Emotet Command and Control Case Study

{7 unit42.paloaltonetworks.com/emotet-command-and-control/

Chris Navarrete, Yanhui Jia April 9, 2021

By Chris Navarrete and Yanhui Jia

April 9, 2021 at 12:00 PM

Category: Malware, Unit 42

Tags: C2, command and control, Cybercrime, Emotet, exploit

This post is also available in: H4SZE (Japanese)

Executive Summary

On March 8, 2021, Unit 42 published “Attack Chain Overview: Emotet in December 2020 and
January 2021.” Based on that analysis, the updated version of Emotet talks to different
command and control (C2) servers for data exfiltration or to implement further attacks. We
observed attackers taking advantage of a sophisticated evasion technique and encryption
algorithm to communicate with C2 servers in order to probe the victim's network environment
and processes, allowing attackers to steal a user’s sensitive information or drop a new
payload.

1/14


https://unit42.paloaltonetworks.com/emotet-command-and-control/
https://unit42.paloaltonetworks.com/author/chris-navarrete/
https://unit42.paloaltonetworks.com/author/yanhui-jia/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/tag/c2/
https://unit42.paloaltonetworks.com/tag/command-and-control/
https://unit42.paloaltonetworks.com/tag/cybercrime/
https://unit42.paloaltonetworks.com/tag/emotet/
https://unit42.paloaltonetworks.com/tag/exploit/
https://unit42.paloaltonetworks.jp/emotet-command-and-control/
https://unit42.paloaltonetworks.com/attack-chain-overview-emotet-in-december-2020-and-january-2021/

In this blog, we provide a step-by-step technical analysis, beginning from where the main
logic starts, covering the encryption mechanisms and ending when the C2 data is exfiltrated
through HTTP protocol to the C2 server.

Palo Alto Networks Next-Generation Firewall customers are protected from Emotet with
Threat Prevention and WildFire security subscriptions. Customers are also protected with
Cortex XDR.

Technical Analysis

This analysis will use custom function names (i.e., collect_process_data) that replace the
regular IDA Pro's function format (i.e., sub_*) and will assume a 32-bit (x86) DLL executable
with an image base address of 0x2E1000. The user can refer to the following image that
contains function offsets, names and custom names for easy reference.

NOTE: Sub-functions used are not listed, since these can be easily located from the
presented function offsets.

:B82F511B sub_2FS511B

Figure 1. IDA’s functions reference information.
The present analysis begins from the entry point function c2_logic_ep (sub_2E2CG63).

Encryption API Functions

This malware uses two main functions: encryption_functions_one and
encryption_functions_two. Both functions makes use of Microsoft's Base

Cryptography (CryptoAPI). The following section includes the properties used and actions
performed by these crypto functions during the malware execution.

2/14


https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/cortex/cortex-xdr

o CryptAcquireContextW - Uses a PROV_DH_SCHANNEL as provider type (0x18).
The CRYPT_VERIFYCONTEXT and CRYPT_SILENT flags are combined with a
bitwise-OR operation (0xf0000040) to make sure that no user interface (Ul) is
displayed to the user.

o CryptDecodeObjectEx - Uses a message encoding
type X509 _ASN_ENCODING and PKCS_7_ASN_ENCODING that are combined with
a bitwise-OR operation (0x10001), a structure
type X509_BASIC_CONSTRAINTS (0x13) and a total of 0x6a bytes that are going to
be decoded.

o CryptimportKey - Imports a key-blob of 0x74 in size (bytes) and
type PUBLICKEYBLOB (0x6) with a CUR_BLOB_VERSION (0x2) version.

e CryptGenKey - Uses an ALG_ID value that is set to CALG_AES_128 (0x0000660¢)
and generates a 128-bit AES session key.

o CryptCreateHash - Uses an ALG_ID value that is set to CALG_SHA (0x00008004),
which, as the the name suggests, sets the SHA hashing algorithm.

o CryptDuplicateHash - Receives a handle to the hash to be duplicated.

o CryptEncrypt - This function receives two main parameters: a handle to the encryption
key generated by the CryptGenKey function and a handle to a hash object generated
by CryptCreateHash. This value will be used after encryption by calling
the CryptEncrypt function and passing as a parameter the pointer to the C2 data.

o CryptExportKey - Uses a SIMPLEBLOB (0x1) type and CRYPT_OAEP (0x00000040)
as a flag. The pointer to the buffer where the key-blob is exported is part of the
malware's C2 data.

o CryptGetHashParam - As in the case of the CryptExportKey function, the destination
pointer is part of the malware's C2 data.

o CryptDestroyHash - As its name implies, destroys the given hash.

