
1/23

April 20, 2021

How attackers abuse Access Token Manipulation
(ATT&CK T1134)

elastic.co/blog/how-attackers-abuse-access-token-manipulation

In our previous blog post on Windows access tokens for security practitioners, we covered:

The relationship between logon sessions and access tokens
How network authentication works in Windows environments

Having covered some of the key concepts in Windows security, we will now build on this
knowledge and start to look at how attackers can abuse legitimate Windows functionality to
move laterally and compromise Active Directory domains.

This blog has deliberately attempted to abstract away the workings of specific Windows
network authentication protocols (e.g., NTLM and Kerberos) where possible. As a
consequence, there may be instances where behaviour unique to these protocols differs with
the behavior described below. It also assumes some basic understanding of the Kerberos
authentication protocol .

Additionally, the material covered in this blog series was used for a BlackHat 2020
presentation, “Detecting Access Token Manipulation”. The presentation can be found here
and the slides here.

1

https://www.elastic.co/blog/how-attackers-abuse-access-token-manipulation
https://www.elastic.co/blog/introduction-to-windows-tokens-for-security-practitioners
https://www.youtube.com/watch?v=RMVyYvt0bLY
https://i.blackhat.com/USA-20/Thursday/us-20-Burgess-Detecting-Access-Token-Manipulation.pdf

2/23

Access Token Manipulation (ATT&CK technique: T1134)

Having explained the basic principles of how logon sessions and access tokens work in our
previous blog post, both locally and for distributed applications, this section will explain how
attackers can abuse access tokens and target the fundamental trust relationships in
Windows domains to compromise entire networks. The aim of this section is to describe
access token manipulation techniques used by attackers within the context of a simulated
compromise.

As a note, there is already an extensive body of excellent research on access token
manipulation (which will be linked to liberally throughout this post). This blog attempts to
build on this body of knowledge via considering access token manipulation from a different
approach, namely through the relationship between access tokens, logon sessions and
cached credentials. In the author's opinion, any description of token manipulation without
considering these relationships represents only the tip of the iceberg. As a consequence, this
blog’s definition of access token manipulation is perhaps much broader than commonly
understood.

Initial compromise

In the event that an attacker obtains a foothold in a network via spear phishing, they will
typically end up with a shell running in the security context of the compromised user. This
could be achieved via spawning a new process or injecting directly into memory (depending
on the payload), but the end result is the same: the attacker’s code is running in a process
which has an access token belonging to the compromised user.

This means that any local access checks will use the compromised user’s access token
and any remote authentication attempts will use the compromised user’s cached
credentials . Hence, the attacker can, both locally and across the network, perform all the
actions that the compromised user can. For example, if any internal web applications use
Windows SSO, an attacker will be able to access them as if they were the user.

Token Manipulation: The ‘Art of the possible’

Typically, an attacker will want to move from the compromised endpoint to another host as
quickly as possible . When considering lateral movement from a token manipulation
perspective, the attacker effectively has three options , each of which is constrained by the
fundamental relationship between access tokens, logon sessions, and cached credentials,
as illustrated below:

2

3

4

https://www.elastic.co/blog/introduction-to-windows-tokens-for-security-practitioners
https://attack.mitre.org/techniques/T1134/

3/23

Figure 1 - The relationship between access tokens, logon sessions and cached credentials

If an attacker wants to move laterally via Windows SSO then all of these three links must be
in place (e.g., they have a handle to a token which is linked to a logon session backed by
their target credentials). Otherwise, an attacker’s freedom of movement relies on either
creating new links (e.g., new logon sessions) or modifying existing ones (e.g., changing
cached credentials or the logon session that their access token points to). These constraints
are discussed in more detail in the three options below:

1. Steal the token of an already logged-on privileged user (non-network
logon)

If another privileged user is already logged on to the compromised host, an attacker can
escalate their privileges and obtain a handle to an access token representing this user.
Irrespective of whether the attacker impersonates the stolen token or starts a new process, if
that token is linked to a non-network logon session, it will have cached credentials, and
hence the attacker can auth off the box to another host . Hence, this technique allows an
attacker to use another user’s credentials to access remote hosts across the network (via
Windows SSO), and therefore pivot without needing to dump credentials .

As a note, token manipulation attacks generally relate to two distinct objectives: moving
laterally (which this blog is concerned with) and local privilege escalation . Token theft tends
to be associated with the latter (e.g., stealing/impersonating a token for the purpose of
bypassing local access checks, rather than for the purpose of using the cached credentials
for remote authentication) and so this blog will not discuss it in any further detail, but the
following resources are useful further reading:

2. Create a new logon session with stolen credentials and impersonate the
returned token or spawn a new process with it

5

6

7

4/23

In this case, there is no privileged user already logged on (and hence no corresponding
useful access token/logon session), but the attacker still needs to find a way to change their
security context.

Hence, the attacker must find credentials elsewhere and use these stolen credentials to
create a new logon session as the compromised user. As Windows will automatically cache
credentials for certain logon types, the attacker can now obtain a newly minted access token
which is backed up by the stolen credentials. Once the attacker has a handle to a token
representing the compromised user, they can authenticate off the box making use of the
standard Windows SSO process.

Typically, plain text credentials are found by attackers via either Kerberoasting or searching
for unsecured plain text credentials across all accessible resources, such as network shares,
Sharepoint, internal wikis, enterprise GitHub, Zendesk, etc.

