CruLoader Analysis

(%) 4rchib4ld.github.io/malwareanalysis/Crul oader

April 5, 2021
April 5, 2021 6 minute read

For the Zero2Auto course, @overflow and @VKIntel developed a sample to test our skills.
This write-up will be my analysis of this brand new sample !

Now let’s set the context :

Hi there,

During an ongoing investigation, one of our IR team members managed to locate an unknown
sample on an infected machine belonging to one of our clients. We cannot pass that sample onto
you currently as we are still analyzing it to determine what data was exfiltrated. However, one
of our backend analysts developed a YARA rule based on the malware packer, and we were
able to locate a similar binary that seemed to be an earlier version of the sample we’re dealing
with. Would you be able to take a look at it? We’re all hands on deck here, dealing with this
situation, and so we are unable to take a look at it ourselves.

We’re not too sure how much the binary has changed, though developing some automation
tools might be a good idea, in case the threat actors behind it start utilizing something like
Cutwail to push their samples.

I have uploaded the sample alongside this email.

Thanks, and Good Luck!

1st stage

OK so first we got a zip, containing a PE File. Let’s do some statically analysis to see what we
are dealing with :

1/16

https://4rchib4ld.github.io/malwareanalysis/CruLoader/
https://twitter.com/0verfl0w_
https://twitter.com/VK_Intel

PR c'\users\statana\ desktop'\malware\discovered_b

Jil indicators (3/23)

dos-header (64 bytes)
-8 dos-stub (192 bytes)

----- > file-header (Jun.2020)

..... > optional-header (console)
..... = directories (6)

sections (99.39%)

< | libraries (count)

| imports (13/67)

..... =

property

md3

shal

sha2s6
md5-without-cverlay
shal-without-overlay
sha256-without-overlay
first-bytes-hex
first-bytes-text
file-size
size-without-overlay
entropy

imphash

signature

entry-point
file-version
description

file-type

cpu

subsystem
compiler-stamp
debugger-stamp
resources-stamp
exports-stamp
version-stamp
certificate-starmp

value

AS4E1256111 E4E235250A8E3BB11FA03
1B76ESAG4SA0DFE1BB4569D54B01183AB451 CI5E
AQACO2A1EGCO08B90173E86C3E321 FABABOB2ED45236503A21 EBTDI84DE10611

4D 5490 00 03 00 00 00 04 00 00 00 FF FF 00 00 B3 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 00
MZ et oo e e o @ e
168960 (bytes)

7.434

FE464732FB6374BDE40AFI52ESEBF1G0

Microsoft Visual C++ &

E8 C4 030000 E9 74 FE FF FF 55 8B EC 6A 00 FF1514 E0 40 00 FF 7508 FF15 10 EO 40 00 68 09 04

executable

32-bit

console

0x5EEFBADS (Sun Jun 21 16:12:38 2020 - UTC)
0x5EEFBADSE (Sun Jun 21 16:12:38 2020)

From what I can see, this is a 32bits PE File, containing a unknown resource in RCDATA.

Let’s load IDA to see what’s going on :

2/16

_main

Mo
sub

Mo

XOr

mon

push

push

push

mov ff kernel32 dl1 @
call]

mov FindResourceA
call ing

mon i

push t kernel32_dl1 @

call

mov ds:

push t FindResourceA

push ; hModule
call

mov offset LoadResource
mon

call B

push < 2 dl1 @

call

push t LoadResource

push ; hModule
call

mov of SizeofResource
mon

call

Don’t want the malware analyst to see what library you use ? Introducing : String
Obfuscation. Luckily for us, the routine is fairly basic. It’s a ROT13 algorithm with a custom
alphabet :

3/16

{unsigned _ int8
strchr(

{unsigned int)&

- (_DWORD)(

return

Doing the same in python in order to have the good names :
import string

dict = string.ascii_letters + '01234567890./="'

