
1/16

.. April 15, 2021

Unpacking RAGNARLOCKER via emulation
reversing.fun/posts/2021/04/15/unpacking_ragnarlocker_via_emulation.html

Apr 15, 2021

Introduction

Packers are a common way for adversaries to protect their payloads, avoid detections and
make reverse engineering a bit harder.

Manual analysis of packers helps in tasks such as making signatures to track more malware
using that specific packer and developing tools that allow us to unpack malware
automatically. To do that, reverse engineers need to understand how the packer is working.

I like automating tasks whenever is possible, and I’ve always wondered about the
automation of unpacking malware.

Recently I’ve started to read more about emulation and came across the Qiling framework.
The idea of unpacking malware via emulation seemed very interesting hence I started
exploring the capabilities of Qiling for this specific use case.

Here I’ll try to explain my approach to unpack RAGNARLOCKER with Qiling.

Reverse engineering the packer

To extract the payload via emulation, I needed to understand how the three stages of this
packer work.

There was no need to understand all the details of the algorithms used by this packer since
I’ll just let the malware run (with Qiling) and let it unpack the payload itself.

Instead, I need to understand the flow of the unpacking routines and try to identify a stage
where the payload is unpacked in memory so that I could dump it.

First stage

In this first stage, the packer executes several worthless instructions, functions, and loops to
slow down the analysis. It also uses some anti-emulation techniques, possibly to avoid
emulators like Qiling. Below it’s possible to see some examples.

Worthless function:

http://reversing.fun/posts/2021/04/15/unpacking_ragnarlocker_via_emulation.html
https://github.com/qilingframework/qiling

2/16

Worthless loop and instructions:

Giant loop to slow down the execution (this is costly to an emulator, specially one that is
written in python):

Anti emulating via GetLastError API:

GetLastError() is used to check the last error code of the calling thread. The packer
calls SetWindowContextHelpId() with an invalid handle and checks if the last error is
ERROR_INVALID_WINDOW_HANDLE that corresponds to the value 0x578.

3/16

Second stage

In this stage, the packer allocates a new memory region, decrypts a shellcode, copies it to
the newly allocated memory, and executes it.

Allocating a new memory region:

Decrypting the shellcode:

Shellcode execution:

As seen, a handle to KERNEL32.dll is passed to the shellcode. This handle is later used to
resolve all the needed APIs.

Third stage - final shellcode

In this last stage, the shellcode decrypts the payload and loads it using a self replacement
technique.

Resolving the needed APIs:

4/16

Summary of the APIs used by the shellcode:

VirtualAlloc
GetProcAddress
VirtualProtect
LoadLibraryA
VirtualFree
VirtualFree
VirtualQuery
TerminateThread

Allocating two memory regions:

Copying the encrypted payload to the first memory region and decrypting it:

5/16

Copying the decrypted payload from the first memory region to the second memory region,
and calling VirtualFree():

The perfect time to dump the unpacked RAGNARLOCKER payload is when the shellcode
calls VirtualFree(). As seen below, when the shellcode calls VirtualFree(), the second
memory region allocated by the shellcode contains a PE file (the unpacked payload).

Based on the analysis of the packer the strategy to unpack the payload with Qiling is the
following:

Strategy to unpack

Track all the allocated memory regions. To accomplish this task, I used hooks in
VirtualAlloc() and VirtualAllocEx().

When the packer calls VirtualFree(), dump the last allocated memory region.

6/16

The strategy seems simple enough, but I also needed to overcome the anti-emulation tricks
and Qiling limitations:

Strategy to overcome Anti-Emulation tricks and Qiling limitations

Bypass GetLastError() anti-emulation trick.

Patch the large anti-emulation loop.

Implement any missing windows apis. (Qiling limitation)

Qiling Emulation Framework

Qiling is a high-level framework that tries to emulate both the CPU and the OS.

Description from the official website:

Qiling is designed as a higher level framework, that leverages Unicorn to emulate CPU
instructions, but Qiling understands OS: it has executable format loaders (for PE,
MachO & ELF at the moment), dynamic linkers (so we can load & relocate shared
libraries), syscall & IO handlers. For this reason, Qiling can run excutable binaries that
normally runs in native OS

The advantage of using a framework like this to unpack malware is that there is no need to
understand all the unpacking algorithm. Also, the unpacker script may survive updates in the
algorithm of the packer.

Bypass GetLastError() anti-emulation trick

As seen before, this packer uses the GetLastError() to check if the last error code was 0x578
after calling SetWindowContextHelpId().

