Nearly half of malware now use TLS to conceal
communications

news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications/

Sean Gallagher April 21, 2021

/ = J

Transport Layer Security has been one of the greatest contributors to the privacy and /%
security of Internet communications over the past decade. The TLS cryptographic protocol is
used to secure an ever-increasing portion of the Internet's web, messaging and application
data traffic. The secure HTTP (HTTPS) web protocol, StartTLS email protocol, Tor
anonymizing network, and virtual private networks such as those based on the OpenVPN
protocol all leverage TLS to encrypt and encapsulate their contents—protecting them from
being observed or modified in transit.

Over the past decade, and particularly in the wake of revelations about mass Internet
surveillance, the use of TLS has grown to cover a majority of Internet communications.
According to browser data from Google, the use of HTTPS has grown from just over 40
percent of all web page visits in 2014 to 98 percent in March of 2021.

It should come as no surprise, then, that malware operators have also been adopting TLS for
essentially the same reasons: to prevent defenders from detecting and stopping deployment
of malware and theft of data. We’ve seen dramatic growth over the past year in malware
using TLS to conceal its communications. In 2020, 23 percent of malware we detected
communicating with a remote system over the Internet were using TLS; today, it is nearly 46
percent.

1/14

https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications/
https://news.sophos.com/en-us/2020/02/18/nearly-a-quarter-of-malware-now-communicates-using-tls/

Malware C2 communications,
TLS vs. other, Q1 2021

_-mTLS (port443)

-

e

E HTTP (port 80)
= HTTP (port 8080)
port 1433

m other

sorPHoslabs

breakdown of malware outbound communications for the first 3 months of 2021.

There’s also a significant fraction of TLS communications that use an Internet Protocol port
other than 443—such as malware using a Tor or SOCKS proxy over a non-standard port
number. We queried against certificate transparency logs with the host names associated
with malware Internet communications on ports other than 443, 80, and 8080, and found
that 49 percent of the hosts had TLS certificates associated with them that were issued by a
Certificate Authority (CA). A small fraction of the others manually checked used self-signed
certificates.

But a large portion of the growth in overall TLS use by malware can be linked in part to the
increased use of legitimate web and cloud services protected by TLS—such as Discord,
Pastebin, Github and Google’s cloud services—as repositories for malware components, as
destinations for stolen data, and even to send commands to botnets and other malware. It is
also linked to the increased use of Tor and other TLS-based network proxies to encapsulate
malicious communications between malware and the actors deploying them.

2/14

https://news.sophos.com/wp-content/uploads/2021/04/Research-Data-TLS-2.jpg

TLS malware callhome
destinations by ISP, Q1 2021

. Google Cloud
e i = BSNL
W vitroconnect GmbH
Vivo

u Turk Telekom

m Airtel

% = TE Data
\\\ m RailTel Corporation Of India Ltd.

m Axxess Networks

SOPHOS lObS All others

breakdown of the destinations of TLS malware “callhome” traffic by ISP for the first three
months of 2021.

Google’s cloud services were the destination for nine percent of malware TLS requests, with
India’s BSNL close behind. During the month of March 2021, we saw a rise in the use of
Cloudflare-hosted malware—Ilargely because of a spike in the use of Discord’s content
delivery network, which is based on Cloudflare, which by itself accounted for 4 percent of the
detected TLS malware that month. We reported over 9,700 malware related links to Discord;
many were Discord-specific, targeting the theft of user credentials, while others were delivery
packages for other information stealers and trojans.

In aggregate, nearly half of all malware TLS communications went to servers in the United
States and India.

3/14

https://news.sophos.com/wp-content/uploads/2021/04/Research-Data-TLS-3.jpg

TLS-based malware callhome traffic by
destination country

ﬂ - 2 A ; - s e -2 23.28%

soPHoslabs

We’'ve seen an increase in the use of TLS use in ransomware attacks over the past year,
especially in manually-deployed ransomware—in part because of attackers’ use of modular
offensive tools that leverage HTTPS. But the vast majority of what we detect day-to-day in
malicious TLS traffic is from initial-compromise malware: loaders, droppers and document-
based installers reaching back to secured web pages to retrieve their installation packages.

To gain insight into how usage of TLS in malware has changed, we took a deep dive into our
detection telemetry to both measure how much TLS is used by malware, identify the most
common malware that leverage TLS, and how those malware make use of TLS-encrypted
communications. Based on our detection telemetry, we found that while TLS still makes up
an average of just over two percent of the overall traffic Sophos classifies as “malware
callhome” over a three-month period, 56 percent of the unique C2 servers (identified by DNS
host names) that communicated with malware used HTTPS and TLS. And of that, nearly a
quarter is with infrastructure residing in Google’s cloud environment.