1l _encr = [".5eab/QPY4//", "peb5lg5Ceb35ffn", "I9eghl1/n//b3", "t5gG8e514pbag5kg",
"E514Ceb35ffz5=bel", "Je9g5Ceb35ffz5=bel", "I9eghl/n//b3rk", "F59G8e514pbag5kg",
"E5fh=5G8e514", "s9a4E5fbhe35n", "yb14E5fbhe35", "FOm5b6E5fbhe35", "yb3.E5fbhe35"]

for encr in 1_encr:
decr = ""
for char in encr:
pos = dict.find(char)
decr += dict[(pos+13)%len(dict)]
print(f"Encr : {encr} --> {decr}")

Remember the unknown resource in RCDATA we talk earlier ? It’s time for it to rise and
shine. Once the resource is loaded can you see what’s waiting for us next ? I let you 1min :

4/16

Mo
Mo

mul

Mo

shr

Mo

shl

sub

sub

lea

moVIX € ytr [eax+edi+l2] ; that's the key !
add

add

MOV ZX

add

MoV ZX

Mo

inc

Mo

You got it right, it’s RC4 ! It’s pretty easy to spot with the The key begins at the 12th bytes of
the data and is 16bytes long. Once the resource is decrypted, a new process of itself is created
in a suspended state :

5/16

MOWVIX
add
Mo
add
MOV ZX
mov
lea

add

MoV ZX

mow
mav
MOWVZIX
mow
add
MoVZX
MoVZX
xar
inc
mav

6/16

The decrypted executable is written to memory and execution of the process created is

resume :

push
lea
XOorps
push
push
movups
call
add
mow
call
mov
call
Mo
push
call
push
push
call

; val
3 VO id *

: '-'].r W

3 1lpProcessInformation

~ 448]

; 1pStartupInfo

; 1lpCurrentDirectory

; 1pEnvironment

s CREATE_SUSPENDED

; bInheritHandles

; 1lpThreadaAttributes

; lpProcessAttributes
lpCommandLine

e]
1pApplicati
createProce

7/16

mon

add

push

push

call

mov

call

Mo

push kernel32 dll

call

push SetThreadContext
push ; hModule
call

mov 0 ResumeThread
Mo

call

push

call

push ResumeThread

push ; hModule

call

mov

Mo

Mo

Mo _] oy

add _ p+allocExtemory]

push s lpContext

Mo X

push d ptr p 1iewProcess+4] ; hThread
call 3 & Context()
push rd ptr hp+h +4]

call

pop

pop

XOr

In case you didn’t spotted it, it’s a classical case of Process Hollowing

There is now a brand new executable to analyze !

2nd Stage

This part is a little more complicated then the one before. It’s relying heavily on CRC32
hashing for all sort of things like :

8/16

https://attack.mitre.org/techniques/T1055/012/

e Check if it’s running in svchost :

; check if in swchost

e Check any blacklisted processes
Looping through all running processes, hashing their names and comparing it to
a harcoded array. Blacklisted processes are : “wireshark.exe”, “x32dbg.exe”,
“x64dbg.exe” and “ProcessHacker.exe”

e Load API calls

This one is a little bit more tricky. There is a function that take a CRC32 hash as a parameter.

The hash is matching the wanted API call. 0x8436F795 is corresponding to
IsDebuggerPresent() for example.

But there is a lot of call to this functions... And a lot of APIs in kernel32.dll, ntdll.dll and
wininet.dll... So if it’s not fun to do, let’s have a script doing it for us ! I made a IDA script
(available here) that resolve all API calls, the job is way easier now !

