Recover your files with StrongPity

EL} anchorednarratives.substack.com/p/recover-your-files-with-strongpity

RJM

A case study of a multi-year nation-state cyber surveillance campaign

RIM
Apr 18, 2021

Disclaimer: The views, methods, and opinions expressed at Anchored Narratives are those
of the author and do not necessarily reflect the official policy or position of my employer.

020
v# &b E@
JlcalStack S7SEH o/ Saipt ElSymbols <2 Source . References ' Threads B Handes ¢ Trace

jmp dword ptr ds:[<&CreaterileAs] CreateFileA ~ e G50
nt3
ﬂgg EAX "C:\\Users\\IEUser‘\\AppData\\Local\\Temp\\ndaDat
nt3 EEX
nt3 ECX
int3 EDX
int3 EBP 00SFF964
int3 ESP ODSFF704
int3 ESI 01298F05
L - : - EDI 00000001
jmp dword prr ds:[<&Createrilews] CreateFilen
s EIP 76CB3BA0 <kernel32.Createrilear
s EFLAGS 00000344
nt3 ZF 1 PF 1 AF O
S OF 0 SF O DFO
nts CFO TF1 IF1
int3
int3 LastError 00000000 (ERROR_SUCCESS)
int3 ~)) : LastsSTatus CO000034 (STATUS_OBIECT_NAME_NOT_FOUND)
jmp dword ptr ds:[<&DefineDosDeviceis] -
s G5 0028 F5 0053
. ES 0028 DS 002E
s Welcome to the Find and Mount s 023 55 0028
s Setup Wizard ST(0) 000000D000000D000000 X§7r0 EMPTy 0.000000000000000000
nt3 ST(1) 000000000DOO0OO00DD00 X87rl Empty 0.000000000000000000
nt3 This will install Find and Mount 2.32 on your computer. ST(2) 00000000000000000000 X87r2 EMpTy 0.000000000000000000
nt3 5T(3) 0000DDDDDOOOOOODD00D X87r3 Empty 0.000000000000000000
int3 ST(4) 00000000000000000000 X87r4 EMPTy 0.000000000000000000

1tis recommended that you dase all other applicatians before ST(5) 00000000000000000000 X87r5 EMPTy 0.000000000000000000

jmp_dword ptr ds:[<&DeleteFileAs] .
nt3 continung. ST(6] 0000000000D00000D000 XS7r6 EmMpty 0.000000000000000000
n ST(7) 00000000000000000000 X87r7 EmMpTy 0.000000000000000000
nt3 Click Next to continue, or Cancel to exit Setup., @ S
25 x87Tagword FFFF
int3 XSTIWO 3 (EMPTY) XETTW.1 3 (EmPry)
int3 3 3 (Empty)
int3 _5 3 (Empty)
ints X87TW_6 3 (EmPTy) _7 3 (Empty)
T

int3
jmp dword ptr ds:[<aDeleterilews] x87sTatusword 0000
int3 X87SW_B O XB7SW_ 0 x875W_C2 0

int3 0 x87SW_ES 0

[esp+4] 00BF5720 "C:\\Users\\IEUser\\AppData\\Local\\Temp'\ndaDa
esp+8] CO00DD0O
esp+C]_ 00000000
: [esp+10] 00000000
: [espr14] ooooODOZ

.Createrileas

o

5 g)
Bwatch1 [-llocals & Struct "C:\\Users\\IEUSer\\AppData\\Local\\Temp\ \ndaparal \winmsism. exe

0e4651625abdassdf56952b7e97d7 Fh64a3eleasTbfe0les31d47381c0952e98. 00DAS 288

“Frmsetup. exe”
“winmsism. exe”
"mvwmisrv. exe"

)| nooze400

Cover StrongPity APT Actor hides the backdoor in legitimate “recovery” software.

Introduction

First, a warm welcome to the new subscribers of the Anchored Narratives mailing list. For the
ones who are new to the list, | regularly pick an exciting tweet that matched my intelligence
requirements and generated anchored stories on geopolitical (cyber) threats, digital
forensics, and crime from that. Usually, | pick a story that | have no real in-depth or prior

1/13

https://anchorednarratives.substack.com/p/recover-your-files-with-strongpity
https://substack.com/profile/23714532-rjm?utm_source=author-byline-face
https://substack.com/profile/23714532-rjm
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fc96841ec-a440-46f0-8b25-ebea7d473d98_1403x896.png

knowledge about. The goal is to understand a particular topic better, improve my
investigation or writing skills, and generate a reliable story anchored with evidence. This time
the story will start with a tweet that matched my intelligence requirements on 15 March 2021:

"#apt #strongpity new sample hunted md5:95ff679f525c44e4abac8e61f8052ca5 c2 :
transferprotocolpolicy.com"

The information in the tweet tells people with interest in this field that someone found a
malicious malware sample with a unique value “95ff679f525c44e4abac8e61f8052cab"from
an Advanced Persistent Threat actor group called StrongPity. APT is an industry name for
referring to states involved in cyber operations. The referred malware sample communicates
to its command and control server “transferprotocolpolicy.com” (c2) for further instructions.
This tweet triggered some personal interest to start a deep dive into this nation-state actor
group. They have been around for many years, deploy interesting tactics at scale, and are
observed in geopolitical disputes. This article will outline the background of this alleged
Turkish nation-state actor or nation-state-sponsored group. Furthermore, the malicious
backdoor will be reversed briefly and based on that intelligence to hunt for additional
indicators, and finally, the article will end with some observations and a conclusion. Let’s go.