Surprise packages

Malware communications typically fall into three categories: downloading additional malware,
exfiltration of stolen data, and retrieval or sending of instructions to trigger specific functions
(command and control). All these types of communications can take advantage of TLS
encryption to evade detection by defenders. But the majority of TLS traffic we found tied to
malware was of the first kind: droppers, loaders and other malware downloading additional
malware to the system they infected, using TLS to evade basic payload inspection.

a/14

https://news.sophos.com/wp-content/uploads/2021/03/Research-Data-TLS-1.jpg

It doesn’t take much sophistication to leverage TLS in a malware dropper, because TLS-
enabled infrastructure to deliver malware or code snippets is freely available. Frequently,
droppers and loaders use legitimate websites and cloud services with built-in TLS support to
further disguise the traffic. For example, this traffic from a Bladabindi RAT dropper shows it
attempting to retrieve its payload from a Pastebin page. (The page no longer exists.)

26 17.334799 192.168.122.1 192.168.122.26 DNS. 184 Standard query response @x5182 A pastebin.com A 184.23,98.190 A 184,23.99,192
27 17.352211 192.168.122.26 pastebin.com TCP 66 50928 - 443 [SYN] Seq=0 Win=B192 Len=8 M55=1468 W5=256 SACK_PERM=1
28 17.2890852 pastebin.com 192.168.122.26 TCP 66 443 - 50928 [SYN, ACK] Seq=0 Ack=1 Win=28088 Len=@ MS5=148@ SACK_PERM=1 W5=512
29 17.389332 192.168.122.26 pastebin.com TCP 54 50028 - 443 [ACK] Seq=1 Ack=1 Win=65792 Len=8
30 17.396678 192.168.122.26 pastebin.com Client Hello
31 17.432B76 pastebin.com 192.168.122.26 TCP B8 443 - 50928 [ACK] Seq=1 Ack=186 Win=29184 Len=@
37 17.4T7896 072 = ed=
68 -
ar 82 <Ig ed>
35 18.689608 pastebin.com 192,168,122, 26 TLSvl. 1436 Server Hello
36 18.689956 192.168.122.26 pastebin.com TCP 54 50928 - 443 [ACK] 5eq=1B6 Ack=1383 Win=64256 Len=@
37 18.690326 pastebin.com 192.168.122.26 TLSv1l. 1436 Certificate, Certificate Status
38 18.6%90432 192,168.122.26 pastebin.com TCP 54 50028 - 443 [ACK] Seq=186 Ack=2765 Win=65792 Len=9
39 18.690712 pastebin.com 192.168.122.26 TLSv1. 66 Server Key Exchange, Server Hello Done
48 18.690829 192.168.122.26 pastebin. com TCP 54 50928 = 443 [ACK] Seq=186 Ack=2777 Win=65536 Len=@
41 18.785727 192.168.122.26 pastebin.com TLSv1.. 188 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
42 18.T44677 pastebin.com 192.168.122.26 TCP 68 443 - 50928 [ACK] Seq=2777 Ack=312 Win=29184 Len=9
43 18.870721 pastebin.com 192.168.122. 26 TLSw1. 185 Change Cipher Spec, Encrypted Handshake Message

TLS traffic from a Bladabini RAT dropper attempting to retrieve second-stage code from
Pastebin over TLS.

We've seen numerous cases of malware behaving this way in our research. The PowerShell-
based dropper for LockBit ransomware was observed retrieving additional script from a
Google Docs spreadsheet via TLS, as well as from another website. And a dropper for
AgentTesla (discussed later in this report) also has been observed accessing Pastebin over
TLS to retrieve chunks of code. While Google and Pastebin often quickly shut down
malware-hosting documents and sites on its platform, many of these C2 sources are
abandoned after a single spam campaign, and the attackers simply create new ones for their
next attack.

Sometimes malware uses multiple services this way in a single attack. For example, one of
the numerous malware droppers we found in Discord’s content delivery network dropped
another stage also hosted on Discord, which in turn attempted to load an executable directly
from GitHub. (The GitHub code had already been removed as malicious; we disclosed the
initial stages of the malware attack to Discord, along with numerous other malware, who
removed them.)