Fortunately, in Qiling, it’s possible to set specific error codes. The hook implementation for
this API is the following:

@winsdkapi(cc=STDCALL, dllname="user32_dll")
def hook_SetWindowContextHelpId(ql, address, params):
 ERROR_INVALID_WINDOW_HANDLE = 0x578
 ql.os.last_error = ERROR_INVALID_WINDOW_HANDLE
 return False

7/16

Additionally, GetWindowContextHelpId() seems to be called with the
SetWindowContextHelpId() call. Since this API is also not implemented in Qiling, I needed to
implement it and set the correct error code.

@winsdkapi(cc=STDCALL, dllname="user32_dll")
def hook_GetWindowContextHelpId(ql, address, params):
 ERROR_INVALID_WINDOW_HANDLE = 0x578
 ql.os.last_error = ERROR_INVALID_WINDOW_HANDLE
 return False

Patching the large anti-emulation loop

As seen before, the packer uses a large “for” loop possibly to avoid being executed under
emulators like Qiling.

Fortunately, Qiling can search for specific byte patterns in memory and patch them.

The bytes that I choose to patch were the ones that make the instruction cmp
[ebp+var_1B8], 1E8480h :

The idea was to change the instruction to cmp [ebp+var_1B8], 0 . This way the code does
not enter the “for” loop.

Note: Another approach could be to turn the conditional jump that comes after in an
unconditional jump)

Patch function:

8/16

Patch specific byte patterns
def patch_bytes(ql):
 patches = []

 # Patch needed to avoid the anti-emulation loop
 # original bytes -> 81 BD 48 FE FF FF 80 84 1E 00 = cmp dword ptr ss:[ebp-
1B8],1E8480
 # patched bytes -> 83 BD 48 FE FF FF 00 90 90 90 = cmp dword ptr ss:[ebp-1B8],0
 patches.append({'original': b'\x81\xBD\x48\xFE\xFF\xFF\x80\x84\x1E\x00', 'patch':
b'\x83\xBD\x48\xFE\xFF\xFF\x00\x90\x90\x90'})

 for patch in patches:
 addr = ql.mem.search(patch['original'])
 if addr:
 ql.log.warning('found target patch bytes at addr:
{}'.format(hex(addr[0])))
 try:
 ql.patch(addr[0], patch['patch'])
 ql.log.info('patch sucessfully applied')
 return
 except Exception as err:
 ql.log.error('unable to apply the patch. error: {}'.format(str(e)))
 else:
 ql.log.warning('target patch bytes not found')

Overcoming Qiling limitations

Some Windows APIs aren’t supported in Qiling yet. In Qiling, to implement an API, it’s the
same as hooking an API.

9/16

'''
Not implemented in Qiling
'''
@winsdkapi(cc=STDCALL, dllname="user32_dll")
def hook_CharUpperW(ql, address, params):
 return params["lpsz"]

'''
Not implemented in Qiling
'''
@winsdkapi(cc=STDCALL, dllname="user32_dll")
def hook_CharUpperBuffW(ql, address, params):
 return 100

'''
This api is giving troubles to Qiling in the way the malware passes arguments.
So let's hook it and making it returning null since the packer does not use the
return value for nothing.
'''
@winsdkapi(cc=STDCALL, dllname="kernel32_dll")
def hook_CreateEventA(ql, address, params):
 return 0

'''
Qiling is retuning 0x0 by default and the packer stub only continues if this value is
different from 0.
So let's just hook it and make it return a value different then 0
'''
@ winsdkapi(cc=STDCALL, dllname="kernel32_dll")
def hook_VirtualQuery(ql, address, params):
 return params['dwLength']

Defining the needed hooks

With the anti-emulation loop patched and the Qiling limitations been taken care of, it was a
matter of hooking the rest of the needed functions to keep up with the unpacking strategy.

10/16

@winsdkapi(cc=STDCALL, dllname="kernel32_dll")
def hook_VirtualFree(ql, address, params):
 global mem_regions
 lpAddress = params['lpAddress']

 ql.log.warning('VirtualFree called. lpAddress = {}'.format(hex(lpAddress)))
 ql.log.warning('time to dump last allocated memory...')
 unpacked_mem_region = mem_regions[-1]
 dump_memory_region(ql, unpacked_mem_region['start'], unpacked_mem_region['size'])
 ql.os.heap.free(lpAddress)
 exit()
 return 1

@winsdkapi(cc=STDCALL, dllname="kernel32_dll")
def hook_VirtualProtect(ql, address, params):
 return 1