Background StrongPity

The StrongPity actor group has been around since 20712 and employs the same tactics,
namely adding backdoors to legitimate software used by specific users. Some call this
technique water holing. The group is also referred to as APT-C-41 and PROMETHIUM. In
2016 StrongPity was detected by Kaspersky in a campaign that targeted specific users in
Belgium and Italy who were interested in Truecrypt and Winrar software. The software
packages are used by niche user groups interested in solid encryption. The actor group set
up a domain name that mimicked the official WinRAR distribution site and placed links to the
trojanized WinRAR installer on a certified distributor website. In the same year, Microsoft
observed a campaign by the same group targeting specific users with a zero-day
vulnerability in Adobe Flash. The zero-day exploit was tracked as CVE-2016-4117. In 2017
ESET published research where they detected StrongPity while tracking the FinFisher group
and an Internet Service Provider's involvement. Their analysis revealed that users were
redirected to trojanized software packages. Some of the targeted software were the following
software packages.

e C(CCleaner v 5.34

e Driver Booster

e The Opera Browser
e Skype

e The VLC Media Player v2.2.6 (32bit)

2/13

https://securelist.com/on-the-strongpity-waterhole-attacks-targeting-italian-and-belgian-encryption-users/76147/
https://www.microsoft.com/security/blog/2016/12/14/twin-zero-day-attacks-promethium-and-neodymium-target-individuals-in-europe/
https://www.welivesecurity.com/2017/12/08/strongpity-like-spyware-replaces-finfisher/

e WinRAR 5.50

In their research, ESET states that an exfiltration component in the StrongPity backdoor
collects files with the following extensions:

.ppt,.pptx,.xls,.xIsx,.txt,.doc,.docx,.pdf,.rtf

The stolen files are sent to a central server operated by the StrongPity actor, and the
backdoor waits for further instructions.

By 2018 Citizenlab found several so-called deep packet inspection devices in Turk Telekom's
network where users were redirected to download trojanized installers Avast Antivirus,
CCleaner, Opera, and 7-Zip. The surveillance was set up so that users who searched for
official downloads on the authorized vendor websites were silently redirected to the
trojanized versions of Avast, CCleaner etcetera. Citizenlab referred to the malware as
StrongPity, which was used after they stopped using FinFisher spyware. FinFisher was sold
to governments as a lawful interception capability. Citizenlab also described that these
injection techniques were also observed by other nation-states, China (Great Cannon) and
the US (NSA's QUANTUM).

In June 2020, Bitdefender published research where StrongPity employed similar tactics to
infect victims in Turkey and Syria selectively. According to Bitdefender, the group was
specifically interested in the Kurdish community giving it a geopolitical angle.

Libymes

Bnagukas
BBATAapUA o Cnupes g

Byprac

Bnarcesrpan
MNnosawe XBCKOSO

Hartin
¥ ‘ Zo 13

areli Kast
- 5 Diizce Karabik
Tekirdag = O e ankir
valovs Sakarya Balu s

@
abngne

| Amasya Ordu Trabzon

Tokat

Kars * Hrudph

- Gumishane
........ ra I L
Kirikkale 1gdir
Balikesir

N

- ; Turkiye

¥
Ugak f

Mu:
Nevge i

Manisa Elazig Bu'..qol
Bitlis
EANGE Aksaray
mgde Siirt

© Aydin y
ABfva - = - én‘a A Sdivaman han
e sdona. Kahramanmaras : Hakkdri

i B Sirnak

Ly

agla £y
Mersin

Mardin

LR Géziantep
T

'
Qs L | Jrogall

paal

. ﬂile'&?!.
blos
gl

"
A

Kunpog OliwayS (lgs)s ¢
Kibris
g
NEpETOS bl aes il

Figure 1: Figure adopted from the BitDefender report. Victims were concentrated in the area
of Turkey and Syria.
In their investigation, Bitdefender found trojanized versions of the following software:

3/13

https://citizenlab.ca/2018/03/bad-traffic-sandvines-packetlogic-devices-deploy-government-spyware-turkey-syria/
https://www.avast.com/
https://www.ccleaner.com/
http://www.opera.com/
http://www.7-zip.org/
https://www.bitdefender.com/files/News/CaseStudies/study/353/Bitdefender-Whitepaper-StrongPity-APT.pdf
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F1f25d937-26ff-4d00-a0fc-ca6db0227fe3_1028x546.png

o /-ZIP

e WinRAR

e McAfee Security Scan Plus

e File recovery application - Recuva
e TeamViewer

e WhatsApp

e CCleaner

e CleverFiles Disk Drill

e DAEMON Tools Lite

They also found a particular tag used as authentication and is influenced by the file's
compilation time. These tags could look like something like “v11_kt26“ for example. To me,
these tags resemble campaign identifiers used by actors to distinguish between different
targets. The researchers from Bitdefender added a tremendous amount of StrongPity
samples in their report indicating an extensive campaign.

