
1/14

Chris Navarrete, Yanhui Jia April 9, 2021

Emotet Command and Control Case Study
unit42.paloaltonetworks.com/emotet-command-and-control/

By Chris Navarrete and Yanhui Jia

April 9, 2021 at 12:00 PM

Category: Malware, Unit 42

Tags: C2, command and control, Cybercrime, Emotet, exploit

This post is also available in: 日本語 (Japanese)

Executive Summary

On March 8, 2021, Unit 42 published “Attack Chain Overview: Emotet in December 2020 and
January 2021.” Based on that analysis, the updated version of Emotet talks to different
command and control (C2) servers for data exfiltration or to implement further attacks. We
observed attackers taking advantage of a sophisticated evasion technique and encryption
algorithm to communicate with C2 servers in order to probe the victim's network environment
and processes, allowing attackers to steal a user’s sensitive information or drop a new
payload.

https://unit42.paloaltonetworks.com/emotet-command-and-control/
https://unit42.paloaltonetworks.com/author/chris-navarrete/
https://unit42.paloaltonetworks.com/author/yanhui-jia/
https://unit42.paloaltonetworks.com/category/malware-2/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/tag/c2/
https://unit42.paloaltonetworks.com/tag/command-and-control/
https://unit42.paloaltonetworks.com/tag/cybercrime/
https://unit42.paloaltonetworks.com/tag/emotet/
https://unit42.paloaltonetworks.com/tag/exploit/
https://unit42.paloaltonetworks.jp/emotet-command-and-control/
https://unit42.paloaltonetworks.com/attack-chain-overview-emotet-in-december-2020-and-january-2021/


2/14

In this blog, we provide a step-by-step technical analysis, beginning from where the main
logic starts, covering the encryption mechanisms and ending when the C2 data is exfiltrated
through HTTP protocol to the C2 server.

Palo Alto Networks Next-Generation Firewall customers are protected from Emotet with
Threat Prevention and WildFire security subscriptions. Customers are also protected with
Cortex XDR.

Technical Analysis

This analysis will use custom function names (i.e., collect_process_data) that replace the
regular IDA Pro's function format (i.e., sub_*) and will assume a 32-bit (x86) DLL executable
with an image base address of 0x2E1000. The user can refer to the following image that
contains function offsets, names and custom names for easy reference.

NOTE: Sub-functions used are not listed, since these can be easily located from the
presented function offsets.

Figure 1. IDA’s functions reference information.
The present analysis begins from the entry point function c2_logic_ep (sub_2E2C63).

Encryption API Functions

This malware uses two main functions: encryption_functions_one and 
encryption_functions_two. Both functions makes use of Microsoft's Base
Cryptography (CryptoAPI). The following section includes the properties used and actions
performed by these crypto functions during the malware execution.

https://www.paloaltonetworks.com/network-security/next-generation-firewall
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/cortex/cortex-xdr


3/14

CryptAcquireContextW - Uses a PROV_DH_SCHANNEL as provider type (0x18).
The CRYPT_VERIFYCONTEXT and CRYPT_SILENT flags are combined with a
bitwise-OR operation (0xf0000040) to make sure that no user interface (UI) is
displayed to the user.
CryptDecodeObjectEx - Uses a message encoding
type X509_ASN_ENCODING and PKCS_7_ASN_ENCODING that are combined with
a bitwise-OR operation (0x10001), a structure
type X509_BASIC_CONSTRAINTS (0x13) and a total of 0x6a bytes that are going to
be decoded.
CryptImportKey - Imports a key-blob of 0x74 in size (bytes) and
type PUBLICKEYBLOB (0x6) with a CUR_BLOB_VERSION (0x2) version.
CryptGenKey - Uses an ALG_ID value that is set to CALG_AES_128 (0x0000660e)
and generates a 128-bit AES session key.
CryptCreateHash - Uses an ALG_ID value that is set to CALG_SHA (0x00008004),
which, as the the name suggests, sets the SHA hashing algorithm.
CryptDuplicateHash - Receives a handle to the hash to be duplicated.
CryptEncrypt - This function receives two main parameters: a handle to the encryption
key generated by the CryptGenKey function and a handle to a hash object generated
by CryptCreateHash. This value will be used after encryption by calling
the CryptEncrypt function and passing as a parameter the pointer to the C2 data.
CryptExportKey - Uses a SIMPLEBLOB (0x1) type and CRYPT_OAEP (0x00000040)
as a flag. The pointer to the buffer where the key-blob is exported is part of the
malware's C2 data.
CryptGetHashParam - As in the case of the CryptExportKey function, the destination
pointer is part of the malware's C2 data.
CryptDestroyHash - As its name implies, destroys the given hash.

Machine ID Generation and Length Checking

The generate_machine_id function, as its name states, is in charge of generating a machine
identifier for the infected computer. The method used to generate the machine identifier is by
making a call to the _snprintf function, which uses the format string %s_%08X to
concatenate the value generated by GetComputerNameA and GetVolumeInformationW. In
the particular case of the test machine used in this analysis, the resulting value is
ANANDAXPC_58F2C41B.