3. Change the cached credentials associated with their current access token
to stolen credentials (e.g., legitimately via an API or “illegitimately” by
directly modifying lsass memory)

In this scenario, rather than create a new logon session, the attacker modifies the cached
credentials associated with their current access token (and hence logon session). As we
shall see, many Windows Security Support Providers (SSPs) provide native ways to do this
(and which do notrequire elevated privileges).

Alternatively, attackers can go the “direct” route and manually modify cached credentials
stored in lsass. This requires elevated privileges in order to obtain a write handle (e.g.,
PROCESS_VM_WRITE) to lsass via OpenProcess. This is typical of pass-the-hash type
attacks as we shall cover later on.

Access Token Manipulation attacks

This blog post will look at four common techniques used by attackers (all of which can be
classified as variations of option 3 above):

The NETONLY flag
Pass-The-Ticket
Pass-The-Hash
Overpass-The-Hash

1. The NETONLY flag

The Windows API provides the LogonUser function to create a new logon session for a given
user (or principal) :

8

9

https://www.elastic.co/blog/introduction-to-windows-tokens-for-security-practitioners
https://github.com/EmpireProject/Empire/blob/master/data/module_source/credentials/Invoke-Kerberoast.ps1
https://docs.microsoft.com/en-us/windows/win32/rpc/security-support-providers-ssps-
https://docs.microsoft.com/en-us/windows/win32/procthread/process-security-and-access-rights
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-logonuserw

5/23

BOOL LogonUserW(
 LPCWSTR lpszUsername,
 LPCWSTR lpszDomain,
 LPCWSTR lpszPassword,
 DWORD dwLogonType,
 DWORD dwLogonProvider,
 PHANDLE phToken
);

The key parameter to take note of here is the dwLogonType, which specifies the type of
logon to perform. For example, in the case of a user physically logging into their workstation,
it will be set to LOGON32_LOGON_INTERACTIVE. The logon type specified will determine
the type and privileges of the token returned.

For example, in the case of an interactive logon, LogonUserW will return a primary access
token, and, if UAC is enabled, this token will be a filtered token (meaning it will be medium
integrity and unelevated). This has one exception: if the user is a local administrator account
(e.g., a *-500 SID) Windows will automatically return an elevated token .

In the case of a network logon (LOGON32_LOGON_NETWORK), an impersonation token is
returned (as typically this would be used by a server to perform work on the remote clients
behalf). Furthermore, if the user is in the local administrators group, the token is elevated
and has all privileges enabled .

These permutations of LogonUser are captured in the table below:

dwLogonType Token
returned

Cache
credentials?

Is returned token
elevated? (if
admin)

Interactive
(LOGON32_LOGON_INTERACTIVE)

Primary Yes No (UAC applies)

Interactive (Local admin account, e.g.,
rid-500)

Primary Yes Yes

Network
(LOGON32_LOGON_NETWORK)

Impersonation No Yes (+ all
privileges
enabled)

Network (Local admin account, e.g.,
rid-500

Impersonation No Depends on
remote UAC
settings

Table 1 - The permutations of LogonUser for the corresponding dwLogonType

10

11

12

13

https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user-account-control-works
https://support.microsoft.com/en-gb/help/243330/well-known-security-identifiers-in-windows-operating-systems

6/23

The key point is that LogonUser returns a handle to a newly minted token, which can now
be used for impersonation.

If the token returned is a primary token it must first be converted in to an impersonation
token via DuplicateTokenEx by passing a TokenType of TokenImpersonate :

BOOL DuplicateTokenEx(
 HANDLE hExistingToken,
 DWORD dwDesiredAccess,
 LPSECURITY_ATTRIBUTES lpTokenAttributes,
 SECURITY_IMPERSONATION_LEVEL ImpersonationLevel,
 TOKEN_TYPE TokenType,
 PHANDLE phNewToken
);

The SetThreadToken function can then be used to assign the returned impersonation token
to the current thread:

BOOL SetThreadToken(
 PHANDLE Thread,
 HANDLE Token
);

Alternatively, the Windows API provides the ImpersonateLoggedOnUser function, which will
allow the calling thread to impersonate the security context of the user represented by the
token passed:

BOOL ImpersonateLoggedOnUser(
 HANDLE hToken
);

ImpersonateLoggedOnUser has the added benefit that it will automatically check the type of
the token passed and convert it to an impersonation token (via NtDuplicateToken) if a
primary token was passed (as this token typecannotbe used by a thread to impersonate) .

Note that from a defense evasion perspective, both these impersonation APIs are lightweight
wrappers over the undocumented syscall NtSetInformationThread (e.g., called with a
ThreadInformationClass of ThreadImpersonationToken). Therefore, they are a good target
for attackers to use direct syscalls to bypass user-mode hooks via techniques such as
https://github.com/jthuraisamy/SysWhispers.

Furthermore, it is important to stress that Windows has strict rules around impersonation.
These are listed below and taken from the MSDN page for ImpersonateLoggedOnUser:

14

15

https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-duplicatetokenex
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ne-winnt-token_type
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadtoken
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-impersonateloggedonuser
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntduplicatetoken
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Thread/NtSetInformationThread.html
https://www.geoffchappell.com/studies/windows/km/ntoskrnl/api/ps/psquery/class.htm
http://undocumented.ntinternals.net/index.html?page=UserMode/Undocumented%20Functions/NT%20Objects/Thread/THREAD_INFORMATION_CLASS.html
https://github.com/jthuraisamy/SysWhispers
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-impersonateloggedonuser

7/23

All impersonate functions, including ImpersonateLoggedOnUser allow the requested
impersonation if one of the following is true:
 - The requested impersonation level of the token is less than
SecurityImpersonation, such as SecurityIdentification or SecurityAnonymous
 - The caller has the SeImpersonatePrivilege privilege.
 - A process (or another process in the caller’s logon session) created the token
using explicit credentials through LogonUser or LsaLogonUser function.
The authenticated identity is the same as the caller

Additionally, the impersonated token’s integrity level must also be less or equal to the calling
process’s integrity level or else the impersonation call will also fail . Therefore, assuming an
unelevated attacker logs on an admin user interactively via stolen credentials, and UAC is
enabled, they will receive an unelevated (e.g., filtered) token back and hence will have no
issues impersonating the returned user and moving laterally, etc.