5/14

https://news.sophos.com/wp-content/uploads/2021/03/pastebin_dropper.png
https://news.sophos.com/en-us/2021/02/02/agent-tesla-amps-up-information-stealing-attacks/

[192.168.122.32

godzilla.local 78 Standard query Bx48e5 A cdn.discordapp.com

192.168.122.32 godzilla.local DNS 78 Standard query ©x48e5 A cdn.discordapp.com
godzilla.local 192.168.122.32 DNS 158 Standard query response @x40e5 A cdn.discordapp.com A 162.159..
192.168.122.32 cdn.discordapp.com TCP 54 49853 . 443 [ACK] Seg=1 Ack=1 Win=263168 Len=0
192.168.122.32 cdn.discordapp.com TLSvl.2 228 Client Hello
cdn.discordapp.com 192.168.122.32 TCP 54 443 . 49853 [ACK] Seg=1 Ack=175 Win=29184 Len=0
cdn.discordapp.com 192.168.122.32 TLSv1.2 1436 Server Hello
cdn.discordapp.com 192.168.122.32 TLSv1.2 1882 Certificate, Server Key Exchange, Server Hello Done
192.168.122.32 cdn.discordapp.com TCP 54 49853 _ 443 [ACK] Seq=175 Ack=2411 Win=263168 Len=0
192.168.122.32 cdn.discordapp.com TLSvl.2 147 Client Key Exchange, Change Cipher Spec, Encrypted Handshake ..
cdn.discordapp.com 192.168.122.32 TLSv1.2 312 New Session Ticket, Change Cipher Spec, Encrypted Handshake M.
192.168.122.32 cdn.discordapp.com TLSvl.2 218 Application Data
cdn.discordapp.com 192.168.122.32 TCP 1436 443 . 49853 [ACK] Seq=2669 Ack=432 Win=30208 Len=1382 [TCP se..
cdn.discordapp.com 192.168.122.32 TLSv1.2 1436 Application Data [TCP segment of a reassembled PDU]
cdn.discordapp.com 192.168.122.32 TLSv1.2 1436 Application Data [TCP segment of a reassembled PDU]
192.168.122.32 cdn.discordapp.com TCP 54 49853 - 443 [ACK] Seq=432 Ack=5433 Win=263168 Len=0
cdn.discordapp.com 192.168.122.32 TLSv1.2 1436 Application Data, Application Data
cdn.discordapp.com 192.168.122.32 TLSv1.2 324 Application Data
192.168.122.32 cdn.discordapp.com TCP 54 49853 _ 443 [ACK] Seq=432 Ack=8467 Win=263168 Len=0 /\
54 <Ignored=
54 <Ignored=
192.168.122.32 godzilla.local DNS 85 Standard query @x062b A raw.githubusercontent.com
192.168.122.32 godzilla.local DNS 85 Standard query @x862b A raw.githubusercontent.com
godzilla.local 192.168.122.32 DNS 149 Standard query response @x@62b A raw.githubusercontent.com A ..
192.168.122.32 raw.githubuserconte.. TCP 54 49854 _ 443 [ACK] Seg=1 Ack=1 Win=263168 Len=0
192.168.122.32 raw.githubuserconte. TLSv1.2 235 Client Hello
raw.githubusercontent.com 192.168.122.32 TCP 54 443 _. 49854 [ACK] Seq=1 Ack=182 Win=29184 Len=0
raw.githubusercontent.com 192.168.122.32 TLSv1.2 1436 Server Hello
raw.githubusercontent.com 192.168.122.32 TCP 1436 443 . 49854 [ACK] Seq=1383 Ack=182 Win=29184 Len=1382 [TCP se..
raw.githubusercontent.com 192.168.122.32 TLSv1.2 745 Certificate, Server Key Exchange, Server Hello Done
192.168.122.32 raw.githubuserconte.. TCP 54 49854 _ 443 [ACK] Seq=182 Ack=3456 Win=263168 Len=0
192.168.122.32 raw.githubuserconte. TLSv1.2 147 Client Key Exchange, Change Cipher Spec, Encrypted Handshake ..
raw.githubusercontent.com 192.168.122.32 TLSv1.2 312 New Session Ticket, Change Cipher Spec, Encrypted Handshake M.
192.168.122.32 raw.githubuserconte. TLSv1.2 241 Application Data
raw.githubusercontent.com 192.168.122.32 TCP 54 443 _. 49854 [ACK] Seq=3714 Ack=462 Win=30208 Len=0
raw.githubusercontent.com 192.168.122.32 TLSv1.2 874 Application Data, Application Data
102 1RR 172 22 raw nithuhnsereanta TrP R4 AGRRA . 442 TAPK1 San=4R? Ark=4R24 Win=?R1RA/ | An=A

packet capture of malware retrieving downloads from Discord and GitHub.

