentation I decided it is worth covering them all.

Data held within the file format is a special case which I find the most interesting. This is
because it can be interspersed within a complex set of undocumented structures which
would require advanced knowledge and intricate parsing to detect. In this scenario it would
be hard to determine where the data is coming from or to even recognize that these buffers
exist.

Resource Data

https://decoded.avast.io/davidzimmer/binary-data-hiding-in-vb6-executables/
https://decoded.avast.io/author/davidzimmer/

2/9

The first technique is the standard built into the language itself, namely loading data from
the resource section. VB6 comes with an add-in that allows users to add a .RES file to
the project. This file gets compiled into the resource section of the executable and allows
for binary data to be easily loaded.

This is a well known and standard technique.

Appended Data

This technique is very old and has been used from all manner of programming language. It
will be mentioned again for thoroughness and to link to a public implementation [1] that
allows for simplified use.

Hex String Buffers

It is very common for malware to build up a string of hex characters that are later converted
back to binary data. Conversion commonly includes various text manipulations such as
decryption or stripping junk character sequences. Extra character sequences are
commonly used to prevent automatic recognition of the data as a hex string by AV.

In the context of VB6, there are several limitations. The IDE only allows for a total of 1023
characters to be on a single line. VB’s line continuation syntax of &_ is also limited to only
25 lines. For these reasons you will often see large blocks of data embedded in the

following format:

In a compiled binary each string fragment is held as an individual chunk which is easily
identifiable. A faster variant may hold each element in a string array so conglomeration
only occurs once.

3/9

This is a well known and standard technique. It is commonly found in VBA , VB6 and
malware written in many other languages. Line length limitations can not be bypassed
through command line compilation.

Binary Data Within Images

There are multiple ways to embed lossless data into image formats. The most common will
be to embed the data directly within the structure of a BITMAP image. Bitmaps can be
held directly within VB6 Image and Picture controls. Data embedded in this manner will be
held in the .FRX form resource file before compilation. Once compiled it will be held in a
binary property field for the target form element. Images created like this can be generated
with a special tool, and then embedded directly into the form using the IDE.

The following is a public sample[2] of data being extracted from such a bitmap

Extracted images will display as a series of colored blocks and pixels of various colors.
Note that this is not stenography.

Many tools understand how to extract embedded images from binary files. Since the image
data still contains the BITMAP header, parsing of the VB6 file format itself is not
necessary. This technique is public and in common use. The data is often decrypted after it
is extracted.

Chr Strings

Similar to obfuscations found in C malware, strings can be built up at runtime based on
individual byte values. A common example may look like the following:

4/9

At the asm level, this serves to break up each byte value and puts it inline with a bunch of
opcodes preventing automatic detection or display with strings. For native VB6 code it will
look like the following:

In P-Code it will look like the following:

This is a well known and standard technique. It is commonly found in VBA as well as VB6
malware.

Numeric Arrays

Numeric arrays are a fairly standard technique in malware that are used to break up the
binary data amongst the programs opcodes. This is similar to the Chr technique but can
hold data in a more compact format. The most common data types used for this technique
are 4 byte longs , and 8 byte currency types. The main advantage of this technique
is that the data can be easily manipulated with math to decrypt it on the fly.

Native:

5/9

P-Code:

Native:

P-Code:

This technique is not as popular as the others, but does have a long history of use. I think
the first place I saw it was in Flash ActionScript exploits.

Form Properties

6/9

Forms and embedded GUI elements can contain compiled in data as part of their
properties. The most common attributes used are Form.Caption , Textbox.Text , and
any element’s. Tag property.

Since all of these properties are typically entered via the IDE, they are usually found to
contain ASCII only data that is later decoded to binary.

Developers can however embed binary data directly into these properties using several
techniques.