“The curious /NETONLY flag”

An attacker may find however that attempting to log on a user with stolen credentials fails.
This may be due to a multitude of reasons, such as the credentials are valid, but the account
does not have permissions to log onto that specific workstation / they’re only valid in a
different domain, etc.Furthermore,the attacker may also want to avoid logging in a highly
privileged account entirely, as this may appear highly anomalous in certain contexts (e.g., a
domain admin logging on to a low privileged business user’s host should be incredibly
suspicious).

In this scenario the LOGON32_LOGON_NEW_CREDENTIALS flag comes to the attacker’s
rescue. If an attacker calls the LogonUserW function with this flag and passes a valid set of
credentials (say found from sniffing around on file shares), Windows will enable the caller to
duplicate their current token but make it point to a new logon session, referred to as a New
Credentials logon session, which caches the stolen credentials. As a result, the user still has
the same security context locally (e.g., they still have a copy of the same access token; it just
points to a new logon session), however, any attempts to authenticate remotely will supply
the new credentials passed in the call to LogonUserW . This is illustrated in the diagram
below:

16

17

18

19

8/23

Figure 2 - How the LOGON32_LOGON_NEW_CREDENTIALS flag works under the hood

Hence, the LOGON32_LOGON_NEW_CREDENTIALS flag provides a native mechanism to
make your current access token point to a different logon session and hence different
credentials.

Note, that calling LogonUserW with the LOGON32_LOGON_NEW_CREDENTIALS flag
does not validate the credentials when the call is made (they can be complete junk), but are
only validated by a Domain Controller at the time of any remote authentication requests.

As a further example, a quick review of the code for the ‘MakeToken’ task from the open
source .NET C2 framework Covenant reveals exactly the same approach: it takes a
username/password combination and creates a new logon session/token with them via
passing the LOGON32_LOGON_NEW_CREDENTIALS flag before proceeding to
impersonate the returned token.

Furthermore, you can replicate the exact same behaviour with CreateProcessWithLogonW
by passing a dwLogonFlags of LOGON_NETCREDENTIALS_ONLY.

20

21

https://github.com/cobbr/Covenant/blob/5b90f203c2e42c0f0e5607653c71f6fc452adaab/Covenant/Data/Tasks/SharpSploit.Credentials.yaml#L13-L48
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw

9/23

BOOL CreateProcessWithLogonW(
 LPCWSTR lpUsername,
 LPCWSTR lpDomain,
 LPCWSTR lpPassword,
 DWORD dwLogonFlags,
 LPCWSTR lpApplicationName,
 LPWSTR lpCommandLine,
 DWORD dwCreationFlags,
 LPVOID lpEnvironment,
 LPCWSTR lpCurrentDirectory,
 LPSTARTUPINFOW lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

The key difference is that this involves spawning a new process with the returned token, as
opposed to the intra process impersonation discussed previously. In fact, the built in
Windows utility, runas, is a simple wrapper around CreateProcessWithLogonW and the
/NETONLY flag provides a native way to spawn a new process with different network-only
credentials, as demonstrated below:

Figure 3 - Example of using the runas /NETONLY flag to spawn a new process as the user
astro\cosmo but with different cached credentials.

In exactly the same way as previously described, the new command prompt appears locally
to be running as the same user (i.e., the attributes cached in the token are the same for any
local access checks; hence whoami returns ‘astro\cosmo’), but any remote authentication
attempts will be performed using the stolen credentials for the ‘ASTRO\Administrator’ user.

10/23

These logon sessions can be viewed using SysInternals’ LogonSessions tool. Logon
sessions that were created with the NewCredentials flag can be determined by the Logon
type field as shown below:

Figure 4 - Example of a NewCredentials logon session which is typically generated by the
NETONLY flag

Furthermore, anomalous NewCredentials logon sessions (e.g., produced via the NETONLY
gadget) leave artifacts in the Windows event logs. These can be identified via the event id
4642 and a LogonType of 9. An example is shown in the image below:

https://docs.microsoft.com/en-us/sysinternals/downloads/logonsessions

11/23

Figure 5 - Example of a Windows Event Log for Event ID 4624 which is typically generated
by the NETONLY flag

Note that the original user is shown by the SubjectUserName field and the specified network
only credentials (e.g., the credentials passed) are displayed in the
TargetOutboundUser/DomainName fields.

Auto-elevation

One further quirk from a local privilege escalation perspective is that for rid-500 accounts,
CreateProcessWithLogonW will automatically elevate the returned token for interactive
logons (e.g. it will ignore UAC). Therefore, CreateProcessWithLogonW can be passed a
local/domain admin account in order to execute an elevated process from a
medium/unelevated context.

This behavior can be verified using runas. For example, when runas is used to spawn a
process using a local admin account (e.g., runas /user:"Administrator" cmd.exe), the
resulting process will be elevated (e.g., high integrity). However, when a non rid-500 account
is used (but which is still in the local administrators group) the resulting process will be
unelevated (e.g., it will be a filtered token / medium integrity).