Researchers from Cyble released a report in December 2020 that the StrongPity actors
expanded their global reach and included mass phishing e-mail campaigns. According to
their research, victims were now widespread across Europe, Nothern Africa, Canada, and
Asia. Cyble discovered that the victim was targeted through a trojanized version of the
Partition Find and Mount software utility. Their analysis refers to a screenshot (figure 6) that
should demonstrate the decryption routines and decrypted payloads in the process memory.
Especially those screenshots are blurred and not readable. After that, they report that the
malware creates a mutex1 with a particular name (figure 7) and then how the malware
connects to a specific domain in a debugger (figure 8). It remains unclear how the mutex's
name is generated and where and how the command and control information is stored from
their research. The claim of mass phishing attacks is not substantiated by e-mail samples in
their report. Their released StrongPity indicators already contain the
“transferprotocolpolicy[.Jcom” as a command and control server that matched the starting
tweet, which matched my intelligence requirements in March 2021.

In 2021 LMNTRIX released research into what they call “the Turkish APT group APT-C-41
(aka StrongPity and Promethium)”. They claim that the group targets Financial organizations,
Industrial plants, and Educational institutes after installing a backdoor on its victims. Their
research provides some screenshots of a disassembly tool in which they state that the
malware has so-called anti-debugging functionality enabled (IsDebuggerPresent check).

4/13

https://cybleinc.com/2020/12/31/strongpity-apt-extends-global-reach-with-new-infrastructure/
https://lmntrix.com/lab/promethium-strongpity-apt-c-41-an-element-no-match-for-lmntrix/

They further state: “After bypassing these functions, we found the command and control
domain embedded into the code. The snapshot shows the communication happens to the
malicious domain, which we highlighted below [mailtransfersagents(dot)com].”

The malware samples referenced in their research are indeed StrongPity samples. Based on
the screenshots LMNTRIX provided, | could not observe the command and control domain
embedded in the provided snapshots.

Both reports of Cyble and LMNTRIX triggered me to dive into some reversing of the
backdoor functionality to determine how the StrongPity backdoor stores its configuration, as
this was not clear to me from their analysis. Let’s start with the sample that triggered my
intelligence requirements in the first place.

Reversing the StrongPity backdoor

MD5 SHA256

95ff679t525c44e4abacBe61{8052cas 233358861a4f8f3f100baa4466550625212503126ac23d0bb67022hd6e5b5d7d

Table 1: Checksums of the StrongPity backdoor that will be investigated.

The StrongPity backdoor is installed via trojanized installations of legitimate and popular
software products. The extensive research of Citizenlab indicates that a Telecom provider in
Turkey was involved in the redirection to the trojanized downloads to its victims.

What is not clear to me is how the configuration data is stored in the malware. To understand
how that data is stored, | will follow the regular malware reversing process. You start with
static analysis. What information can you get out of the malware sample without executing it?
If things are not evident by then, you can also execute the malware in a sandbox or runitin a
so-called debugger. For readability, | will only focus on the main findings.

Static analysis

Usually, you'll start looking at which ‘strings’ (text) are present in the malware sample.
Analyzing strings in binary files is an essential aspect of malware analysis. This technique
provides valuable information about the program’s use and its functionality. Usually, string
output is used to develop Yara signatures. Yara is a tool to identify and classify malware
families. Unique strings, constants, or byte patterns are used in the so-called Yara signatures
to find more samples. Usually, these signatures hold indicators of compromise, like filenames
or specific user agents observed in the malware samples. Malware authors generally
leverage obfuscation or encryption techniques to hide their secrets that they need to store in
the binary. They will also employ anti-debugging tricks to hinder automated analysis. To
leverage the Windows operating system's functionalities, malware authors often rely on
standard Windows Application Programming Interfaces (API) for their backdoors to interact
with the system. Usually, these APIs are seen in the ‘strings’ output, but malware authors can

5/13

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F60852f61-879b-47dc-b448-b50b53b353fb_907x83.png
https://virustotal.github.io/yara/

also hide this. In the StrongPity sample, many of these APIs were observed, like
CreateMutexW, CreateProcessW, WinHttpConnect, and IsDebuggerPresent. The regular
‘strings‘ command on Linux revealed no domain information, however.