Machine ID Generation and Length Checking

The generate_machine_id function, as its name states, is in charge of generating a machine
identifier for the infected computer. The method used to generate the machine identifier is by
making a call to the _snprintf function, which uses the format string %s_%08X to
concatenate the value generated by GetComputerNameA and GetVolumelnformationW. In
the particular case of the test machine used in this analysis, the resulting value is
ANANDAXPC_58F2C41B.

ax, [esp+268h+machine id]

ag

4 81
! GG 68 generate machine id

Figure 2. Function call to generate a machine identifier (machine-ID value).

3/14



Once the machine-id is generated, a length-check verification is also generated. This is
achieved by calling the "Istrlen" function wrapper gen_machine_id_length and passing as a
parameter the returning value from the previous function call. For the case of the testing
machine, the resulting length was "12", and such value will reside in a particular stack
variable since it will be used as part of the C2 data. Subsequently, a new function call is
made to the write_GoR function. Its original purpose is unknown, however, based on the
analysis and how the returning value (0x16F87C) is used. It's presumably a delimiter, since it
is located at the end of the C2 data.

[=]5]
]

3 a1

R
b

[Ya}

Figure 3 . Function call to generate C2 data delimiter.

Operating System Data Collection

Part of the exfiltrated data also includes OS information, and this is achieved by calling
the collect_os_data function.

e

Figure 4. Function call to collect OS information.

This function makes calls to Rt/GetVersion, which stores data inside of

an OSVERSIONINFOW structure, and GetNativeSysteminfo performs the same by saving
its data inside a SYSTEM_INFO structure.

a/14



I
(a8
(a8
m
1
1

I e e S

T
L

Decoded data Comments

e

Decoded data Comments

DWW 6
D £

[an]

[in]
l—-l—'-l—'-l—'-l—'-l—'-l—'-l—'—l—'—l—'-l—-
I e e T

Flgure 5 OSVERSIONINFOW and SYSTEM_INFO structures filled up by API calls.

Once the data structures are populated, specific data is fetched by the instructions located at
these offsets: 0x2EC3DB (Ret value), 0x2EC440 (MajorVersion), 0x2EC3DB, 0x2EC3D0
(MinorVersion) and Ox2EC45A (Architecture| PROCESSOR_ARCHITECTURE_INTEL).

The returning value is computed by adding and multiplying against fixed

values: MajorVersion, MinorVersion, Architecture and the returning value (0x1) of

the RtIGetNtProductType call, which is a symbolic constant (NtProductWinNT) of the
NT_PRODUCT_TYPE enumeration data type. The following Python code simulates the logic
that generates such value.

~ wversion, min_version, architecture, nt_product type):

collect o ajor_version=8x6, min_wersion=8x1, architecture=8x8, nt_product type=8x1)
74
7

Figure 6. Python proof of concept (PoC) emulating the OS data generation algorithm.

Remote Desktop Services Session Information Collection

More calls are performed, including the one to GetCurrentProcessld, which retrieves the
process identifier for the current process, and the returning value is passed to the
ProcessldToSessionld function as parameter. According to the MSDN description,

5/14


https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-processidtosessionid

the ProcessldToSessionld function "retrieves the Remote Desktop Services session
associated with a specified process." The returning value of this function indicates the
Terminal Services session the current process is running on.

[esp+268h+var_118]

68h+current_session_id], eax
CX, 37F9

Figure 7. Function call to retrieve the Terminal Service session identifier.

Process Scanning and C2 Data Collection

This function collects active running processes on the system by the execution of the
traditional method of calling

the CreateToolhelp32Snapshot, Process32FirstW, GetCurrentProcessld and
Process32NextW functions. Before entering to this function, the instruction at

offset 0x2E4715 loads the address of a local variable in the EAX register and pushed onto
the stack. This variable will contain a pointer generated by a call to the RtAllocateHeap
function that will eventually receive the process data information.