Malware download traffic actually makes up the majority of the TLS-based C2 traffic we
observed. In February 2021, for instance, droppers made up over 90 percent of the TLS C2
traffic—a figure that closely matches the static C2 detection telemetry data associated with
similar malware month-to-month from January through March of 2021.

Covert channels

Malware operators can use TLS to obfuscate command and control traffic. By sending
HTTPS requests or connecting over a TLS-based proxy service, the malware can create a
reverse shell, allowing commands to be passed to the malware, or for the malware to

retrieve blocks of script or required keys needed for specific functions. Command and control

servers can be a remote dedicated web server, or they can be based on one or more
documents in legitimate cloud services. For example, the Lampion Portuguese banking

trojan used a Google Docs text document as the source for a key required to unlock some of

its code—and deleting the document acted as a kill-switch. By leveraging Google Docs, the
actors behind Lampion were able to conceal controlling communications to the malware and
evade reputation-based detection by using a trusted host.

6/14

https://news.sophos.com/wp-content/uploads/2021/03/discord_attack.png

File is in owner's trash

You will soon permanently lose access to this file. For
continued access, please make a copy.

Go to Docs home screen Make a copy

The (now trashed) Google document used to pass a key to the Lampion banking trojan.

The same sort of connection can be used by malware to exfiltrate sensitive information—
transmitting user credentials, passwords, cookies, and other collected data back to the
malware’s operator. To conceal data theft , malware can encapsulate it in a TLS-based
HTTPS POST, or export it via a TLS connection to a cloud service API, such as Telegram or
Discord “bot” APIs.

SystemBC

One example of how attackers use TLS maliciously is SystemBC, a multifaceted malicious
communications tool used in a number of recent ransomware attacks. The first samples of
SystemBC, spotted over a year ago, acted primarily as a network proxy, creating what
amounted to a virtual private network connection for attackers based on SOCKS5 remote
proxy connection encrypted with TLS—providing concealed communications for other
malware. But the malware has continued to evolve, and more recent samples of SystemBC
are more full-featured remote access trojans (RATs) that provide a persistent backdoor for
attackers once deployed. The most recent version of SystemBC can issue Windows
commands, as well as deliver and run scripts, malicious executables, and dynamic link
libraries (DLLs)—in addition to its role as a network proxy.

7/14

https://news.sophos.com/wp-content/uploads/2021/04/incio_key-lampion-googledocs.png

SystemBC is not entirely stealthy, however. There’s a lot of non-TLS, non-Tor traffic
generated by SystemBC—symptomatic of the incremental addition of features seen in many
long-lived malware. The sample we recently analyzed has a TCP “heartbeat” that connects
over port 49630 to a host hard-coded into the SystemBC RAT itself.

The first TLS connection is an HTTPS request to a proxy for [Pify, an API that can be used to
obtain the public IP address of the infected system. But this request is sent not on port 443,
the standard HTTPS port—instead, it's sent on port 49271. This non-standard port usage is
the beginning of a pattern.