To determine if the StrongPity malware authors employed an obfuscation technique called
stack strings, the ‘floss’ program was used. That revealed the following information:

FLOSS extracted 28 m
Content-Length: !"?\LI‘_

RACp gnt -1 191 %"?{.I'

\EANAS LA, SRR

\SERASERYE

WaAVA

WAVAD

ndabaka

DEEA

h—) *guv—+BT*2<+) +6-6:65) 650: w:6dv) Bate

C__IX

w21_kt50p0

na:.e-‘is;s“ie;ete-‘;{:,

Screenshot 1: Floss

RN

name=%15

1-=) *cuy—+BT*?<+) +6-6:65) 650: w:64v) B+*<
ICIBEMR

WaVAD

WAVA

WaVAOD

_Y¥JEXMNY [YD_DHDG [DGBHR

7054w} 1|

detected stack strings in the StrongPity backdoor

The extracted information reveals file names (winmsism.exe. sppser.exe), but also “ndaData“
the directory where the malware collects its information before sending it to the operators,
according to the reports. Other than those indicators, | have highlighted some suspicious
string patterns. By briefly assessing this output, it looks like this is the config information
stored in the StrongPity backdoor. But we need to a bit more digging, and | will use a free
open source disassembly tool called Cutter for that. A decompiler is a program that analyzes
executable programs and tries to create a high-level representation of the machine code
from it. Cutter has a feature to decompile an executable program to reconstruct the source
code. This feature helps to understand the analyst's flow and how the malware program calls

6/13

https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fd4ddf30e-9a41-4630-8717-57bb1485899e_509x631.png
https://cutter.re/

certain functions or routines. By decompiling the main function of the StrongPity malware, it
becomes immediately apparent how the file names and the mutex observed in the floss
stack strings output are being passed to the relevant functions.

void main(void)

code *pcVari;
int32_t ivar2;
int32_t unaff_EBP;
int32_t var_74h;
int32_t var_4dh;

fcn.00411a20(0x41a480, 100);

*(undefined2 *)(unaff_EBP + -8x74) = 0x73;
*(undefined2 *)(unaff_EBP + -8x72) = 0x72;
*(undefined2 *)(unaff_EBP + -8x78) = 0x73;
*(undefined2 *)(unaff_EBP + -8x6e) = Oxda;
*(undefined2 *)(unaff_EBP + -8x6c) = Ox71;
*(undefined2 *)(unaff_EBP + -8x6a) = 0x62;
*(undefined2 *)(unaff_EBP + -8x68) = OX6¢C;

*(undefined2 *)(unaff:EBP + -0X66) = OX62;
*(undefined2 *)(unaff_EBP + -100) = 8x61;
*(undefined2 *)(unaff_EBP + -8x62) = 0x47;

*(undefined2 *)(unaff_EBP + -8x68) = 0x62;
*(undefined2 *)(unaff_EBP + -8x5e) = Oxde;
*(undefined2 *)(unaff_EBP + -8x5c) = 100;
*(undefined2 *)(unaff_EBP + -8x5a) = 0x42;
*(undefined2 *)(unaff_EBP + -8x58) = 0x50;
*(undefined2 *)(unaff_EBP + -8x56) = O0X67;
*(undefined2 *)(unaff_EBP + -8x54) = 0X66;

*(undefined2 *)(unaff_EBP + -8x52) H
(*_CreateMutexW)(®, 1, unaff_EBP + -8x74); //CreateMutexW function called with the strings values that were placed on the stack:"srsJqblbaGbNBPgf"
iVar2 = (*_GetLastError)();
if (ivar2 == oxb7) {
fcn.00411a69();
return;

}
Screenshot 2: String put on the stack passed onto the CreateMutexW function

So the mutex created from the stack strings in the StrongPity backdoor can be seen in
screenshot 2.

1

fen.0e40106a();