9/16

https://github.com/4rchib4ld/CruLoader/blob/main/idaDeobfuscateApiCalls.py

@ wrefs to f_getProcAddr
Direction | Ty | Address
p checkForBlacklistedProcess...
p checkForBlacklistedProc
p checkForBlacklistedProcess...
p getlnternetUrl+71
p sub_4013A0+8
p sub 4013A0+91
p sub 4013A0+9F
p sub_401340+B1
p sub_401750+69
p sub_ 401750+ A6
p sub_401750+D7
p sub 401750+F7
p sub 401750+160
p sub_ 401750
p sub 401750
p sub_401750+50B
. p load_k32_funcs+7
0.. p load_k32_funcs+18
. p load_ funcs+29
. p load k32 funcs+35
. p load_k32_funcs+db
. p load_k32 funcs+57
. p sub 401DC0+2D
0. p sub 401DC0+41
. p sub_401DC0+55
- P
o

B
i
o=
B
i
B
B
B
B
o=
B
i
B
B
B
B
i
B
i
B
B
&
B
i
B
i
B

Line 27 of 27

Important strings are encrypted with rol 4 + a 1byte XOR Key. The following CyberChief

recipe can be used to decrypt them

With all theses API Calls, our beloved sample will now create a new svchost process :

f_getProcAddr; func_ker
f_getProcAddr, func_ker
f_getProcAddr, func_kerne

f_getProcAddr; func_kernel

32snapshot

createdirectoryw
createfilew
writefile
getthreadcontesxt

2_readprocessmemory

f_getProcAddr; func_ntdll_ntunmapviewofsection

f_getProcAddr;, func_kerne

irtualallocex

f_getProcAddr; func_kernel32_writeprocessmemory

f_getProcAddr; func_kerne
f_getProcAddr, func_kerne

Addr; func_ker

f_getProcAddr; func_kernel
f_getProcAddr;, func_ker
f_getProcAddr; func_kernel
f_getProcAddr, func_kerr

f_getProcAddr, func_kerne

setthreadcontext
virtualprotectex

resumethread

writeprocessmemory

resumethread

2 wirtualalloc

_createremotethread

f_getProcAddr, func_wininet_internetopena

f_getProcAddr; func_wininet_internetopenurla

f_getProcAddr; func_wininet_internetreadfile

f_getProcAddr; func_wininet_internetclosehandle

f_getProcAddr; func_kermnel3

isdebuggerpresent

10/16

https://gchq.github.io/CyberChef/#recipe=From_Hex('Auto')Rotate_left(4,false)XOR(%7B'option':'Hex','string':''%7D,'Standard',false)

movups
call
xar

n I:IFI

loc
Mo
rol
xor
mow

; _DWORD

; _DWORD
)
DWORD

)
: _DWORD
: _DWORD
)
; _DWORD

; _DWORD

And a new thread inside of it :

The trouble with execution passed with

CreateRemoteThread is that the thread
doesn’t exist yet, and you won’t be fast
enough to intercept it. My tip is to set a
breakpoint on the entrypoint of the thread
(the ebx value here). When the thread run,
the debugger will stop exactly here.

hlriteProcessMemory

There is now a brand new executable to
analyze ! (I'm lying, it’s the 2nd stage but
with another entrypoint)

hCreateRemoteThread

3rd Stage

11/16

This stage is all about the internet. It decrypt the config URL (more on that latter on), fetch it
(it contains another URL), fetch the second URL but thisoneisa .jpg so it saves it under
C:\Users\USER\AppData\Local\Temp\cruloader\output.jpg .

= (char *)
= hInternetOpenA(’
hInternetOpenUrlaf

= f_*EtPFDCﬂddF’.

"
)

.)i
hInternetCloseHandle(
hInternetCloseHandle(

return 3

The custom UserAgent ‘cruloader’ could be used for detection

When everything is done, a new svchost process is created (yes, again) the output.jpg is
decoded and written to the new process memory. Injection is done with ResumeThread

4th stage

Here we are. I promess this is the final stage. The final function is the hardest :

12/16

;3 int _ cdecl main(int argc, const char **argv, const char **envp)

_main

push 3 uType

push

push : 3

push ; hind
call ds:

xor
retn
_main

I made a flowchart of everything we saw. I feel like it helps to understand what is going on :

I tried to keep it simple

13/16

- 1st Stage
N

|: Entrypoint :