[esp+276h r_1F4]
0 generate_process_data
Moy DWORD . DS:[EBX],ESI
MOy DWORD . D5:[EDI],EAX
POy . D5:[ESI],EAX

Figure 8. Function call to generate and initialize values with process data.

This function also makes calls to the sub-function named copy_collected_data_parent.
During its execution, it generates a new memory section made by a call to

the RtlAllocateHeap function, and some subsequent calls to the memcpy wrapper function to
copy collected C2 data to the new allocated section.

+machine id 1]
copy collected data_parent
MDY DWORD PTR D5:[EBX+4],EAX

MOYW DWORD PTR D5:[EBX],EAX

pop ecx
pop ecx

Figure 9. Function call that collects and initializes values with C2 data.

6/14



The next function to call is HTTP_LAUNCHER, which contains sub-functions that provide
web capability, among other tasks. At this point in time, the variables are initialized with the
corresponding return values from the previously executed functions. The following ASCII
dump shows the variable addresses, the related data and information about which function,
or instruction offset, provided the given data.

aa16F846

€pB. ASCII "ANANDAXPC_S58F2C41B™
...
tZE.

...
PadB

ASCII "OLLYDBG.EXE,SearchFilterHost.exe,SearchProtocolHost.exe, [...]"

6F87C C F47 GoR?
Figure 10. Stack-snapshot including collected data and the data generation functions
references.
The next step is a call to the c2_data_write function, which calls
the write_collected_data sub-function and passes as parameters two values:

1. A pointer to the C2 data (Ox2EAC3E).
2. The returning value (address) of a new memory allocation generated by a call to
the RtlAllocateHeap function located at offset 0x2F989B.

This newly generated data passes through an algorithm, which in addition to writing (at
offset 0x2FA830) also modifies certain bytes (at offset 0Ox2FAEGDE) of the C2 data, especially
some filename extensions.

dword ptr [edi+4]

ecx, [ebp+arg_8]

edi

ebx

[ebp+arg 4]

write collected data

|
| ]
|
|
|
|
|
\

w m uw W wm o/ X

Figure 11. Function calls that write collected data in memory.

7/14



Once the data is collected, a call to write_c2_data_zero is made, which will allocate
additional memory by calling the AllocateHeap (0x2E99DC) function. This function will
eventually be called twice, and it will call more sub-functions in where the instructions at
offset 0x2F362A of the write_c2_data_one function will generate two DWORD values: 0x1,
which is a fixed value, and 0x132, which is the length of the C2 data. The next step is a call
to copy_c2_data (a wrapper to memcpy at offset 0x2F794C) function, which copies the C2
data to a new location next to the two values mentioned earlier.

E8 FF E9 FF FF call write c¢2 data zero
EE ED FF FF call AllocafeHeap
6 maoy
call

maoh

call write c2 data one
call copy cZ data
CALL EAX

Figure 12. Function calls that perform intermediary C2 data copying.
The next sequential function execution is a call to CryptDuplicateHash. After that, a call

to copy_binary_data is made, which makes a final C2 data copy to a new memory allocation.

This location will contain the last C2 data before being encrypted by
the CryptEncrypt function, as will be performed in subsequent steps.

dword ptr [ebp+8]
[esp+128h+var E@]
[esp+124h+var_98]

edx, [esp+12Ch+var_88]
dword ptr

BCX,

copy_binar

Figure 13. Function calls that make a final copy of unencrypted C2 data.
The following picture shows the buffer with its related values and description highlighted with
different colors for easy reference.

nddresi Hex du

oICic ol aﬁ—a_w

"'--'-: 1 4E 44 41 58 50 93 SF 35/ 388 46 32 48 3

6014 HEEB 1A ?F 4134- 5‘9 44 47 47 EE? é g

B51Cc45 g —

E 4 &9 [iF 1 l F& 65 &l

:1 Fised walue E E" EE: ¢ C2 data size 2 /% 2a[ MachineiD )es
C450 ELC =15 ?? ‘&F 63 Lenath 28

[ascII
T 4 41)0...20..4%...ANA
1 42.%4| NDAXFC_SS8F2C41Bt
~e 4:;&@.@ PPa40EN, . @
c._
&
&

e
L L

-+ 0LLYDBEG. EXE, a
udien, exe, idatQ

* vt MachinedD s
dit Hac

/ie
S D

20
PN\
1%

oo, F"‘e" value za 4C 81 72 EE Fi | *h‘mtﬁrﬂ'
zegzion id ioed val.ie ;PLB h":l Figure 14.