*(undefined2 *)(unaff_EBP + -0x58) = Ox5c;
*(undefined2 *)(unaff_EBP + -0x4e) = Ox77;
*(undefined2 *)(unaff_EBP + -8x4c) = Ox69;
*(undefined2 *)(unaff_EBP + -8x4a) = Ox6e;
*(undefined2 *)(unaff_EBP + -0x48) = Ox6d;
*(undefined2 *)(unaff_EBP + -0x46) = Ox73;
*(undefined2 *)(unaff_EBP + -0x44) = Ox69;
*(undefined2 *)(unaff_EBP + -8x42) = 0x73;
*(undefined2 *)(unaff_EBP + -0x40) = 0x6d;
*(undefined2 *)(unaff_EBP + -0x3e) = Ox2e;
*(undefined2 *)(unaff_EBP + -0x3c) = Ox65;
*(undefined2 *)(unaff_EBP + -8x3a) = 0Ox78;
*(undefined2 *)(unaff_EBP + -0x38) = OX65;
*(undefined2 *)(unaff_EBP + -0x36) = 0; // The following string values are placed on the stack: \winmsism.exe.
*(undefined2 *)(unaff_EBP + -0x34) = Ox5cC;
*(undefined2 *)(unaff_EBP + -0x32) = Ox73;
*(undefined2 *)(unaff_EBP + -8x30) = 0x70;
*(undefined2 *)(unaff_EBP + -0x2e) = 0x70;
*(undefined2 *)(unaff_EBP + -0x2c) = OX73;
*(undefined2 *)(unaff_EBP + -0x2a) = Ox65;
*(undefined2 *)(unaff_EBP + -8x28) = 0x72;
*(undefined2 *)(unaff_EBP + -0x26) = Ox2e;
*(undefined2 *)(unaff_EBP + -0x24) = OX65;
*(undefined2 *)(unaff_EBP + -0x22) = Ox78;
*(undefined2 *)(unaff_EBP + -0x28) = Ox65;
*(undefined2 *)(unaff_EBP + -8xle) = @; // The following string values are placed on the stack: \sppser.exe.

fcn.e04024bb();
pcvarl = _Sleep;
(*_Sleep)(0®x5dc);
fcn.004024bb();
(*pcVvar1)(ex1194);
do {
*(undefined4 *)(unaff_EBP + -4) = 0;

Screenshot 3: File names that were put on the stack that was detected by floss
The file names are also created from the stack-based strings values.

In screenshot 3 the function with the name fcn.0040106a(); is executed. That function leads
to two so-called byte encoding algorithms by leveraging a single-byte XOR operation with
0x59 and 0x2b. Malware authors often use XOR as this algorithm obfuscates data easily.
XOR is a bitwise operation. If you XOR something twice with the same key, this will result in

7/13

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fa45ef37e-7f42-43ec-8222-215c2ee462f0_1398x601.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F25d33604-d7f0-41b8-9674-8cb3103f9068_1071x636.png
https://en.wikipedia.org/wiki/XOR_gate

the original value. In the example below, the capital character “A” will be XOR’ed with the
XOR Key “B”. The output data of the XOR operation is a non-printable character (NP). If we
then XOR that value with the original XOR key “B” we have the original value back.

Input data = 'A' = 01000001
XOR Key = 'B' = 01000010
Output data (NP) = 00000011
XOR Key = 'B' = 01000010
Output data = 'A' = 01000001

As shown in the example above, these operations can result in unreadable information as
non-printable characters are not printed or detected by the ‘strings’ or ‘floss’ utilities. Let’s
continue with the analysis.

var_d4h._2_2_ = 0x36;
var_cgh = Ox77;
var_céh._2 2 = 0x36;
var_c2h. 2 2 = 0x76;
var_beh = @x29
var_bah. ® 2 = 0x2b;
var_bah. 2 2 = 0x2a;
var_bch = 0x38;
var_b4h. @ 2 = 6;
var_ach._0_2_ = 6;
var_beh. @ 2 = 0x37;
var_ach._2_ 2 = 0x3f;
var_bé6h = @x3c
var_a4h. 8 2 = 0x3c;
var_adh. ©_2_ = 0x29; Screenshot 4:
var_9ch. 8 2 = 0x29;
uVar4 = 0;
var_b4h. 2 2 = 0x30;
var_beh. 2 2 = 0x30;
var_ash = 0x30
var_a6h = 0x35
var_a4h. 2 2 = Ox77;
var_aeh._2 2 = 0x31;
var_9ch. 2 2 = 0;

do {

pivari = (int32_t *)((int32_t)&var_104h + uVard * 2);
*(uintl6_t *)pivarl = *(uintl6_t *)pivarl ~ 8x59;
uVar4 = uVard + 1;

} while (uvar4 < 0x35);

Strings put on the stack are xor’ed with 0x59

The XOR operation with the 0x59 byte values will eventually decode the encoded stack
strings to the first domain and URL, namely
“hxxps://transferprotocolpolicy.com/parse_ini_file.php"” The XOR operation with the 0x2b byte
values finally results in the following domain and URL after decoding
“hxxps://transferprotocolpolicy.com/phpinfo.php”

Dynamic analysis

So after the static analysis, the StrongPity sample was executed in x64dbg on my isolated
virtual machine for some dynamic confirmation of the initial findings. By setting a breakpoint
on the CreateMutexW and GetTempPathW API functions, the StrongPity backdoor reveals
the creation of the same mutex and later on deobfuscation of the domains and URL used by
the StrongPity actors. | will briefly describe the findings with some screenshots below.