I —._._—.—.—-—._._.___-"\
Load needed API calls *________Iﬂgpgecrypt names

-

RC4 decrypt the resource to a PE file Create a new Process in a suspended state

./‘
— &

v
Write decrypted executable to memory

v
Resume thread in the created process

w 2nd Stage

Check if it's running on svchost

3rd Stage ‘___________-—-"""'

Load needed API calls Check if it's being debugged
Fetch 'https:/ /reddit.com/raw/mLem9DGK' content Check there is any blacklisted Process

contains another URL

v
Download the image on the 2nd URL Load needed API Calls
h v
Decode the image to a valid PE Create a new svchostProcess
h v
Injects it into a new svchost thread Injected itself into the new svchost process
h
4th Stage

Display the hacked message

14/16

And that’s it ! Oh wait... The IR guy wanted some kind of automation isn’t it ? Let’s give him
what he wants !

Let’s extract that config

Can all of this hardwork be automated and take like 3secondes ? Sadly for me... It can, so I
did it. First the objective : recover the first URL. Not the 2nd because you should not
reach out to unknown server without proper protection (TOR, VPN, proxy, public
WIFI... WHATEVER). Even if this is 100% safe (a reddit URL), I prefer to always keep this
routine. A couple of problems :

e The 2nd stage is RC4 encrypted but we know the location and where the key is.
e There is no way (to my understanding) to predict the offset of the data we want
e Every string is encrypted with a different XOR key (but is always 1byte)

* Rotate Left is always 4, but can be 2 or 5 in another sample

So0000000 how I did it ?

Even if this is just fiction, I wanted to have something that would work for any similar
sample, so the bruteforce is kinda big.

First the RC4 key and data is recovered from the 1st stage :

pe = pefile.PE(file)
for entry in pe.DIRECTORY_ENTRY_RESOURCE.entries:
if str(entry.name) == "RC_DATA" or "RCData":
new_dirs = entry.directory
for res in newdirs.entries:
data_rva = res.directory.entries[0].data.struct.OffsetToData
size = res.directory.entries[0@].data.struct.Size
data = pe.get_memory_mapped_image()[data_rva:data_rva+size]
key = data[12:27]
return rc4_decrypt(key, data[28:])

And I dumped of ALL of the .rdata section of the 2nd stage and bruteforced it with
RotateLeft and XOR key until I find an URL.

for rotAmount in range(1,10): #Bruteforce the ROT amount
rotated = rot(data, rotAmount)
for xorKey in range(300): # Bruteforce the XOR key
result = ""
for b in rotated:
result += chr(b A xorKey)
if "http" in result:
pattern = "https?://(www.)?[-a-zA-Z0-9@:%._+~#=]{1,256}.[a-
zA-Z0-9()]1{1,63}b([-a-zA-Z0-9()@:%_+.~#?&//=]1*)?" #hope you like my tiny regex
config = re.search(pattern, result)

15/16

C:\UsershStatAna\Desktop\malware\discovered_binary(1)\scripts>python3 extractPayload.py -f ..%main_bin.exe
[+] Extracting the payload...

] Done !

] Extracting the config...
[+] Done !

] Bruteforcing the config...

] Found config ! https://pastebin.com/raw/mLemsDGk

That’s might not be the most efficient way to do it, but still faster than opening IDA/x64dbg
to check for the correct offset. The full code is available here

Now the IR guy got everything he wanted !

Case solved

And that’s it, we solved all of the mysteries behind CruLoader. I hope you liked this post and
had fun reading it. I tried not to put too many screenshots as otherwise the post would look
like a gallery and I don’t think this is enjoyable. Also most of the time I put IDA pseudocode
because they are smaller than the graph view in Assembly but I prefer working with assembly
(yveah I'm doing this just for you).

Let me know if you find that something can be enhanced (I'm sure it can).
Thanks again @overflow and @VKIntel for this cool sample

See you soon for another case !

16/16

https://github.com/4rchib4ld/CruLoader
https://twitter.com/0verfl0w_
https://twitter.com/VK_Intel