@winsdkapi(cc=STDCALL, dllname="kernel32_dll")
def hook_VirtualAllocEx(ql, address, params):
 global mem_regions

 dw_size = params["dwSize"]
 addr = ql.os.heap.alloc(dw_size) # allocate memory in heap

 ql.log.warning('VirtualAllocEx hook allocated a new memory on the heap at -> {}
with size -> {} bytes'.format(hex(addr), hex(dw_size)))

 mem_reg = {"start": addr, "size": dw_size}
 mem_regions.append(mem_reg)
 return addr

@winsdkapi(cc=STDCALL, dllname="kernel32_dll")
def hook_VirtualAlloc(ql, address, params):
 global mem_regions

 dw_size = params["dwSize"]
 addr = ql.os.heap.alloc(dw_size) # allocate memory in heap

 ql.log.warning('VirtualAlloc hook allocated a new memory on the heap at -> {}
with size -> {} bytes'.format(hex(addr), hex(dw_size)))

 mem_reg = {"start": addr, "size": dw_size}
 mem_regions.append(mem_reg)
 return addr

Things to notice in the above definitions:

The VirtualAlloc() and VirtualAllocEx() hooks save the allocated memory regions to a
global variable.
The VirtualFree() hook calls a function to dump the last memory region.

The function that dumps the memory region:

11/16

def dump_memory_region(ql, address, size):
 ql.log.warning('dumping memory section at: {}'.format(hex(address)))
 ql.log.warning('size: {}'.format(hex(size)))
 try:
 exec_mem = ql.mem.read(address, size)
 with open('{}.bin'.format(hex(address)), "wb") as f:
 f.write(exec_mem)
 except Exception as e:
 ql.log.error(str(e))

Unpacking RAGNARLOCKER

Script output:

As seen, the script was able to dump the unpacked RAGNARLOCKER payload:

As seen, PE-BEAR opens the unpacked file with no problems:

https://github.com/hasherezade/pe-bear-releases/releases

12/16

Conclusion

I can see the potential in using a framework like Qiling to automate reverse engineering
tasks, and I’ll keep exploring emulation and other use cases besides unpacking.

Packed sample

68eb2d2d7866775d6bf106a914281491d23769a9eda88fc078328150b8432bb3

Full code

13/16

from qiling import *
from qiling.const import *
from qiling.exception import *
from qiling.os.const import *
from qiling.os.windows.const import *
from qiling.os.windows.fncc import *
from qiling.os.windows.handle import *
from qiling.os.windows.thread import *
from qiling.os.windows.utils import *

import sys
from sys import exit
from os.path import expanduser

mem_regions = []

def dump_memory_region(ql, address, size):
 ql.log.warning('dumping memory section at: {}'.format(hex(address)))
 ql.log.warning('size: {}'.format(hex(size)))
 try:
 exec_mem = ql.mem.read(address, size)
 with open('{}.bin'.format(hex(address)), "wb") as f:
 f.write(exec_mem)
 except Exception as e:
 ql.log.error(str(e))
'''
Not implemented in Qiling
'''
@winsdkapi(cc=STDCALL, dllname="user32_dll")
def hook_CharUpperW(ql, address, params):
 return params["lpsz"]

'''
Not implemented in Qiling
'''
@winsdkapi(cc=STDCALL, dllname="user32_dll")
def hook_CharUpperBuffW(ql, address, params):
 return 100

'''
This api is giving troubles to Qiling in the way the malware passes arguments.
So let's hook it and making it returning null since the packer does not use the
return value for nothing.
'''
@winsdkapi(cc=STDCALL, dllname="kernel32_dll")
def hook_CreateEventA(ql, address, params):
 return 0

'''
Qiling is retuning 0x0 by default and the packer stub only continues if this value is
different from 0.
So let's just hook it and make it return a value different then 0
'''
@ winsdkapi(cc=STDCALL, dllname="kernel32_dll")
def hook_VirtualQuery(ql, address, params):

14/16

 return params['dwLength']

'''
Anti emulation
We need this api to set the last error code to be: 0x578
'''
@winsdkapi(cc=STDCALL, dllname="user32_dll")
def hook_SetWindowContextHelpId(ql, address, params):
 ERROR_INVALID_WINDOW_HANDLE = 0x578
 ql.os.last_error = ERROR_INVALID_WINDOW_HANDLE
 return False

'''
Anti emulation
It is called with SetWindowContextHelpId.
Since this api is not implemented in Qiling we need to implement it too and make it
set the correct error code.
'''
@winsdkapi(cc=STDCALL, dllname="user32_dll")
def hook_GetWindowContextHelpId(ql, address, params):
 ERROR_INVALID_WINDOW_HANDLE = 0x578
 ql.os.last_error = ERROR_INVALID_WINDOW_HANDLE
 return False