8/13

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F548a5bb0-b0a6-4625-9b65-5a7f29097837_722x519.png
https://x64dbg.com/

1: Main Thread 7612 - x32dbg [Elevated] — O *
Help Apr 3 2021 (TitanEngine)
Memory Map [Call Stack =@ SEH |¢| saript %] Symbols <2 Source +~ References 'S Threads ®5 Handles #7 Trace
Jjmp dword ptr ds:[<&CreateMutexw:>] CreateMutexw A Hide FPU
int3
:23 EAX OOCFFETS L"srs3JqblbaGbNdBPgF" A
int2 EBX 00000073 ‘s’
int3 ECX 00000062 ‘b’
int3 EDX 00000000
int3 EBP OOCFFEEC
int3 ESP OOCFFESS TEwZ"
int3 ESI O0SFDA4OD strongpity_twit.008FDA40
int3 EDI 00000000
jmp dword ptr ds:[<&CreateSemaphor eExW=]CreateSemaphoreExw
:23 EIP 7GCE3AL0 <kernel3z.CreateMutexws>
Jos EFLAGS 00000344
int2 ZF 1 PF1 AF O
int3 OF 0 SF O DFO
int3 CFO TF1 IF1
int3
int3 LastError 00000000 (ERROR_SUCCESS)
int3 Laststatus CO000100 (STATUS_VARIABLE_NOT_FOUND)
jmp dword ptr ds:[<&CreateSemaphorew=] |Createsemaphorew
int3 GS D02E FS 0053 v
int3
int3 < >
int3
qoz + | Default (stdcall) ~|[5_[£] 00 unlocked
. > 1: [esp+4] 00000000 A
2: [esp+5] 00000001
=]=<kernelbase.CreateMutexi: 3: [esp+C] DOCFFE78 L"srslgblbaGbndepgf™
4: [esp+10] ADETFFOG0 v
B: Tesn+147 OOOHWHHND
iteMutexn: £ >
5 QOBE25CS (return to strongpity_twit.008E25C8 from 777
@oumps @ watch1 lx=lLocals 2 struct DOCEFESE | DO0DOD00 — 2
|| 0OCFFEED| DODOOOOL
— O00CFFEG4 | DOCFFE7S | L"srslqblbacbNdBPgf™
SE2 DR o 00CEFEGS | ADETFOGD
381 DR 77
T T O0CFFESC |ooDOOOOO |

Screenshot 5: CreateMutex creation based on the stack strings ﬂoss output

5

CB135C

L

0O0CB1365
OO0CBE1366
0OCE136A
00CB1370

0OCE137E
£

FEEEENNNEY]

|

febp+eax=2-

s5:[lebp-104])

wit.CC9758

SF pop edi

66:31BC45 FCFEFFFF xor word ptr ss:

40 inc eax

IBC3 cmp eax,ebx

72 F3 jb strongpity_twit.CB135D
8DB5 FCFEFFFF lea eax,dword ptr

50 push eax

&5 S5897CCO0 push strongpity_t

65 18D4CC00 push strongpity_t

E8 86FCFFFF

wit.CCD418

£all <strongpity_twit.sub_CBLlODE>

1040, di

CCO75E:L"%1s"

lump is not taken
strongpity_twit.00CBL35D

,TeXT:00CB1368 strongpity_twit:$1368 #768 <sub_CBlOGA+2ZFE>

HPeoumpl @pump2 P pump3 W Dump4 B4 Dump 5 8 watch 1 Le=l Locals 2 struct
iddress | Hex ASCIT

JODEFBCC |59 00 00 00|00 OO0 00 00|40 DA CC O0|73 00 00 O0|Y.uueu... &
JODEFBDC |C6 FE A6 B4 |31 00 2D 00|2D 00 29 0D|2A 00 63 00| 4£p, 1.-.-.
JODEFBEC |76 00 76 00|2D 00 2B 00|38 00 37 0OD|2A 00 3F OO|W.V.-.+.8.
JODEFBFC | 3C 00 2B 00|29 00 2B 00|36 00 2D 00|36 00 3A 00| <.+.).+.6.
JODEF90QC |36 00 35 00|29 00 36 00|35 00 30 0O0(3A 00 20 0OD|6.5.).6.5.
JODEFS1C | 77 00 3A 00|36 00 34 00|76 00 29 00|38 00 2B OO0 |(W.:.6.4.V.
JODEFS2C | 2A 00 3C 00|06 OO0 30 00|37 00 30 0OD|06 OO0 3F OO *.<...0.7.
JODEF93C 30 oo 35 oo 3[".}0 ?? {}0 29 oo 31 {}0 29 ".}ﬂ ".}0 Oﬂ 0.5.<.w.).1. .
WNFF 940 nn T v

Screenshot 6 Encoded stac

routine

k strlngs stored |n memory (dump) before first XOR (0x59)

Screenshot 6 displays the stack strings (partially) found by floss, encoding the domain name.