7961 143.4885056.. 192.168.122.26 192.168.122.1 DNS 73 Standard query @x6e5d A api.ipify.org
7962 143.5390583.. 192.168.122.1 192.168.122.26 DNS 299 Standard query response @x6e5d A api.ipify.org CNAME nagano-19599.herokussl.com CNAME elb@97307-9349..
7963 143.5489982.. 192.168.122.26 e1b097307-93492493.. TCP 66 49271 - 443 [SYN] Seq=0 Win=8192 Len=0 MSS=146@ WS=256 SACK_PERM=1
7964 143.5863910.. elb@97307-934924932.us-east-1.elb.amazo.. 192.168.122.26 TCP 66 443 - 49271 [SYN, ACK] Se Ack=1 Win=28000 Len=0 MSS=1400 SACK_PERM=1 WS=512
7965 143.5868963.. 192.168.122.26 e1b097307-93492493.. TCP 60 49271 -+ 443 [ACK] Seq=1 Ack=1 Win=65792 Len=0
143.5878708... . e1b097307-93492493... Client Hello
7967 143.6232739.. fe80::99da:ebb2:487f:ddd3 ff02::c SSDP 208 M-SEARCH * HTTP/1.1
7968 143.6275434.. elb097307-934924932.us-east-1.elb.amazo.. 192.168.122.26 TCP 54 443 - 49271 [ACK] Seg=1 Ack=126 Win=28160 Len=0
7969 143.6764102.. elb097307-934924932.us-east-1.elb.amazo.. 192.168.122.26 TLSv1 1436 Server Hello
7970 143.6770072.. elb097307-934924932.us-east-1.elb.amazo.. 192.168.122.26 TCP 1436 443 - 49271 [ACK] Seq=1383 Ack=126 Win=28160 Len=1382 [TCP segment of a reassembled PDU]
7971 143.6772627.. 192.168.122.26 e1b097307-93492493.. TCP 6@ 49271 - 443 [ACK] Seq=126 Ack=2765 Wi 5792 Len=0
7972 143.6775198.. elb097307-934924932,us-east-1.elb.amazo.. 192.168.122.26 TCP 1386 443 - 49271 [PSH, ACK] Seq=2765 Ack=126 Win=28160 Len=1332 [TCP segment of a reassembled PDU]
7973 143.6777191.. elb@97307-934924932.us-east-1.elb.amazo.. 192.168.122.26 TCP 1436 443 - 49271 [ACK] Seq=4097 Ack=126 Win=28160 Len=1382 [TCP segment of a reassembled PDU]
7974 143.6777213.. elb097307-934924932.us-east-1.elb.amazo.. 192.168.122.26 TLSv1 548 Certificate, Server Key Exchange, Server Hello Done -
7975 143.6778502.. 192.168.122.26 e1b097307-93492493.. TCP 60 49271 - 443 [ACK] Seq=126 Ack=5479 Win=65792 Len=0
7976 143.6912883.. 192.168.122.26 €1b097307-93492493.. TLSv1 188 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message —|
7977 143.7272955.. elb@97307-934924932.us-east-1.elb.amazo.. 192.168.122.26 TCP 54 443 - 49271 [ACK] Seq=5973 Ack=260 Win=29184 Len=0 =
7978 143.7514021.. elb097307-934924932.us-east-1.elb.amazo.. 192.168.122.26 TLSv1 113 Change Cipher Spec, Encrypted Handshake Message
7979 143.7581767.. 192.168.122.26 e1b097307-93492493.. TLSv1 235 Application Data
7980 143.8242380.. elb097307-934924932,us-east-1.elb.amazo.. 192.168.122.26 TLSv1 267 Application Data
7981 143.8282968.. elb@97307-934924932.us-east-1.elb.amazo.. 192.168.122.26 TLSv1 91 Encrypted Alert
7982 143.8285894.. 192.168.122.26 e1b097307-93492493.. TCP 60 49271 - 443 [ACK] Seq=441 Ack=6282 Win=64768 Len=0
143.8296287.. 192.168.122.26 e1b097307-93492493.. TCP 49271 - 443 [FIN, ACK] Seq=441 Ack=6282 Win=64768 Len=0

v Transport Layer Security
v TLSvl Record Layer: Handshake Protocol: Client Hello

Content Type: Handshake (22)

Version: TLS 1.0 (@x@301)

Length: 120

v Handshake Protocol: Client Hello

Handshake Type: Client Hello (1)
Length: 116
Version: TLS 1.0 (0x0:
Random: 60666bb8b3878505f516612c42ba6501e29c4347f0a28873d0f7ab881ca70fa
Session ID Length: @
Cipher Suites Length: 28

» Cipher Suites (14 suites)

SystemBC using TLS and HTTPS to connect to IPify to obtain the system’s public Internet
address.

SystemBC then attempts to obtain data about the current Tor network consensus, connecting
to hard-coded IP addresses with an HTTP GET request, but via ports 49272 and 49273.
SystemBC uses the connections to download information about the current Tor network
configuration.

7985 143.8836284.. elb097307-934924932.us-east-1.elb.amazo.. 192.168.122.26 54 443 - 49271 [RST, ACK] Seq=6282 Ack=442 Win=30208 Len=0
7986 143.8845481.. maatuska.4711.se 192.168.122.26 TCP 66 443 - 49272 [SYN, ACK] Seq=0 Ack=1 Win=28000 Len=0 MSS=1400 SACK_PERM=1 WS=512
7987 143.8849551.. 192.168.122.26 maatuska.4711.se TCP 60 49272 -+ 443 [ACK] Seq=1 Ack=1 Win=65792 Len=0
7988 143.8853319.. 192.168.122.26 maatuska.4711.se HTTP 235 GET /tor/status-vote/current/consensus HTTP/1.0
7989 143.9320585.. maatuska.4711.se 192.168.122.26 TCcp 54 443 - 49272 [ACK] Seq=1 Ack=182 Win=29184 Len=0
7990 144,0243712.. 42 <Ignored>
i 7991 144.0248658.. 60 <Ignored>
7992 144.1955701.. maatuska.4711.se 192.168.122.26 141 443 - 49272 [PSH, ACK] Seq=1 Ack=182 Win=29184 Len=87 [TCP segment of a reassembled PDU]