2 E6 42 &@ 10 82 &8 D
F 72 &0

el g: 11¢nnh95§DGFaGED
P Ik Li wimpneberke™ L
o el || | i gyl oy
B2 64 77 6D 60 21 D6 73 70| task<w.;Bawm 4
90 56 20 30 96 53 65 72 76 colzy-d.U :EBlEE
= | P 1 LW e Sy b

L2 data Delimiter @l 73 /elsass{ber®)Os

6C EF 67/ 6E 68 19 04 77 .@-winiogon i

WCB =F B8] 60 73 68| ininaZBcsr " Bm=
B0 86 0B B0 B0 08| 8-....G0Rlcaau.s

In-memory byte offsets and sizes, including individual descriptions.

8/14



The next call is to the CryptEncrypt function wrapper, which will reach the real API function
via an indirect call to the EAX register located at offset 0Ox2FOADA4.

+138h+wa

= m T R

M M o MW T Tmoa
M T =

m M

¥A]
m

t, [esp+148h+wvar
L[prEnL[wpf

AFHﬂD4 FF DH

Figure 15. Function call to CryptEncrypt to encrypt C2 data.
The following picture shows the before and after encryption status of the C2 data.

Bdress [Hen dump [ - Bddress [hen dunp
1 n:aaaaaezza:m@a:F:eaua-au-a-u-rdl T i ]
4 4E 44 41 52 BA 43 BF 3% 38 46 32 43 24 31 42 ™4 NDH Pﬂ 59F£E+]E+ = AE 9C| B
EﬂlﬁﬂﬁlEﬁl?B&Sﬁdl342[2‘3[393@3-.-5 0.0 JOFa40S8.
=X B 1@ 4F 40 40 B9 44 42 47 2E 45 B2 45 20 61 -'-I:IJ_'r'I:IEE E.".E a
2|75 &4 69 G6F 64 67 2E €5 TH 65 2C &9 64 &1 99 0B wdioda. e, (ol
@7 T2 7E 6E &4 EC EC 33 32 &B 15 BE T2 €5 &7 &5 »runciilim= " 5ecdeg |
s G4 &9 P4 60 BB OC B0 72 &F &3 65 73 T3 40 41 &3 aned, Processiac)|
BB &S TE 6B 11 B& EF 49 4E 57 4F B2 44 £0 48 OF ke #0000 RS
B3 65 61 72 62 B2 43 £E &4 28 40 Bl 72 = 28 El'CI .--::m:rln:l L. # |
'ﬁ??:’.-:-F'HREI?IFﬁE’IFA-I-.i-‘_.I’!1|,'|I}?E\-"_|nl.'l6. L s " B
21 @5 62 6F 6E E2 EF T3 20 4F @l 46 &1 20 45 B?’ JJ‘-GEMM,-IIIFE‘;E
$| 77 GD Pl OGE|GE T4 TV A8 G0 20 07 B 42 F T 54| wemoneres® U 1
Iwﬂ:an i s
] 1
BEFORE ENCRYPTION Faser
OLsd
4 e By
&89 SE &% 6E A F2 B2 &3 T2 T2 LB 2F 81 &0 T3 &8 |n|r|-:|‘lc--._:rl-fLIrr:- 1 45 r_| 9 30BH E2 20 == CF 47 FF 1B D 40 B4 B4[ERL=IT#3°G +piie
=3 @7 O 8RB PA 47 £F EF B9 OQ B0 PO B3 0D 0P| 8 L H I’ 1B 73| 1E 85 % C7 FE 40 91 54| &F BC CR 21| R+ Asdlbul i6oert

Figure 16. Before and after encryption status of C2 data.
Once the C2 data is encrypted, the following step is to export the current encryption key by
calling the CryptExportKey function at offset Ox2EFF2C.

edx, iE
[esp+128h+war B4
[esp+1Z24h+var_BC

dword ptr
dword pfr

CryptExportkey

Figure 17. Function call to CryptExportKey wrapper.
After exporting the key, a loop located at offset 0Ox2EFF41 has an instruction at
offset 0Ox2EFF43 that writes into C2 data 0x60 bytes of the exported key.