Notice that this behaviour is consistent with the permutations listed for LogonUserW in Table
1. Therefore, an unelevated attacker could also log on a (non rid-500) admin user as a
network logon and receive an elevated token with all privileges enabled.

However, as per the impersonation rules previously outlined, the attacker should not actually
be able to do anything with this token as any attempts to impersonate the elevated token
should fail, as it has a higher integrity level than the caller. Nevertheless, it is actually
possible to duplicate the elevated token, lower the integrity level of the copied token to
medium (NB ‘isElevated’ is still true) , and start impersonating the elevated token from an
unelevated/medium integrity context . Hence, from an impersonation token perspective, you
can bypass the default Windows behaviour of only elevating certain accounts and
impersonate an elevated token irrespective of whether the account is a rid-500 account or
not.

Process creation

Note, that by default, when you create a child process it inherits your primary token even if
you are currently impersonating another security context . For example, if you are
impersonating a SYSTEM token and you call CreateProcess(), it will still inherit a copy of the
primary process token (rather than inheriting the SYSTEM security context of the thread).

Therefore, if an attacker wishes to spawn a new process in a different security context, they
must either:

22

23

24

25

26

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa

12/23

Use CreateProcessWithLogonW with explicit credentials (as previously discussed)
Call either CreateProcessWithTokenW or CreateProcessAsUserW and pass a handle
to a token (e.g., with the token returned from LogonUser or more commonly via a
stolen token)

Both of these functions can be passed a handle to a token which represents the security
context of the new process.

BOOL CreateProcessWithTokenW(
 HANDLE hToken,
 DWORD dwLogonFlags,
 LPCWSTR lpApplicationName,
 LPWSTR lpCommandLine,
 DWORD dwCreationFlags,
 LPVOID lpEnvironment,
 LPCWSTR lpCurrentDirectory,
 LPSTARTUPINFOW lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

BOOL CreateProcessAsUserW(
 HANDLE hToken,
 LPCWSTR lpApplicationName,
 LPWSTR lpCommandLine,
 LPSECURITY_ATTRIBUTES lpProcessAttributes,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 BOOL bInheritHandles,
 DWORD dwCreationFlags,
 LPVOID lpEnvironment,
 LPCWSTR lpCurrentDirectory,
 LPSTARTUPINFOW lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

For example, CreateProcessAsUserW is typically used by the operating system itself to
spawn the user’s shell following a successful logon (it is also used by the Secondary Logon
service when a user calls creatProcessWithLogonW). In this sense, it allows a user to “inject
a process into the logon session of their choice” . As a note, both of these APIs are
wrappers around CreateProcessInternalW (located in KernelBase.dll).

The key difference here is that the caller must have certain privileges to call these two
APIs . From an attackers perspective though the goal here is the same; obtain code
execution in the security context of the target user for the purposes of moving laterally.

One interesting quirk is that the PowerShell Empire framework was forced to take this
process spawning approach (which is arguably much noisier from a detection perspective)
due to limitations with how PowerShell handles impersonation and multi-threading, as the
notes here explain in more detail.

27

28

29

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithtokenw
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessasuserw
https://doxygen.reactos.org/d9/dd7/dll_2win32_2kernel32_2client_2proc_8c.html#a13a0f94b43874ed5a678909bc39cc1ab
https://github.com/PowerShellMafia/PowerSploit/blob/c7985c9bc31e92bb6243c177d7d1d7e68b6f1816/Exfiltration/Invoke-TokenManipulation.ps1#L10-L17

13/23

In any case, the workflow for using process spawning token manipulation techniques
remains the same. Once the attacker has obtained a handle to the token (via
OpenProcess/OpenProcessToken if primary token, or OpenThread/OpenThreadToken in the
case of a thread impersonating) the attacker must call DuplicateTokenEx to create a local
(primary) copy of the target token, and then supply this copy to either the
CreateProcessWithTokenW or CreateProcessAsUserW functions.

Note that again in this case, attackers are only interested in privileged logon sessions which
are non network logins, as network logins do not cache credentials and so
cannotauthenticate to other hosts.

2. Pass-The-Ticket

Windows provides a native method to perform a very similar technique to the NETONLY flag
using Kerberos . This technique is even more powerful in the sense that it doesn’t require
an attacker to create a new logon session, but rather arbitrarily change the cached Kerberos
credentials (e.g., TGT) associated with their logon session (and hence current access token),
as demonstrated below:

Figure 6 - How the Pass-the-ticket attack works under the hood. In this example, the user,
ASTRO\cosmo, applies the stolen TGT of the ASTRO\Administrator user to their current
logon session.

In order to start interacting with the Kerberos SSP and manage the Kerberos ticket cache, a
process can call LsaCallAuthenticationPackage (located in Sspicl.dll):

30

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocesstoken
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openthread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openthreadtoken
https://docs.microsoft.com/en-us/windows/win32/secauthn/kerberos-ssp-ap
https://docs.microsoft.com/en-us/windows/win32/api/ntsecapi/nf-ntsecapi-lsacallauthenticationpackage

14/23

NTSTATUS LsaCallAuthenticationPackage(
 HANDLE LsaHandle,
 ULONG AuthenticationPackage,
 PVOID ProtocolSubmitBuffer,
 ULONG SubmitBufferLength,
 PVOID *ProtocolReturnBuffer,
 PULONG ReturnBufferLength,
 PNTSTATUS ProtocolStatus
);

Note that the user will need to have previously called LsaConnectUntrusted in order to obtain
a connection handle to the LSA server and LsaLookupAuthenticationPackage to find the id of
the kerberos package (MICROSOFT_KERBEROS_NAME_A). Additionally, inspection of
these functions in IDA (again they can be located in Sspicl.dll) will reveal that they are
connecting to the Lsa via RPC. .