Figure 2. Function call to generate a machine identifier (machine-ID value).



4/14

Once the machine-id is generated, a length-check verification is also generated. This is
achieved by calling the "lstrlen" function wrapper gen_machine_id_length and passing as a
parameter the returning value from the previous function call. For the case of the testing
machine, the resulting length was "12", and such value will reside in a particular stack
variable since it will be used as part of the C2 data. Subsequently, a new function call is
made to the write_GoR function. Its original purpose is unknown, however, based on the
analysis and how the returning value (0x16F87C) is used. It’s presumably a delimiter, since it
is located at the end of the C2 data.

Figure 3 . Function call to generate C2 data delimiter.

Operating System Data Collection

Part of the exfiltrated data also includes OS information, and this is achieved by calling
the collect_os_data function.

Figure 4. Function call to collect OS information.
This function makes calls to RtlGetVersion, which stores data inside of
an OSVERSIONINFOW structure, and GetNativeSystemInfo performs the same by saving
its data inside a SYSTEM_INFO structure.



5/14

Figure 5. OSVERSIONINFOW and SYSTEM_INFO structures filled up by API calls.
Once the data structures are populated, specific data is fetched by the instructions located at
these offsets: 0x2EC3DB (Ret value), 0x2EC440 (MajorVersion), 0x2EC3DB, 0x2EC3D0
(MinorVersion) and 0x2EC45A (Architecture|PROCESSOR_ARCHITECTURE_INTEL).

The returning value is computed by adding and multiplying against fixed
values: MajorVersion, MinorVersion, Architecture and the returning value (0x1) of
the RtlGetNtProductType call, which is a symbolic constant (NtProductWinNT) of the
NT_PRODUCT_TYPE enumeration data type. The following Python code simulates the logic
that generates such value.

Figure 6. Python proof of concept (PoC) emulating the OS data generation algorithm.

Remote Desktop Services Session Information Collection

More calls are performed, including the one to GetCurrentProcessId, which retrieves the
process identifier for the current process, and the returning value is passed to the
ProcessIdToSessionId function as parameter. According to the MSDN description,

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-processidtosessionid


6/14

the ProcessIdToSessionId function "retrieves the Remote Desktop Services session
associated with a specified process." The returning value of this function indicates the
Terminal Services session the current process is running on.

Figure 7. Function call to retrieve the Terminal Service session identifier.

Process Scanning and C2 Data Collection

This function collects active running processes on the system by the execution of the
traditional method of calling
the CreateToolhelp32Snapshot, Process32FirstW, GetCurrentProcessId and
Process32NextW functions. Before entering to this function, the instruction at
offset 0x2E4715 loads the address of a local variable in the EAX register and pushed onto
the stack. This variable will contain a pointer generated by a call to the RtAllocateHeap
function that will eventually receive the process data information.

Figure 8. Function call to generate and initialize values with process data.
This function also makes calls to the sub-function named copy_collected_data_parent.
During its execution, it generates a new memory section made by a call to
the RtlAllocateHeap function, and some subsequent calls to the memcpy wrapper function to
copy collected C2 data to the new allocated section.

Figure 9. Function call that collects and initializes values with C2 data.



7/14

The next function to call is HTTP_LAUNCHER, which contains sub-functions that provide
web capability, among other tasks. At this point in time, the variables are initialized with the
corresponding return values from the previously executed functions. The following ASCII
dump shows the variable addresses, the related data and information about which function,
or instruction offset, provided the given data.

Figure 10. Stack-snapshot including collected data and the data generation functions
references.
The next step is a call to the c2_data_write function, which calls
the write_collected_data sub-function and passes as parameters two values:

1. A pointer to the C2 data (0x2EAC3E).
2. The returning value (address) of a new memory allocation generated by a call to

the RtlAllocateHeap function located at offset 0x2F989B.

This newly generated data passes through an algorithm, which in addition to writing (at
offset 0x2FA830) also modifies certain bytes (at offset 0x2FA6DE) of the C2 data, especially
some filename extensions.

Figure 11. Function calls that write collected data in memory.



8/14

Once the data is collected, a call to write_c2_data_zero is made, which will allocate
additional memory by calling the AllocateHeap (0x2E99DC) function. This function will
eventually be called twice, and it will call more sub-functions in where the instructions at
offset 0x2F362A of the write_c2_data_one function will generate two DWORD values: 0x1,
which is a fixed value, and 0x132, which is the length of the C2 data. The next step is a call
to copy_c2_data (a wrapper to memcpy at offset 0x2F794C) function, which copies the C2
data to a new location next to the two values mentioned earlier.

Figure 12. Function calls that perform intermediary C2 data copying.
The next sequential function execution is a call to CryptDuplicateHash. After that, a call
to copy_binary_data is made, which makes a final C2 data copy to a new memory allocation.
This location will contain the last C2 data before being encrypted by
the CryptEncrypt function, as will be performed in subsequent steps.