While there is way to hexedit raw data in the .FRX form resource file, this comes with
limitations such as not being able to handle embedded nulls. Another solution is inserting
the data post compilation. With this technique a large buffer is reserved consisting of ASCII
text that has start and end markers. An embedding tool can then be run on the compiled
executable to fill in the buffer with true binary data.

Using form element properties to house text based data is a common practice and has
been seen in VBA , VB6 , and even PDF scripts. Binary data embedded with a post
processing step has been observed in the wild. In both P-Code and Native, access to these
properties will be through COM object VTable calls.

From the Semi-VBDecompiler source, each different control type (including ActiveX) has
its own parser for these compiled in property fields. Results will vary based on tool used if
they can display the data. Semi-Vbdecompiler has an option to dump property blobs to disk
for manual exploration. This may be required to reveal this type of embedded binary data.

UserControl Properties

A special case for the above technique occurs with the built in UserControl type. This
control is used for hosting reusable visual elements and in OCX creation. The control has
two events which are passed a PropertyBag object of its internal binary settings. This
binary data can be easily set in the IDE through property pages. This mechanism can be
used to store any kind of binary data including entire file systems. A public example of this
technique is available[3]. Embedded data will be held per instance of the UserControl in
its properties on the host form.

7/9

Binary Strings

Compiled VB6 executables store internal strings with a length prefix. Similar to the form
properties trick, these entries can be modified post compilation to contain arbitrary binary
data. In order to discern these data blobs from other binary data, in depth understanding
and complex parsing of the VB6 file format would have to occur.

The longest string that can be embedded with this technique is limited by the line length in
the IDE which is 2042 bytes ((1023 bytes – 2 for quotes) *2 for unicode).

VB6 malware can access these strings normally with no special loading procedure. As far
as its concerned the source was simply str = “binary data” .

The IDE can handle a number of unicode characters which can be embedded in the source
for compilation. Full binary data can be embedded using a post processing technique.

Error Line Numbers

VB6 allows for developers to embed line numbers that can be accessed in the event of an
error to help determine its location. This error line number information is stored in a
separate table outside of the byte code stream.

The error line number can be accessed through the Erl() function. VB6 is limited to
0xFFFF line numbers per function, and line number values must be in the 0-0xFFFF

range. Since the size of the embedded data is limited with this technique, short strings
such as passwords and web addresses are the most likely use.

When the code below is run, it will output the message “secret”

8/9

Advanced knowledge of the VB6 file format would be required in order to discern this data
from other parts of the file. Embedded data is sequential and readable if not encoded in
some other way.

Function Bodies

The AddressOf operator allows VB6 easy runtime access to the address of a public
function in a module. It is possible to include a dummy function that is filled with just
placeholder instructions to create a blank buffer within the .text section of the
executable. This buffer can be easily loaded into a byte array with a CopyMemory call. A
simple post compilation embedding could be used to fill in the arbitrary data.

For P-Code compiles, AddressOf returns the offset of a loader stub with a structure offset.
P-Code compiles would require several extra steps but would still be possible.

References

[1] Embedded files appended to executable – theTrik:
 https://github.com/thetrik/CEmbeddedFiles

[2] Embedding binary data in Bitmap images – theTrik:
 http://www.vbforums.com/showthread.php?885395-RESOLVED-Store-binary-data-in

UserControl&p=5466661&viewfull=1#post5466661

[3] UserControl binary data embedding – theTrik:
 https://github.com/thetrik/ctlBinData

Tagged ashidding, malware, P-Code, Research, series, VB

https://github.com/thetrik/CEmbeddedFiles
http://www.vbforums.com/showthread.php?885395-RESOLVED-Store-binary-data-in%20UserControl&p=5466661&viewfull=1#post5466661
https://github.com/thetrik/ctlBinData
https://decoded.avast.io/tag/hidding/
https://decoded.avast.io/tag/malware/
https://decoded.avast.io/tag/p-code/
https://decoded.avast.io/tag/research/
https://decoded.avast.io/tag/series/
https://decoded.avast.io/tag/vb/

9/9