Through LsaCallAuthenticationPackage, a user can make a number of sensitive requests,
although the exact requests available to the user depend on whether they are elevated or
not. For example, an unelevated user can perform basic ticket management actions , such
as enumerating their current active tickets, purging the ticket cache, and applying arbitrary
tickets to their current logon session . Hence, this effectively enables a user to change
the credentials cached with their current logon session and therefore specify arbitrary
network only credentials.

Additionally, from an elevated context an attacker can enumerate and dump tickets (e.g.,
credentials) belonging to other users, therefore providing similar functionality to mimikatz
withoutneeding to open a handle to lsass .

A full list of the types of messages that can be sent to the Kerberos authentication package
can be found here. In order to change the current TGT associated with a given logon
session, the KerbSubmitTicketMessage can be passed, which uses the following message
struct:

Typedef struct _KERB_SUBMIT_TKT_REQUEST {
 KERB_PROTOCOL_MESSAGE_TYPE MessageType;
 LUID LogonId;
 ULONG Flags;
 KERB_CRYPTO_KEY32 Key;
 ULONG KerbCredSize;
 ULONG KerbCredOffset;
} KERB_SUBMIT_TKT_REQUEST, *PKERB_SUBMIT_TKT_REQUEST

Therefore, for a KerbSubmitTicketMessage, the ProtocolSubmitBuffer parameter simply
points to a block of memory consisting of a KERB_SUBMIT_TKT_REQUEST struct followed
immediately by an ASN encoded Kerberos ticket (which is the ticket to be applied to the
specified logon session). The relevant code in mimikatz for submitting
KerbSubmitTicketMessage requests can be found here and in Rubeus here.

31

32

33

34

35

https://docs.microsoft.com/en-us/windows/win32/api/ntsecapi/nf-ntsecapi-lsaconnectuntrusted
https://docs.microsoft.com/en-us/windows/win32/api/ntsecapi/nf-ntsecapi-lsalookupauthenticationpackage
https://docs.microsoft.com/en-us/windows/win32/api/ntsecapi/ne-ntsecapi-kerb_protocol_message_type
https://www.ietf.org/rfc/rfc4120.txt
https://github.com/gentilkiwi/mimikatz/blob/fe4e98405589e96ed6de5e05ce3c872f8108c0a0/mimikatz/modules/kerberos/kuhl_m_kerberos.c#L100-L127
https://github.com/GhostPack/Rubeus/blob/732303e2f182d25e81ae25b4351782b2d0f061d0/Rubeus/lib/LSA.cs#L779-L878

15/23

Following the call to LsaCallAuthenticationPackage, the user’s TGT has now been updated
to the stolen ticket. From this point forward, any attempts to access network resources by
any process/thread which is linked to the user’s access token/interactive logon session will
automatically authenticate over Kerberos using the stolen TGT (e.g., by requesting different
service tickets/TGS for resources across the domain).

Note, that a user can only have one TGT associated with their current logon session. Hence,
applying a new ticket will wipe the user’s previous ticket. What if an attacker would like to
preserve their current TGT? In this case, once again the NETONLY flag comes to the rescue
- an attacker can create a “sacrificial” NETONLY process via CreateProcessWithLogonW
with arbitrary/junk credentials. This will create a new dummy process and, most importantly,
a new logon session (and hence access token) to which a stolen TGT can be applied (and
hence preserve the user’s current ticket) .

One important conclusion to draw from this technique for defense practitioners, is that as all
the activity is performed via LsaCallAuthenticationPackage (and hence over RPC), it does
not require any direct interaction with lsass (N.B. direct here refers to opening a handle to
lsass via OpenProcess). Furthermore, for this specific use case (ptt), all the activity is via
local RPC until an attacker attempts to authenticate to a remote host (which will generate
new logons).

As a further example, the README for Rubeus includes the following statement:

“Rubeus doesn't have any code to touch LSASS (and none is intended), so its functionality is
limited to extracting Kerberos tickets through use of the LsaCallAuthenticationPackage()
API”

Therefore, any detection logic which is predicated on handle access to lsass (e.g. via a
ObjectPreCallback kernel routine for a specified process or thread handle operation, or a
user mode hook on OpenProcess/NtOpenProcess) could miss this activity. Hence, it is a
potential blind spot for, say, defenders relying on Sysmon process access events to alert on
suspicious process handle access.

3. Pass-the-hash (PtH)

The last two techniques this blog will cover are examples of an attacker changing the cached
credentials associated with their current access token/logon session “illegitimately” by
directly modifying lsass memory. In the PtH scenario, the attacker’s access token is
unchanged and points to the same logon session, however the associated cached
credentials are directly overwritten to a stolen hash. From this point, any remote
authentication attempts will use the stolen hash, as demonstrated below:

36

https://github.com/GhostPack/Rubeus#asktgt
https://github.com/GhostPack/Rubeus#example-credential-extraction
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-pob_pre_operation_callback

16/23

Figure 7 - How the PtH attack works under the hood. In this example, the legitimate hash of
the user, ASTRO\cosmo, is overwritten in-memory with the NTLM hash belonging to the
ASTRO\Administrator user.

In this sense, both PtH and OPtH can be thought as functionally identical to the NETONLY
technique previously discussed.

