
1/14

carbreal

Hubnr Botnet
github.com/carbreal/Malware_Analysis/tree/master/Hubnr_botnet

Today, april 3rd of 2021, I found the following sample in my honeypot:

At first sight, it seems like a Mirai variant but has some interesting stuff. First, it doesn't
encode the strings with an XOR function. It has two functions that do the job: util_encrypt()
and util_decrypt() and they just apply a 3 character rotation to the strings.

arm7: ELF 32-bit LSB executable, ARM, EABI4 version 1 (SYSV), statically linked, not 
stripped 
hash: fe7fb996b997877216d782a7adbcbe6a37bc585d459c6d0d452a346b078157c6 

https://github.com/carbreal/Malware_Analysis/tree/master/Hubnr_botnet
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/encdec.png


2/14

In the main function, we see the first util_decrypt() call. It decodes the variable proc_name,
that returns "/dev/hubnr".

Then, it runs the two main functions: hakka_con() and parse_buf().

hakka_con() connects to the server and runs scanner_init(). In order to get the master IP, it
calls again util_decrypt() with the variable bot_host. This sample connects to the IP:
194.113.107.243

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/procmem.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/procdec.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/main.png


3/14

scanner_init() is the function that propagates itself. I don't fully understand the entire logic
behind this huge function, but I'd say that it works like a state machine. It has a for loop that
iterates through a variable and a switch-case function that goes through each state.

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/hakka.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/ipvar.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/ipmem.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/ipdec.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/scanner_1.png


4/14

It has a state that runs a telnet scan and performs a bruteforce with a few stored credentials:

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/scanner_2.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/scanner_3.png


5/14

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/credentialsmem.png


6/14

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/credentials.png


7/14

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/credentials_ord.png


8/14

Then, if the login is successful, it runs some recon commands and depending on the output it
gets the appropiate binary for the architecture.

It has a few ways of getting the binary into the victim's machine: with a wget, a tftp or echoing
it into the machine.

Basically, this are the commands used in the different states:

It has 5 different droppers embedded targeting 5 different architectures. It has a payloads
variable that points to the memory direction of each dropper and it's used in the
get_retrieve_binary() function inside the state.

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/scanner_4.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/scancommands.png


9/14

The dropper is a very small binary that only retrieves the sample from the master.

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/payloadsmem.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/binarymem.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/droppers_bin.png


10/14

The other main function is parse_buf(). This one gets the command from the master. At the
moment, it has 4 different options. A PING option, that just updates the master with the alive
bots. "killproc" that kills the process. And two different attack capabilities: "udpflood" and
"tcpflood".

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/droppers.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/dropper_diss.png


11/14

It's very interesting that it has also a http_send()+http_attack() function with 5 different user-
agent in memory and the HTTP request is also stored. It's used in the http_attack() function
and it uses 4 different variables that are empty at the moment. I asume that when the new

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/parse_buff_comp.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/parse_buff_mem.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/parse_buff_dec.png


12/14

functionality is implemented, the master will be able to select different payloads but it's not
possible yet.

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/http_send.png


13/14

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/http_attack.png


14/14

https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/http_attack_var.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/http_vars.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/useragentsmem.png
https://github.com/carbreal/Malware_Analysis/blob/master/Hubnr_botnet/Screenshots/useragents_ord.png