7993 144.4042533.. 192.168.122.26 maatuska.4711.se 60 49272 - 443 [ACK] Seq=182 Ack=88 Win=65536 Len=0

7994 144.4337181.. maatuska.4711.se 192.168.122.26 141 [TCP Spurious Retransmission] 443 - 49272 [PSH, ACK] Seq=1 Ack=182 Win=29184 Len=87
7995 144.4340656.. 192.168.122.26 maatuska.4711.se 66 [TCP Dup ACK 7993#1] 49272 - 443 [ACK] Seq=182 Ack=88 Win=65536 Len=0 SLE=1 SRE=88
7996 144.7050248.. 245 <Ignored>
7997 145.0483795. 52 <Ignored>
7998 146.6233290. 208 <Ignored>
7999 147.0323489. 52 <Ignored>
! 8000 149.0483400. 52 <Ignored>

8001 149.0650777.. maatuska.4711.se 192.168.122.26 29184 Len=0

8002 149.0666245.. 192.168.122.26 dannenberg. torauth.. TCP q MSS=1460 WS=256 SACK_PERM=1

8003 149.2262751.. dannenberg.torauth.de 192.168.122.26 TCcP 66 80 - 49273 [SYN, ACK] Seq=@ Ack=1 Win=16384 Len=0 MSS=146@ SACK_PERM=1 WS=64

8004 149.2267445.. 192.168.122.26 dannenberg. torauth.. TCP 60 49273 - 80 [ACK] Seq=1 Ack=1 Win=65536 Len=0

8005 149.2272769.. 192.168.122.26 dannenberg. torauth.. HTTP 237 GET /tor/status-vote/current/consensus HTTP/1.0

8006 149.3889234.. dannenberg.torauth.de 192.168.122.26 TCcP 1436 80 - 49273 [ACK] Seq=1 Ack=184 Win=16576 Len=1382 [TCP segment of a reassembled PDU]

8007 149.3889356.. dannenberg.torauth.de 192.168.122.26 TCcP 672 80 - 49273 [PSH, ACK] Seq=1383 Ack=184 Win=16576 Len=618 [TCP segment of a reassembled PDU]

SystemBC collects Tor network data.

Next, SystemBC establishes a TLS connection to a Tor gateway picked from the Tor network
data. Again, it uses another non-standard port: 49274. And it builds the Tor circuit to the
destination of its Tor tunnel using directory data collected via port 49275 via another HTTP
request. There, the progression of sequential ports ends, and in the sample we analyzed it
tries to fetch another malware executable via an open HTTP request over the standard port.

8/14

https://www.ipify.org/
https://news.sophos.com/wp-content/uploads/2021/04/systembc-ipify.png
https://news.sophos.com/wp-content/uploads/2021/04/systembc-get-tor-status-vote.png

SystemBC Network

o je— 2
- gentexman9z?] pns Lockup for r—' R
7 . TCP
4 heartbeat / keep
F ; HTTPS
gentexmana7 xyz allye Bsvar (Port49271)
knzmtxservd37 xyz DNS :
advertrex20 xyz Ipify.com?
—
Obtains Public IP =
HTTP maatuska.4711.se
Fetch Tor Port —
—
MNetwork 49212 T =

Consensus Data
_
Eon Dannenberg.torauth.de
ne |
T (Tor Tunnel) Establish Tor
Proxy connection

133.172.153.165 (Tor relay) and build route

Port
(49275 P F.HTrtT,;j
=i Downloads 0 ;
additional GET —{
163.182.136.125 magf;“:m henos.exs . 51.33.200

(Tor Directory)

The file retrieved by this sample, henos.exe, is another backdoor that connects over TLS on
the standard port (443) to a website that returns links to Telegram channels—a sign that the
actor behind this SystemBC instance is evolving tactics. SystemBC is likely to continue to
evolve as well, as its developers address the mixed use of HTTP and TLS and the somewhat
predictable non-standard ports that allow SystemBC to be easily fingerprinted.

AgentTesla

Like SystemBC, AgentTesla—an information stealer that can also function in some cases as
a RAT—has evolved over its long history. Active for more than seven years, AgentTesla has
recently been updated with an option to use the Tor anonymizing network to conceal traffic
with TLS.

We’'ve also seen TLS used in one of AgentTesla’s most recent downloaders, as the
developers have used legitimate web services to store chunks of malware encoded in
base64 format on Pastebin and a lookalike service called Hastebin. The first stage
downloader further tries to evade detection by patching Windows’ Anti-Malware Software
Interface (AMSI) to prevent in-memory scanning of the downloaded code chunks as they're
joined and decoded.