The typical workflow of a PtH attack is:

Open a write handle to lsass (e.g. via OpenProcess/NtOpenProcess with a desired
access of PROCESS_VM_WRITE)
Enumerate the linked list of logon sessions
Locate the logon session of interest and identify the required authentication package
(In the case of PtH/NTLM this is the MSV1_0 authentication package)
Update the associated cached credentials

Note that these techniques often rely on parsing and modifying undocumented Windows
structures. This is not something that will be covered in this blog, but more information on
how this is performed can be found here and here.

Hence, once the cached credentials are updated in memory, they will automatically be used
to authenticate remotely, as per the usual Windows SSO design, when any process/thread
running as that token attempts to access a remote resource.

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Process/NtOpenProcess.html
https://docs.microsoft.com/en-us/windows/win32/procthread/process-security-and-access-rights
https://docs.microsoft.com/en-us/windows/win32/secauthn/msv1-0-authentication-package
https://www.slideshare.net/rootedcon/hernan-ochoa-wce-internals-rootedcon-2011
https://blog.xpnsec.com/exploring-mimikatz-part-1/

17/23

Note, that in this simple case, there have been no additional logon session / access tokens
created. However, in a similar fashion to pass-the-ticket attacks, these tools will also
frequently need to create new junk NETONLY processes/logon sessions in order to preserve
existing credentials or to apply stolen credentials to.

As a note, in order to obtain a write handle to lsass, malware will typically take two
approaches:

Acquire SeDebugPrivilege
Steal and impersonate a SYSTEM token

The first approach was discussed in part one of this blog series, however the latter approach
is a typical example of stealing/impersonating a token for the purpose of bypassing local
access checks (e.g. stealing a SYSTEM token with a specific privilege enabled e.g.
SeTcbPrivilege). A SYSTEM token is commonly obtained via stealing the primary token from
winlogon.

4. Overpass-the-hash (OPtH)

The Overpass-the-hash technique applies the same concept as pass-the-hash with one key
difference: it converts a hash into a fully fledged TGT ticket.

When a user first logs on to a Windows workstation, as part of the Kerberos authentication
process, the user’s password hash is used to encrypt a timestamp in order to validate the
user’s identity to the Domain Controller / Key Distribution Center (KDC) and receive a TGT.
Overpass-the-hash modifies these cached hashes in memory and then kicks off the normal
Kerberos authentication protocol (AS-REQ/AS_REP etc.) in order to obtain a fully fledged
TGT for a stolen hash.

This technique can be performed via mimikatz’ pth command (which is misleadingly labelled
pth when it is actually performing overpass-the-hash under the hood):

mimikatz # sekurlsa::pth /user:Administrator /domain:ASTRO.testlab /ntlm:
c0f969f35beb20e8f09ce86ef42ccd51

This essentially performs the same steps as PtH, except it targets the Kerberos SSP (and
hence kerberos.dll).

37

38

39

40

https://github.com/GhostPack/Rubeus/blob/4c9145752395d48a73faf326c4ae57d2c565be7f/Rubeus/lib/Helpers.cs#L55-L107
https://posts.specterops.io/understanding-and-defending-against-access-token-theft-finding-alternatives-to-winlogon-exe-80696c8a73b

18/23

Figure 8 - How the OPtH attack works under the hood. In this example, the legitimate hash of
the user, ASTRO\cosmo, is overwritten in-memory with the hash belonging to the
ASTRO\Administrator user, kicking off the normal Kerberos authentication process.

As this technique once again involves wiping the current TGT associated with the user’s
logon session, an attacker can use a NETONLY process (with an associated dummy logon
session) to preserve their current TGT, which is exactly how mimikatz performs overpass-
the-hash by default.

Firstly, it spawns a new process in a suspended state via CreateProcessWithLogonW with
the LOGON_NETCREDENTIALS_ONLY flag. It then obtains a handle to the primary token of
this suspended process and retrieves the authentication id for the new dummy logon session
via GetTokenInformation. This function is used to query information cached in the token via
the TOKEN_INFORMATION_CLASS enum, which in this case is TokenStatistics.

Having obtained the authentication id, mimikatz can now start enumerating the linked list of
logon sessions within lsass, looking for the newly created logon session. Once it has found
the target logon session (via the authentication id), it can then proceed to update the
Kerberos credentials associated with it. Once the credentials are updated, the token (whose
corresponding logon session is now linked to the stolen hash) can be converted to an
impersonation token via DuplicateTokenEx and impersonated via SetThreadToken as we
have seen previously.

https://github.com/gentilkiwi/mimikatz/blob/72b83acb297f50758b0ce1de33f722e70f476250/mimikatz/modules/sekurlsa/kuhl_m_sekurlsa.c#L947-L961
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-gettokeninformation
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ne-winnt-token_information_class
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-token_statistics

19/23

Once again at this stage, any attempts an attacker makes to access resources across the
network will use the domain\user and password hash combination provided as arguments to
mimikatz for authentication. Therefore, all remote interactions will be performed with the
access and privileges of the stolen credentials.

Conclusion

The purpose of this two-part blog series was to explain how fundamental concepts in
Windows Security work under the hood and to show how attackers abuse these features in
order to compromise Windows domains. This blog has demonstrated that irrespective of
what tools or what authentication provider is abused, attackers act under a set of constraints
that result in the same anomalous signals for access token manipulation (e.g., anomalous
network only logins). These constraints are determined by the fundamental relationship
between access tokens, logon sessions and cached credentials.
Ready for holistic data protection with Elastic Security? Try it free today, or experience our
latest version on Elasticsearch Service on Elastic Cloud. And take advantage of our Quick
Start training to set yourself up for success.