OODEFBDC |C& FE
CODEFBEC | 2F OO
OODEFSFC | 65 OO0
CODEF20C | GF OO0
CODEF91C | 2E OO
CODEF92C | ¥3 OO0
OODEF93C EB {}G

Screenshot 7 Decoded stacked strlngs stored in memory (dump) after XOR (0x59

A& B4 |&E
2F OO 74
72 00|70
6C 00|70
63 00|6&F
65 00(5F
E-E{}DEE-

33332233

74 00|74
72 00|61
72 00| &6F
6F 00| 6C
6D 00| 2F
69 00| &E
ZE{}G?{]

o0 FO 00|73 00
o0 6E 00|73 OO
o0 74 00| 6F 0O
o0 69 00|63 00
o0 FO 00|61 OO
o0 &9 00|5F OO0
{}DEB{}D?G{}D

3A 00| &Zp, h.t.t.p.5.:.
66 00| /.. t.r.a.n.s.T.
62 00|e.r.p.r.o.t.o.c.
79 00|lo.T.p.o.1.7.C.Yv.
72 00|..c.o.m./.p.a.r.
66 00|s.e._.i.nm.i._.T.
00 oo|i.l.e...p.h.p...

) routine

9/13

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fdfe970f8-e4af-40db-b39b-9b0bc4d38316_1004x545.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F78507a17-2278-4069-bda8-87d53f24056b_811x319.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F039ce554-e87a-4990-8646-742367c8641a_517x82.png

Chlsers\|[EUserAppDatat Localh TemphndaDatah config.bink

File Edit View Favorites Tools Help

P = <y) wm XK1

Add Extract Test Copy Move Delete Info

¥ [] CAUsers\|EUser\AppData\Localh\Temp\ndaDatat config.bin®,

Mame Size Packed Size Modified Create
[E#Recognizing Commen Cryptographic Algorithms ... 1523114 1325934 2021-02-2713:14

Screenshot 8: StrongPity backdoor immediately collects data found on the compromised
system

After installing the StrongPity backdoor on my virtual machine, the backdoor immediately
starts gathering files based on a certain extension and temporarily stores it in a compressed
file “config.bin” before it wants to send it to the command and control server. Some content is
displayed in screenshot 8. Bonus question for reversers. WWho recognizes the pdf file?

Malware analysis recap

After assessing the StrongPity backdoor with floss, it immediately became clear that many
backdoor configuration items are stored in stack strings in the binary, like mutex, directory,
file names, and domain information. Potentially to evade normal detection. By leveraging the
power of the decompilation feature of the Cutter reverse engineer platform, the single-byte
xor obfuscation algorithms were quickly detected.

StrongPity backdoors are good candidates for Yara rules as the backdoors contain many
strings, constants, and byte patterns that can be leveraged in Yara rules. Over time the actor
behind the StrongPity backdoor makes small updates to the backdoor.

Hunting for more StrongPity samples

Based upon the intelligence gathered by other security companies and by leveraging the
power of VirusTotal Intelligence (VTI), you can really start hunting on this adversary. VTI has
a great feature called the search for similar samples like these. With that search, the
samples below were found. One additional remark, this great publication platform does not
support tables, hence the screenshots. If you're interested in the malware samples, feel free
to reach out.

10/13

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fd6fe0678-155a-499c-ada1-694468367a99_634x191.png

Sample 256 Xor |Domains/URL Date First Seen VT
Key

233358861 a4f8f3f100baad4665506252125 | 0x59 | haxpsyitransferprotocolpolicy. com/parse_ini_file. php 2021-03-15

03126ac23d0bbe7022bd6esbod7d 0x2b | hxxps:/transferprotocolpolicy. com/phpinfo.php

2b26f4ce23deal23f4f7fBdaf4cB 155085506 | 0x56 | hxoxpsy/networkmanagemersolutions. com/phpinfo.php 2020-11-03

Ba4042hc1 50dfh71344f74b6E 7D

Ba7cSc4eB0292bed 5698040d0fdf To0e9693 | 0x2d | haoxps:Viransferprotocolpolicy. comvphpinfo.php 2020-12-02

e05e3051392d5820f5037fdBf02c Ox5a

7B6c5BacafTal354b0038f34ad ecBad62350 | Ox4f | haxpsyinetworkmanagemersolutions. com/phpinfo.php 2020-11-14

59b8f3e87a47197f008446a5C757

188797 7d cBead76b5dd accc fe74e60630222 | 0x51 | hxxps:/fileaccesscontrol. comphpinfo.com 2020-11-12

bfff1c7888eef08ce Delcdd0d12f

bofafh303bo605410bc1a7095d 267 7d5880 | 0x53 | haxps:itransferprotocolpolicy. com/parse_ini_file. php 2020-12-02

a1a233f849375c1 aab52f0d52ela 26

d187 efBdea3s1f0f6aec3el 3eff52e29fad574 | 0x5b | haxpsyiitransferprotocolpolicy. com/parse_ini_file. php 2020-11-10

d147508d4dd3badda7 1ebdd63a 0x24 | hxxps:/transferprotocolpolicy. com/phpinfo.php

Screenshot 9: Similar malware samples found via VTI.
Based on additional Twitter intelligence and using the same functionality, some newer

samples were discovered.