9/14

https://news.sophos.com/wp-content/uploads/2021/04/SystemBC-Network-Behavior-2.jpg
https://news.sophos.com/en-us/2021/02/02/agent-tesla-amps-up-information-stealing-attacks/

269 152.803362083 192.168.122.26
270 152.937329910 godzilla.local
~ 271 152.949194214 192.168.122.26
272 152.992818931 pastebin.com
273 152.993716263 192.168.122.26
274 153.008063420 192.168.122.26
275 153.043395811 pastebin.com

276 153.049267338 pastebin.com
277 153.049274532 pastebin.com
278 153.049984158 192.168.122.26
279 153.061940658 192.168.122.26
280 153.098709762 pastebin.com
281 153.140478308 192.168.122.26
282 153.176194916 fe80::99da:ebb2:487f:ddd3
283 153.214@70157 pastebin.com
284 153.644065316 godzilla.local
285 153.732734623 pastebin.com
286 153.941204237 192 168 122 26

P e b

godzilla.local
192.168.122.26
pastebin.com
192.168.122.26
pastebin.com
pastebin.com
192.168.122.26
192.168.122.26
192.168.122.26
pastebin.com
pastebin.com
192.168.122.26
pastebin.com
ffe2::c
192.168.122.26
239.255.255,250
192.168.122.26
pastebln com

DNS 72 Standard guery @x5b23 A
DNS 104 Standard query response
TCP 66 49430 . 443 [SYN] Seq=0
TCP 66 443 . 49430 [SYN, ACK] !
TCP 60 49430 - 443 [ACK] Seg=1

TLSv1.2 230 Client Hello

54 443 _ 49430 [ACK] Seg=1
TLSv1.2 1436 Server Hello
TLSv1.2 1152 Certificate, Server Key
TCP 60 49430 - 443 [ACK] Seg=1’
TLSv1.2 180 Client Key Exchange, Chi
TLSv1.2 185 Change Cipher Spec, Ency\
TLSv1.2 157 Application Data

S5DP 288 M-SEARCH * HTTP/1.1
TCP 54 443 . 49430 [ACK] Seq=2
55DP 208 M-SEARCH * HTTP/1.1
TLSv1.2 1237 Application Data, Applit

TCP 60 49430__ 443 [ACK] Seq 4

packet capture of traffic from AgentTesla’s installer attempting to connect to Pastebln over
TLS.

|_ Baseéd chunk STAGE 1
|_ Downloader [NET)
|: Loader {.MET)

| J Agent Tesla (.MET)

= Diowwmiload chunks
- AMS] Hook

st i § st li

_O

- Jain chunks

- Decode base6id
- Decrypt data

= Gat lader

STAGE 2

- Anti Debugging

- Decrypt AgentTesla

- Create a chikl process
- Inject Agent Tesla
(Process hollowing)

@ l

The Tor addition to AgentTesla itself can be used to conceal communications over HTTP.
There is also another optional C2 protocols in AgentTesla that that could be TLS protected—
the Telegram Bot API, which uses an HTTPS server for receiving messages. However, the
AgentTesla developer didn’t implement HTTPS communications in the malware (at least for
now)—it fails to execute a TLS handshake. Telegram accepts unencrypted HTTP messages

sent to its bot API.

Dridex

Dridex is yet another long-lived malware family that has seen substantial recent evolution.
Primarily a banking Trojan, Dridex was first spotted in 2011, but it has evolved substantially. It
can load new functionality through downloaded modules, in a fashion similar to the Trickbot
Trojan. Dridex modules may be downloaded together in an initial compromise of the affected

https://news.sophos.com/wp-content/uploads/2021/04/teslaimage.png
https://news.sophos.com/wp-content/uploads/2021/01/packer2_agent_tesla.png

system, or retrieved later by the main loader module. Each module is responsible for
performing specific functions: stealing credentials, exfiltrating browser cookie data or
security certificates, logging keystrokes, or taking screenshots.

Dridex’s loader has been updated to conceal communications, encapsulating them with TLS.
It uses HTTPS on port 443 both to download additional modules from and exfiltrate collected
data to the C2 server. Exfiltrated data can additionally be encrypted with RC4 to further
conceal and secure it. Dridex also has a resilient infrastructure of command and control (C2)
servers, allowing installed malware to fail over to a backup if its original C2 server goes
down.