References

1. For a recap of how Kerberos authentication works see Programming Windows Security,
Keith Brown or https://posts.specterops.io/kerberosity-killed-the.... Additionally, Rubeus,
which is a toolkit for interacting with Kerberos, has an extremely informative readme, which is
recommended for further reading.

2. Remember, Windows will automatically authenticate with the credentials cached in the
logon session whenever a user attempts to access a network resource as per the Windows
SSO mechanism. Cached credentials here can refer to any authentication provider (e.g.
NTLM hashes or Kerberos tickets). NB this assumes the user is interactively logged in (non-
network).

3. This is typically to avoid losing a foothold due to incident response or host isolation.

4. This is obviously only applicable to attacker activity on a compromised host, as opposed
to an attacker executing code from another source e.g. remotely via impacket.

5. https://clymb3r.wordpress.com/2013/11/03/powershel...

6. See the ‘steal_token’ command from Cobalt Strike as an example of this technique:
https://www.cobaltstrike.com/help-beacon

https://www.elastic.co/security
https://www.elastic.co/elasticsearch/service
https://www.elastic.co/training/elastic-security-quick-start
https://posts.specterops.io/kerberosity-killed-the-domain-an-offensive-kerberos-overview-eb04b1402c61
https://github.com/GhostPack/Rubeus#readme
https://github.com/SecureAuthCorp/impacket
https://clymb3r.wordpress.com/2013/11/03/powershell-and-token-impersonation/
https://www.cobaltstrike.com/help-beacon

20/23

7. This comment from the archived PowerSploit framework should also provide further
clarification on this distinction between token theft for local privilege escalation vs lateral
movement.

8. Alternatively, attackers can also go the password spraying route or attempt to use NTLM
sniffing/replaying attacks via tools such as responder.

9. Note that both LogonUserA/W are simple wrappers around LogonUserExExW in
SspiCli.dll

10. In exactly the same way, CreateProcessWithLogonW can be passed a local admin
account (rid-500) to execute an elevated process from a medium/unelevated context.

11. There are remote UAC registry options which can modify this behaviour.

12. There is an additional logon type, LOGON32_LOGON_NETWORK_CLEARTEXT, which
is essentially a network logon but with cached credentials. See Programming Windows
Security, Keith Brown for more information.

13. See for more info:

https://blueteamer.blogspot.com/2018/12/disabling-...
https://support.microsoft.com/en-gb/help/951016/de...
https://labs.f-secure.com/blog/enumerating-remote-...
14. NB there is also a DuplicateToken function but this only returns an impersonation token.

15. This can be verified by examining the function in IDA. Alternatively, check here on
ReactOS.

16. This summary is a slight simplification of impersonation security. For a more thorough
overview see James Forshaw’s “Introduction to Logical Privilege Escalation on Windows”
slides (p26): https://conference.hitb.org/hitbsecconf2017ams/mat...

17. This title is taken from an excellent blog by Raphael Mudge: Windows Access Tokens
and Alternate Credentials.

18. This is typically the main reason why option 2 is not commonly used by attackers.

19. Hence, running ‘whoami’ will still show the same user (as the token is still the same),
despite the duplicated token having different network credentials. This is a common source
of confusion when using Cobalt Strike’s make_token command (which performs the same
technique as described under the hood).

20. The Windows RPC/COM APIs also enable a user to specify network-only credentials.
For example, this can be achieved for RPC by calling RpcBindingSetAuthInfoExW and
passing a SEC_WINNT_AUTH_IDENTITY structure via the AuthIdentity parameter. For

https://github.com/PowerShellMafia/PowerSploit/blob/c7985c9bc31e92bb6243c177d7d1d7e68b6f1816/Exfiltration/Invoke-TokenManipulation.ps1#L31-L44
https://github.com/SpiderLabs/Responder
https://docs.microsoft.com/en-us/windows/win32/secauthn/logonuserexexw
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw
https://support.microsoft.com/en-gb/help/951016/description-of-user-account-control-and-remote-restrictions-in-windows
https://blueteamer.blogspot.com/2018/12/disabling-uac-remote-restrictions-to.html
https://support.microsoft.com/en-gb/help/951016/description-of-user-account-control-and-remote-restrictions-in-windows
https://labs.f-secure.com/blog/enumerating-remote-access-policies-through-gpo/
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-duplicatetoken
https://doxygen.reactos.org/d1/d72/dll_2win32_2advapi32_2sec_2misc_8c.html#aed5dfd166fea98c3ac188fbbc8f88190
https://conference.hitb.org/hitbsecconf2017ams/materials/D2T3%20-%20James%20Forshaw%20-%20Introduction%20to%20Logical%20Privilege%20Escalation%20on%20Windows.pdf
https://blog.cobaltstrike.com/2015/12/16/windows-access-tokens-and-alternate-credentials/
https://www.cobaltstrike.com/help-beacon
https://docs.microsoft.com/en-us/windows/win32/api/rpcdce/nf-rpcdce-rpcbindingsetauthinfoexw

21/23

more information see Programming Windows Security, Keith Brown and
https://docs.microsoft.com/en-us/windows/win32/wmisdk/setting-authentication-using-c-.

21. While the two flags have different names, their meaning is the same; these credentials
are only to be used on the network.

22. Note there are still ways around creating suspicious event logs for anomalous logon
sessions.

23. This is a James Forshaw trick - see the following blog for more detail:
https://www.tiraniddo.dev/2017/05/reading-your-way.... Additionally, TokenViewer is an
excellent tool for experimenting with this type of technique.