9/14



loc ZEFF41:
al, [ecx]
[edx], al
edx

ecx
[esp+liCh+var 6@

ecx, eax

short loc 2EFF41

Figure 18. Write loop to populate exported crypto key data.
Now, a call to the API function CryptGetHashParam is made with a parameter that contains a
pointer to CryptDestroyHash that will write 20 bytes of the generated hash into the C2 data.

[edi+&ah ]

CryptGetHashParam

Figure 19. Function call to CryptGetHashParam.
The following image shows how the final C2 data is stored in memory.

Flddﬁl_ dump ASCII
D& A5 BO 17 frovdc® S0 43 &
3 86 90 BF i Syt [ ¥R R0 LE $
&8 8F| 07 £-M70T , ABAE 4300
IF 00| 28 28 oo, 65BN
6E F3 |k Tt casaef gt
28 F& T Hars3( 8+
0é pil ﬂu- ’ g =CnR L
ER DF| 2 EMATOS - FFaS, X
Fﬂgg L-'DEL= £ =>;?‘ﬁg
FNEEH
06 LM 181
D Hash \Value Ea»\aew
S REEEREE G Figure 20. | byt
Fd & + -
9E 40 @7 E6 BC 57 6B 6F 94 BS| o ib-Shil-i.hkodd igure - In-memory byte

H8 G| E-2t1):= ?FELE i
F4 S8 25yt
ED O 2 ~; tonwf _-rl. -

BB F&| = L 1pa THel 3 val

F2
23
45
2|
il
“ ED
o) &8 - DD 8A| 2dz IS¢ m &fRl- W ¢
2 E2 61 51 (3 BA 15 C3 AE 6C C9 OB TiSTe0aQ &S bulp F
o s oA 82/ C3 E& 75 &4 29 B9 FB 2H| bor. B -nH
) b CA F& 71 RE &7 F& A9 86 16 54 Nllv'-"f
a| ¥ A8 DE AD B9 &4 ES 51 46 ES &3 >|ella]. Qo0F Bo|
2| F& F& A8 48 35 56 EF|DE 3E 45 S7| ~zp#S=a@:Ua |EN
2 D4 88 S0l BR E2 2R S3CF 4¢ FF 1E| "0 SEjFi=ir+=G +
a 1B ¥3| IE A5 96 CFIFE 4C Hl 94| pfH e Recdbilkal 0§
2| b EE F7 E1 56 BC 23 E 54 73 5B oartek lSEU. moTsP
! | 2iis MaA e Erme]

inclusion of Exported Key, Hash Value and Encrypted C2 data.

C2 Exfiltration: HTTP Post Request Generation

At this stage, the C2 data containing Exported Key, Hash Value, and Encrypted C2
data are done. Thus, the last stage is the completion of the data exfiltration. The following
steps prepare the required data (e.g., IP address, HTTP form structure and values, etc.).

Figure 21. Function calls to fulfill the first half of HTTP requirements before data exfiltration.

10/14



At this point, subsequent function calls are performed to generate the binary data that will be
included within the HTTP form. The following section will describe the detailed steps that
lead to such encrypted data and its exfiltration to the C2 server.

This step consists of copying the C2 data (bytes) to the web form. This is achieved by the
execution of the copy _c2_data sub-function. This function will generate a binary MIME
attachment of the "application/octet-stream" content type with the input data to be suitable
for binary transfer.

[esp+ Bh+war_ B24]

[esp+ +boundary]
[esp+BCPah+binary_data_war]

binary data_zero

[esp+idcCh+binary data war], ecx

sp+laCh+binary data var]
loc_2ZF5718

dword ptr [ecx
sp+158h

copy_c2 data

2ax

Figure 22. Function calls to copy binary data to the web form.

At this stage, the final payload is preparing the environment to submit information to the C2
server. To do so, it executes function calls to retrieve the required data to finally perform the
HTTP request.

Figure 23. Function calls to fulfill the second half of HTTP requirements before data
exfiltration.