Sample 256 Xor |Domains/URL Date First Seen VT
Key

057e27d215f493046041 7bfd5fec41b193c85| 0x35 |hxxpsy/lurkingnet.comsparse_ini_file.php 2021-03-07

ac9275al ae5594fchab6Bc23ed7 0x28 |hxxps:/lurkingnet.com/phpinfo.php

dfd0f4h821438d8a9277728e42ab58bd c266 | Oxde |https:/resolutionplatf orm.com/parse_ini_file.php 2021-03-13

7aa7173892ffd6ede75 a5d 564565 Ox4b |https:/resolutionplatf orm.com/phpinfo.php

ed3dabb1fd9c65286217hd chdfa2cB67 e985d | 0x29 [hxxps:/lurkingnet.com/parse_ini_file.php 2021-03-15

a3dfg6bafiab19f48d83a782d26 0x24 |hitps/lurkingnet.com//phpinfo.php

Screenshot 10: Newer samples of the StrongPity backdoor were found.

As was discussed in the background of the StrongPity paragraph the alleged Turkish nation-
state actor leverages popular software. The sample with the value
“dfd0f4b821438d8a9277728e42ab58bdc2667aa7173892ffd6ede75a5d5645f5” was installed
via a trojanized version of Partition and Mount which was uploaded in Korea. That trojanized
version can be downloaded from VT as well with the following sha256 checksum:
“0e4651625abda88df56952b7e97d7fb64a3e1ea97bfe01€931d47381c0952e98”

11/13

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F82bf90ed-57cc-499c-b7c2-53f29f00845d_683x268.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Fc3c1ab88-9a55-4253-b7da-d5aa5a6ccb7d_682x139.png

File Actions Help CS 002

Scan... ¥ Open Image Create Image

Drives Layout Size File system System disk Mounted as ST(3)
| Bl VBOX HARDDISK 85 GB S5T(4)
i B Visible partitons | ST(&

Mo visihie partifions found About Y
E Found partitions
Mo new pariitions found

al
W_
_ W
\\\ Partition Find and Mount :—
version 2.31 1

Copyright (c) 2006-2007 Ataola Technology w_
hitp:/fwww.FindAndMount.com

For personal use only. =
(transfer rate is limited to 512 KBytes/s) BSE

et = Switch to Find and Mount Pro T

| "UUBPP-lB Lugu gt e lngn b

Screenshot 11: The Trojanized version of Partition and Mount.

Conclusion

Based on industry intelligence reports and my own brief malware analysis, it becomes clear
that the alleged Turkish nation-state actor StrongPity is likely running a massive and multi-
year data collection program and is apparently successful. Citizenlabs and Bitdefender
reported strong indications of Turkish nation-state involvement. The backdoor received small
updates periodically, and the collection infrastructure has been improved over time. The
actor was initially focusing on the Middle Eastern region. The actor is now also focusing on
Europe, Asia, and Canada. The claims of massive phishing campaigns by Cyble were not
substantiated by evidence in their report. The same holds for LMNTR, who claimed that
StrongPity targeted Financial organizations, Industrial plants, and Educational organizations
after compromising victims' computers. It could be that LMNTR found detections originating
from those organizations after some employees downloaded this trojanized software. Still,
their research does not explain how compromised victims attacked the referred companies. It
would be very interesting if the StrongPity actors are utilizing compromised victim machines
in their attacks. Also, the malware research of both Cyble and LMNTR was not very detailed
or sometimes blurred out to agree with that research.

Overall, the StrongPity backdoor is well detected by the anti-virus industry. This assumes
that the actor is less successful in company networks and is more focused on citizens. This
triggered a thought. Do the victims of the StrongPity actor have a working anti-virus solution?
| sometimes support friends and family with computer issues but rarely detect a working anti-
virus solution on their private computer. Based upon the minimal updates in the modus
operandi and sophistication of this actor, | suspect not. The method that the actor employs is

12/13

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc84-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2Ffe05c6eb-51af-4b9f-93cf-f0154b12da2c_791x454.png

a nice one. Who is not downloading these targeted tools sometimes? Under the above
conditions, why would a victim know they are downloading a trojanized version of a certain
utility. What worries me a bit is the massive amount of data collection and processing
infrastructure that the actor needs to maintain. Based on samples uploaded in VT, | assume
that large amounts of data are uploaded into their operated infrastructure. The data collected
needs to be processed as well to make it actionable. | wonder what kind of data lake the
StrongPity actors have. For next time watch out when you want to recover some files and
install StrongPity on your system.

1

A mutex is usally genererated by malware creators to avoid infection of a system by
different instances of the same malware. On Windows a mutex can be created by the
Window Application Programmer Interface (API) function CreateMutexW

13/13