24. With this resulting impersonation token it is possible to write a file to System32 etc.

25. There still may be legitimate reasons for impersonating prior to calling an API though,
such as to obtain a privilege you don’t currently have before calling an API which requires it
(although note some APIs do automatically enable privileges).

26. There are a few ways around this. For example, you can spawn a process as the child of
a SYSTEM process by obtaining a handle to a SYSTEM process via OpenProcess with the
PROCESS_CREATE_PROCESS access right. This HANDLE can then be passed to
NtCreateProcess as the ParentProcess parameter. This can also be achieved via the
PROC_THREAD_ATTRIBUTE_PARENT_PROCESS parameter and CreateProcess:
https://gist.github.com/xpn/a057a26ec81e736518ee50...

27. Bizarrely, CreateProcessWithTokenW takes a dwLogonFlags argument despite also
requiring a handle to an existing token, which by definition, should already have a
corresponding logon session. It seems likely that this is something to do with loading the
user profile.

28. Programming Windows Security, Keith Brown

29. Specifically, SE_IMPERSONATE_NAME for CreateProcessWithTokenW and
SE_INCREASE_QUOTA_NAME (&) SE_ASSIGNPRIMARYTOKEN_NAME (if token is not
assignable) for CreateProcessAsUserW

30. A recap of Kerberos authentication can be found here and see the following for more
information on kerberos related attacks: https://www.blackhat.com/docs/us-14/materials/us-
1...,

https://docs.microsoft.com/en-us/windows/win32/wmisdk/setting-authentication-using-c-
https://github.com/EmpireProject/Empire/blob/master/data/module_source/credentials/Invoke-CredentialInjection.ps1#L77-L82
https://www.tiraniddo.dev/2017/05/reading-your-way-around-uac-part-3.html
https://github.com/googleprojectzero/sandbox-attacksurface-analysis-tools
https://docs.microsoft.com/en-us/windows/win32/procthread/process-security-and-access-rights
https://undocumented.ntinternals.net/index.html?page=UserMode%2FUndocumented%20Functions%2FNT%20Objects%2FProcess%2FNtCreateProcess.html
https://gist.github.com/xpn/a057a26ec81e736518ee50848b9c2cd6
https://posts.specterops.io/kerberosity-killed-the-domain-an-offensive-kerberos-overview-eb04b1402c61
https://www.blackhat.com/docs/us-14/materials/us-14-Duckwall-Abusing-Microsoft-Kerberos-Sorry-You-Guys-Don't-Get-It.pdf

22/23

Watch Video At:

https://youtu.be/lJQn06QLwEw

, https://github.com/GhostPack/Rubeus#readme

31. https://googleprojectzero.blogspot.com/2019/12/cal...

32. E.g. the native Windows tool klist offers similar functionality and is clearly a wrapper
around LsaCallAuthenticationPackage.

33. Note that an unelevated user can only apply tickets to their own logon session; elevated
privileges are needed to apply a TGT to a different logon session.

34. There are some caveats/subtleties to this statement which are better answered by the
Rubeus readme. In short though, the caller needs to register an LSA connection via
LsaRegisterLsaProcess which requires the SeTcbPrivilege privilege (i.e. the caller is part of
the trusted computing base).

35. As an observation, you can also talk to the msv1_0 authentication package via
LsaCallAuthenticationPackage and send the following message types:
https://docs.microsoft.com/en-us/windows/win32/api..., although I have not investigated
whether it is also possible to retrieve NTLM credentials through this interface.

36. For more information see the Rubeus github repository readme, which has a fantastic
write up of lots of kerberos related functionality and opsec considerations.

37. See here for an example of enabling a privilege

https://youtu.be/lJQn06QLwEw
https://github.com/GhostPack/Rubeus#readme
https://googleprojectzero.blogspot.com/2019/12/calling-local-windows-rpc-servers-from.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/klist
https://github.com/GhostPack/Rubeus#example-credential-extraction
https://docs.microsoft.com/en-us/windows/win32/api/ntsecapi/nf-ntsecapi-lsaregisterlogonprocess
https://docs.microsoft.com/en-us/windows/win32/api/ntsecapi/ne-ntsecapi-msv1_0_protocol_message_type
https://github.com/GhostPack/Rubeus
https://docs.microsoft.com/en-us/windows/win32/secauthz/enabling-and-disabling-privileges-in-c--

23/23

38. This can be verified by looking at PsOpenProcess/Thread in IDA and looking for a call to
SePrivilegeCheck.

39. Note, that acquiring SeDebugPrivilege tends to be very noisy from a detection logic
perspective.

40. Note the hash/key can be rc4_hmac (e.g. NTLM), aes128_hmac, aes256_hmac etc..
see here for more.

41. See for more detail: https://www.blackhat.com/docs/us-14/materials/us-1...

42. As a note, Rubeus’ asktgt functionality performs a variant of overpass-the-hash via
building raw AS-REQ traffic for a given hash from an unelevated context and without needing
to touch lsass.

We're hiring
Work for a global, distributed team where finding someone like you is just a Zoom
meeting away. Flexible work with impact? Development opportunities from the start?

https://www.slideshare.net/gentilkiwi/abusing-microsoft-kerberos-sorry-you-guys-dont-get-it/18
https://www.blackhat.com/docs/us-14/materials/us-14-Duckwall-Abusing-Microsoft-Kerberos-Sorry-You-Guys-Don%27t-Get-It.pdf
https://github.com/GhostPack/Rubeus#asktgt