As can be seen in the function call list, the HttpSendRequestW() API function is used to send
the data to the server. This function allows the sender to exceed the amount of data that is
normally sent by HTTP clients.

11/14



YWifireshark

Follows HTTP Strearn (tcpostream eq & emotet_dll_c2_final.pcap

Qaoaaaaa
dacaadla
dadaadza
dadaadsa
Qadaaada
aaodaaasa
aadaadad
2Eg2adya
QEoaaasa
dacaadsa
dadaaasa
ala olalelol ool
aadaaaca
aaoaaaba
aadaadES
QE22ara
Qaoaalaa
Qacaalla
dadaalza
aadaalsa
aadaalda
aagaalsea
aadaalea
aagaal 7a
Qaoaalsa
Qacaalsa
2ol fAa
ddaalEa
QE2aalEl
daoaalcl
aaaaal bl
gagaalEl
deoaalFl
daoaazal
doaazll
adaaazzl
QEaaaz3l
daoaazal
aaoaazsl
daagadazel
deoaaz¥l
daoaazsl
daaaazsl
daaazal
QE2aazEl
aaoaazcl
aaaaazbl
dagaazEl
deoaazFl
daaaazal
dgoaasll
daadaaszl
Q22aassl
aaoaai4l
aaoaassl
aaagaasel
QEoaas ¥l
daaaassl