Figure 13. Function calls that make a final copy of unencrypted C2 data.
The following picture shows the buffer with its related values and description highlighted with
different colors for easy reference.

Figure 14.

In-memory byte offsets and sizes, including individual descriptions.



9/14

The next call is to the CryptEncrypt function wrapper, which will reach the real API function
via an indirect call to the EAX register located at offset 0x2F0AD4.

Figure 15. Function call to CryptEncrypt to encrypt C2 data.
The following picture shows the before and after encryption status of the C2 data.

Figure 16. Before and after encryption status of C2 data.
Once the C2 data is encrypted, the following step is to export the current encryption key by
calling the CryptExportKey function at offset 0x2EFF2C.

Figure 17. Function call to CryptExportKey wrapper.
After exporting the key, a loop located at offset 0x2EFF41 has an instruction at
offset 0x2EFF43 that writes into C2 data 0x60 bytes of the exported key.



10/14

Figure 18. Write loop to populate exported crypto key data.
Now, a call to the API function CryptGetHashParam is made with a parameter that contains a
pointer to CryptDestroyHash that will write 20 bytes of the generated hash into the C2 data.

Figure 19. Function call to CryptGetHashParam.
The following image shows how the final C2 data is stored in memory.

Figure 20. In-memory byte

inclusion of Exported Key, Hash Value and Encrypted C2 data.

C2 Exfiltration: HTTP Post Request Generation

At this stage, the C2 data containing Exported Key, Hash Value, and Encrypted C2
data are done. Thus, the last stage is the completion of the data exfiltration. The following
steps prepare the required data (e.g., IP address, HTTP form structure and values, etc.).

Figure 21. Function calls to fulfill the first half of HTTP requirements before data exfiltration.



11/14

At this point, subsequent function calls are performed to generate the binary data that will be
included within the HTTP form. The following section will describe the detailed steps that
lead to such encrypted data and its exfiltration to the C2 server.

This step consists of copying the C2 data (bytes) to the web form. This is achieved by the
execution of the copy_c2_data sub-function. This function will generate a binary MIME
attachment of the "application/octet-stream" content type with the input data to be suitable
for binary transfer.

Figure 22. Function calls to copy binary data to the web form.
At this stage, the final payload is preparing the environment to submit information to the C2
server. To do so, it executes function calls to retrieve the required data to finally perform the
HTTP request.

Figure 23. Function calls to fulfill the second half of HTTP requirements before data
exfiltration.
As can be seen in the function call list, the HttpSendRequestW() API function is used to send
the data to the server. This function allows the sender to exceed the amount of data that is
normally sent by HTTP clients.



12/14

Figure

24 Wi h k t h i POST t i l di E t d K H h V l d



13/14

24. Wireshark capture showing POST request including Exported Key, Hash Value and
Encrypted C2 data.

Conclusion

Emotet was active in the wild for several years before a coordinated law enforcement
campaign shut down its infrastructure in late January 2021. Its attack tactics and techniques
had evolved over time, and the attack chain is very mature and sophisticated, which makes it
a good case study for security researchers. This research provides an example of Emotet C2
communication, including C2 server IP selection and data encryption, so we can better
understand how Emotet malware utilizes this sophisticated technique to evade security
production detection.

Palo Alto Networks customers are protected from this kind of attack by the following:

1. Threat Prevention signatures 21201, 21185 and 21167 identify HTTP C2 requests
attempting to download the new payload and post sensitive info.

2. WildFire and Cortex XDR identify and block Emotet and its droppers.

Indicators of Compromise

Samples

2cb81a1a59df4a4fd222fbcb946db3d653185c2e79cf4d3365b430b1988d485f

Droppers

bbb9c1b98ec307a5e84095cf491f7475964a698c90b48a9d43490a05b6ba0a79
 bd1e56637bd0fe213c2c58d6bd4e6e3693416ec2f90ea29f0c68a0b91815d91a

URLs

http://allcannabismeds[.]com/unraid-map/ZZm6/
 http://giannaspsychicstudio[.]com/cgi-bin/PP/

 http://ienglishabc[.]com/cow/JH/
 http://abrillofurniture[.]com/bph-nclex-wygq4/a7nBfhs/

 https://etkindedektiflik[.]com/pcie-speed/U/
 https://vstsample[.]com/wp-includes/7eXeI/
 http://ezi-pos[.]com/categoryl/x/

IPs

5.2.136[.]90
 161.49.84[.]2
 70.32.89[.]105

 190.247.139[.]101
 138.197.99[.]250

 152.170.79[.]100
 190.55.186[.]229

https://www.europol.europa.eu/newsroom/news/world%E2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://threatvault.paloaltonetworks.com/?query=21201
https://threatvault.paloaltonetworks.com/?query=21185
https://threatvault.paloaltonetworks.com/?query=21167
https://www.paloaltonetworks.com/products/secure-the-network/wildfire
https://www.paloaltonetworks.com/cortex/cortex-xdr


14/14

132.248.38[.]158
110.172.180[.]180
37.46.129[.]215
203.157.152[.]9
157.245.145[.]87

Get updates from 
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