These updates have made Dridex a continuing threat, and Dridex loaders are among the
most common families of malware detected using TLS—overshadowed only by the next
group of threats in our TLS rogues’ gallery: off-the-shelf “offensive security” tools repurposed
by cybercriminals.

Metasploit and Cobalt Strike

Offensive security tools have long been used by malicious actors as well as security
professionals. These commercial and open-source tools, including the modular Cobalt Strike
and Metasploit toolkits, were built for penetration testing and “red team” security evaluations
—but they’ve been embraced by ransomware groups for their flexibility.

Over the last year, we’ve seen a surge in the use of tools derived from offensive security
platforms in manually-deployed ransomware attacks, used by attackers to execute scripts,
gather information about other systems on the network, extract additional credentials, and
spread ransomware and other malware.

http-stager {

set uri_x86 "/menus.aspx”;

set uri_x64 "/Menus.aspx”;

client
{ A

header “Host™ I ;
header "Accept" "*/*";
header "Accept-Language” "en-US,en;gq=8.3";

header "Referer" "https:/f—/usfk_\,fflouisuillef312-S-Fourth—st. html™;

header "Connection” "close™;

SOPHOS lé%s
Cobalt Strike configuration file from a recent Conti ransomware attack. The Cobalt Strike

beacon used HTTPS and TLS to communicate with the C2 server in the attack.

Taken together, Cobalt Strike beacons and Metasploit “Meterpreter” derivatives made up
over 1 percent of all detected malware using TLS—a significant number in comparison to
other major malware families.

11/14

https://news.sophos.com/en-us/2021/02/16/conti-ransomware-evasive-by-nature/
https://news.sophos.com/wp-content/uploads/2021/04/cobalt-config-32-vs-64.png

And all the rest

Potentially unwanted applications (PUAs), particularly on the macOS platform, also leverage
TLS, often through browser extensions that connect surreptitiously to C2 servers to exfiltrate
information and inject content into other web pages. We've seen the Bundlore use TLS to
conceal malicious scripts and inject advertisements and other content into web pages,
undetected. Overall, we found over 89 percent of macOS threats with C2 communications
used TLS to call home or retrieve additional harmful code.

There are many other privacy and security threats lurking in TLS traffic beyond malware and
PUAs. Phishing campaigns increasingly rely on websites with TLS certificates—either
registered to a deceptive domain name or provided by a cloud service provider. Google
Forms phishing attacks may seem easy to spot, but users trained to “look for the lock”
alongside web addresses in their browser may casually type in their personally identifying
data and credentials.

12/14

https://news.sophos.com/en-us/2020/06/18/new-bundlore-adware-targets-macos-with-updated-safari-extensions/

' PayPal

Name:

Your answer

EMAIL ID:

Your answer

TEL:

Your answer

&

Even with the Comic Sans font and the Google Forms URL, some may still fall for this phish.

Traffic analysis

All of this adds up to a more than 100 percent increase in TLS-based malware
communications since 2020. And that’s a conservative estimate, as it's based solely on what
we could identify through telemetry analysis and host data.

13/14

https://news.sophos.com/wp-content/uploads/2021/04/paypalphish.png

As we'’ve noted, some use TLS over non-standard IP ports, making a completely accurate
assessment of TLS usage impossible without deeper packet analysis of their
communications. So the statistics sited in this report do not reflect the full range of TLS-
based malicious communications—and organizations should not rely on the port numbers
related to communications alone to identify potential malicious traffic. TLS can be
implemented over any assignable IP port, and after the initial handshake it looks like any
other TCP application traffic.

Even so, the most concerning trend we’ve noted is the use of commercial cloud and web
services as part of malware deployment, command and control. Malware authors’ abuse of
legitimate communication platforms gives them the benefit of encrypted communications
provided by Google Docs, Discord, Telegram, Pastebin and others—and, in some cases,
they also benefit from the “safe” reputation of those platforms.

We also see the use of off-the-shelf offensive security tools and other ready-made tools and
application programming interfaces that make using TLS-based communications more
accessible continuing to grow. The same services and technologies that have made
obtaining TLS certificates and configuring HTTPS websites vastly simpler for small
organizations and individuals have also made it easier for malicious actors to blend in with
legitimate Internet traffic, and have dramatically reduced the work needed to frequently shift
or replicate C2 infrastructure.

All of these factors make defending against malware attacks that much more difficult. Without
a defense in depth, organizations may be increasingly less likely to detect threats on the wire
before they have been deployed by attackers.

SophosLabs would like to acknowledge Suriya Natarajan, Anand Aijan, Michael Wood,
Sivagnanam Gn, Markel Picado and Andrew Brandt for their contributions to this
report.

14/14