4c

4f
35
31
G5
3@
il
54
(=12
51

be
28
45
54
2e
43
de
1=
33
74
34
da
39
55
Ge
(=1
af

55
=
ad
72
3@
Fi=]
7o
&t
72
A8
T4
&3
2@
2@
3
4
45
3hb
3@
&5
e
48
e
ee
&5
=
B

i3

iz
be
74
]
A5
=]
24

4
7H
B2a
3a
2f
74
7@
72
7o

3a
=5
S
36
3h
B
4
28
i
72
3@
&t
31
&7
&3
G5
3a

2d
Sa
7o
&1
&
&1
&5
=1
&1
o5
&

28
Fi=

28
35
Al
65
&d
3d
Ca
28
(=T
2e
e
28
28
28
2e
32
28
43

3
74
74
ad
2

2d
1S
&1
74
&t
(=T |
be
74
(1|
86
af

2f
74
qe
i
34
36
Sa
2d
2d
35
Ad
7a
3@
i
53
32
43
e
39
=15
3b
74
3
i
(=)=
Ba
oe

35
&d
54
35
&
2f
28

2d
af
&t
&l
3h
3h
4c
2e
4c
45
3h
a3
28
da
ad
Ja
&t
a3
af

2d
ad
(==
3b
&b
3d
2d
&f
Ba
19
74

51 c3 8a 15 :‘EII‘EE o B .;wa ae 3a 2

34 69 36 6a 35 37 31 66 31 POST /54 16]571f1
36 2f 2@ 48 54 54 5@ 21 31 ySwavtms S HTTRSL
Ja 20 3@ @d @3 52 65 BAE RS L1..0NT:  @..Refe
32 2 31 37 3@ 2e 3F 39 2e rer: 152 .178.79.
36 Ba 35 3F 31 B6 31 79 35 1@@,/54i6 j571flys
2d @3 43 &6f G2 74 65 Be 74 wxvitmES. .Content
G6d 75 B P4 69 F@ Bl F2 ¥4 -Type: m ultipart
6l 74 6l 3b 2@ &2 &f 75 62 fform-da ta; boun
2d 2d 2d 2d 2d 2d 2d 44 4a dary=--- ------ (]
?d @a 55 F3 A5 72 2d 41 &7 jOHDZSe. . User-Ag
Fa B9 6c 6 Bl 2T 34 2e 3@ ent: Moz illaf4.@
71 /9 A2 Bc RS 3b 2@ 4d 53 (compat ible; MS
28 57 A9 fe & AT FF 73 20 IE 7.@; Windows
28 54 F2 B9 A RS Be 74 21 HT 6.1; Trident/
4% 43 32 Sh 2@ Ze 4e 45 54 el SR GNET
3@ 2e 35 3@ 37 32 37 3b 2@ CLR 2.8 ,58727;
52 28 33 2e 35 2e 33 30 37 .NET CLR 3.5.387
S4 28 43 4c 52 2@ 33 2e 30 29; .NET (LR 3.2
28 4d 65 A A9 Bl 22 43 RS L3B8F29;  Media Ce
28 36 2e 3@ 3b 2@ Ze 4e 45 nter PC &6.@; .NE
Ze 4245 54 34 2e 3@ 45 29 T4.8C; NETS. QE)
2= SleShodn e 8 S-S 2e cHost: 520170
Ba 43 &6f 62 74 A5 B2 74 2d 79.1ea.. Content-
28 38 33 32 34 @d @a 43 &f Length: 8324..Co
f2 33 20 4b A5 &5 7O 2d 41 nnectiocn @ Keep-A
6l &3 68 65 2d 43 &f 6 74 live..Ca che-Cont
2d 63 Bl 63 68 &5 @d Ba ad rol: no- cache...
2d 2d 2d 2d 2d 2d 44 4a Ba e mmmm= meoma 033
Ba 43 &6 62 74 65 62 74 2d DHDZSo. . Comtent -
74 59 6f 62 33 20 66 6f 72 Disposit ion: for
22 ﬁe &l Ed 65 3d 22 46 73 m-data; name="Fs
e 75 5 @ 66 69  KBxhoIkn QuwU"; fi
43 lename=" 1jrk"™..cC
[ EXpDrted KEY -]?EJ 7@  ontent-T ype: app
T2 73 lication foctet-s
ec le d& tream... .1..%...
g6 24 8b SR 1
80 bbh 28 L o T I
Hash Value [ ™"
s it
N A | R e
S D R R
A N B SR
oo R e -
....... R 1 |
e e
LS e N EER
B i 7 et
K. [ a. t#oibh 2
M Tl et T
..... e o St
S e R
sty .L]p.
R T e e
...... Ny 35T.0a
i S 1

Figure

12/14



24. Wireshark capture showing POS | request including Exported Key, Hash Value and
Encrypted C2 data.

Conclusion

Emotet was active in the wild for several years before a coordinated law enforcement
campaign shut down its infrastructure in late January 2021. Its attack tactics and techniques
had evolved over time, and the attack chain is very mature and sophisticated, which makes it
a good case study for security researchers. This research provides an example of Emotet C2
communication, including C2 server IP selection and data encryption, so we can better
understand how Emotet malware utilizes this sophisticated technique to evade security
production detection.

Palo Alto Networks customers are protected from this kind of attack by the following:

1. Threat Prevention signatures 21201, 21185 and 21167 identify HTTP C2 requests
attempting to download the new payload and post sensitive info.
2. WildFire and Cortex XDR identify and block Emotet and its droppers.

Indicators of Compromise

Samples
2cb81a1a59df4a4fd222fbcb946db3d653185¢c2e79cf4d3365b430b1988d485f

Droppers

bbb9c1b98ec307a5e84095cf491f7475964a698c90b48a9d43490a05b6bala79
bd1e56637bd0fe213c2c58d6bd4e6e3693416ec2f90ea29f0c68a0b91815d91a

URLs

http://allcannabismeds[.Jcom/unraid-map/ZZm6/
http://giannaspsychicstudio[.Jcom/cgi-bin/PP/
http://ienglishabc[.]Jcom/cow/JH/
http://abrillofurniture[.Jcom/bph-nclex-wygg4/a7nBfhs/
https://etkindedektiflik[.Jcom/pcie-speed/U/
https://vstsample[.Jcom/wp-includes/7eXel/
http://ezi-pos[.Jcom/categoryl/x/

IPs

5.2.136[.]90
161.49.84[.]2
70.32.89[.]105
190.247.139[.]101
138.197.99[.]250
152.170.79[.]100
190.55.186[.]229

13/14


https://www.europol.europa.eu/newsroom/news/world%E2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://threatvault.paloaltonetworks.com/?query=21201
https://threatvault.paloaltonetworks.com/?query=21185
https://threatvault.paloaltonetworks.com/?query=21167
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/cortex/cortex-xdr

132.248.38[.]158
110.172.180[.]180
37.46.129[.]215
203.157.152[.]9
157.245.145[.]87

Get updates from
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

14/14


https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