@winsdkapi(cc=STDCALL, dllname="kernel32_dll")
def hook_VirtualFree(ql, address, params):
 global mem_regions
 lpAddress = params['lpAddress']

 ql.log.warning('VirtualFree called. lpAddress = {}'.format(hex(lpAddress)))
 ql.log.warning('time to dump last allocated memory...')
 unpacked_mem_region = mem_regions[-1]
 dump_memory_region(ql, unpacked_mem_region['start'], unpacked_mem_region['size'])
 ql.os.heap.free(lpAddress)
 exit()
 return 1

@winsdkapi(cc=STDCALL, dllname="kernel32_dll")
def hook_VirtualProtect(ql, address, params):
 return 1

@winsdkapi(cc=STDCALL, dllname="kernel32_dll")
def hook_VirtualAllocEx(ql, address, params):
 global mem_regions

 dw_size = params["dwSize"]
 addr = ql.os.heap.alloc(dw_size) # allocate memory in heap

 ql.log.warning('VirtualAllocEx hook allocated a new memory on the heap at -> {}
with size -> {} bytes'.format(hex(addr), hex(dw_size)))

 mem_reg = {"start": addr, "size": dw_size}
 mem_regions.append(mem_reg)
 return addr

15/16

@winsdkapi(cc=STDCALL, dllname="kernel32_dll")
def hook_VirtualAlloc(ql, address, params):
 global mem_regions

 dw_size = params["dwSize"]
 addr = ql.os.heap.alloc(dw_size) # allocate memory in heap

 ql.log.warning('VirtualAlloc hook allocated a new memory on the heap at -> {}
with size -> {} bytes'.format(hex(addr), hex(dw_size)))

 mem_reg = {"start": addr, "size": dw_size}
 mem_regions.append(mem_reg)
 return addr

Patch specific byte patterns
def patch_bytes(ql):
 patches = []

 # Patch needed to avoid the anti-emulation loop
 # original bytes -> 81 BD 48 FE FF FF 80 84 1E 00 = cmp dword ptr ss:[ebp-
1B8],1E8480
 # patched bytes -> 83 BD 48 FE FF FF 00 90 90 90 = cmp dword ptr ss:[ebp-1B8],0
 patches.append({'original': b'\x81\xBD\x48\xFE\xFF\xFF\x80\x84\x1E\x00', 'patch':
b'\x83\xBD\x48\xFE\xFF\xFF\x00\x90\x90\x90'})

 for patch in patches:
 addr = ql.mem.search(patch['original'])
 if addr:
 ql.log.warning('found target patch bytes at addr:
{}'.format(hex(addr[0])))
 try:
 ql.patch(addr[0], patch['patch'])
 ql.log.info('patch sucessfully applied')
 return
 except Exception as err:
 ql.log.error('unable to apply the patch. error: {}'.format(str(e)))
 else:
 ql.log.warning('target patch bytes not found')

def sandbox(path, rootfs):
 # Create a sandbox for windows x86
 ql = Qiling([path], rootfs, verbose=QL_VERBOSE.DEFAULT, console=True)

 # Apply the hooks
 ql.set_api("VirtualAlloc", hook_VirtualAlloc)
 ql.set_api("VirtualAllocEx", hook_VirtualAllocEx)
 ql.set_api("VirtualProtect", hook_VirtualProtect)
 ql.set_api('CharUpperW', hook_CharUpperW)
 ql.set_api('CharUpperBuffW', hook_CharUpperBuffW)
 ql.set_api('SetWindowContextHelpId', hook_SetWindowContextHelpId)
 ql.set_api('GetWindowContextHelpId', hook_GetWindowContextHelpId)
 ql.set_api('CreateEventA', hook_CreateEventA)

16/16

 ql.set_api('VirtualQuery', hook_VirtualQuery)
 ql.set_api('VirtualFree', hook_VirtualFree)

 # Path anti emulation loops
 patch_bytes(ql)

 # Start the sandbox
 try:
 ql.run()
 except Exception as e:
 print('error: {}'.format(str(e)))
 exit(-1)

def main():
 if not len(sys.argv) == 2:
 print(f"usage: {sys.argv[0]} <exefile>")
 return

 path = sys.argv[1]
 rootfs = f"{expanduser('~')}/qiling/examples/rootfs/x86_windows"
 sandbox(path, rootfs)

if __name__ == "__main__":
 main()

References

