
1/15

Code Reuse Across Packers and DLL Loaders
blog.reversinglabs.com/blog/code-reuse-across-packers-and-dll-loaders

Threat Research | April 1, 2021

https://blog.reversinglabs.com/blog/code-reuse-across-packers-and-dll-loaders
https://blog.reversinglabs.com/blog/tag/threat-research

2/15

Blog Author
Robert Simmons, Independent malware researcher and threat researcher at
ReversingLabs. Read More...

https://blog.reversinglabs.com/blog/author/robert-simmons

3/15

One of the core tenets of computer science is code reuse. Why write something new, when
code that already exists can be repurposed or changed slightly and then reused for a
different situation. This is no different in the world of malware. SystemBC is a family of
remote access trojans used to provide access to the local network of a victim and are a
beachhead for lateral movement inside that network . SystemBC has been observed using
a variety of packers . One specific sample has multiple stages of unpacking which
eventually lead to an unpacker stub that has nearly complete code overlap with the
unpacking stub used in DLL loaders that are found to deliver Ursnif, IceID, DanaBot, Dridex,
Zloader, HanciTor, Valak, and a single example of TrickBot. What follows is a detailed
analysis of the packed SystemBC sample up to the unpacker stub in question. From that
stub a large set of DLL loaders is discovered via YARA hunting. Finally, the generalized
process for dumping the payload from these DLLs is shown.

Packed SystemBC Sample

The first stage of the packer in this sample has some extraneous code in addition to the code
that performs initial unpacking. Other than this extraneous code, there are a few key points
of interest. The first one being a mutex, "guessHi", that is checked for near the start of
execution in the main function. This mutex loaded from a hard coded string along with the
call to OpenMutexW is shown in Figure 1.

1

2 3

4/15

Figure 1: Code Block with "guessHi" String and OpenMutexW

Another interesting feature of the file is a cryptographic signature block at the end of the file,
but according to the PE header, there is no signature directory content. Because of this
missing data in the header, this file is not properly signed. The data directories from the PE
header with the empty security directory highlighted is shown in Figure 2.

https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_01-1.jpg
https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_02.jpg

5/15

Figure 2: No Security Directory Referenced in PE Header

However, looking at the very end of the file in a hex editor reveals that there is a blob of DER
encoded binary that is clearly a cryptographic signature for the file. Because this DER data is
not referenced in the header as shown above, this signature may have been copied from a
different file. The start of this signature blob is shown in Figure 3.

Figure 3: Cryptographic Signature Blob

Looking more closely at the content in this signature, a Gmail address is revealed:
"draskovicnono[@]gmail[.]com". This email address is highlighted in Figure 4.

Figure 4: Gmail Address in Signature

Additionally, this same email address can be found using the search feature on the extracted
strings list in the Titanium Platform. This string search is shown in Figure 5.

Figure 5: Gmail Address in Extracted Strings

https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_03.jpg
https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_04.jpg
https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_05.jpg

6/15

Another important string from this file is the program database string . In this file that string
is "c:\lawHeart\costforward\pagepushwritten.pdb". One can find this particular string in the
A1000 under the CodeViews feature. This string is shown in Figure 6.

Figure 6: Code Views with Program Database Path

Using any of these strings or by pivoting using the ReversingLabs Hash Algorithm (RHA)
reveals one other file that is related to the SystemBC sample being analyzed . The results of
an RHA pivot is shown in Figure 7.

Figure 7: RHA Pivoting Results

However, on closer inspection comparing the bytes of the two files in Hex Fiend , the only
major difference is an additional 4 kilobytes of data which is just a second copy of the
already existing file info data. No other significant differences are found, so these two files
are effectively the same file. This difference is shown in Figure 8.

4

5

6

https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_06.jpg
https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_07.jpg
https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_08.jpg

7/15

Figure 8: Difference in the Two Samples

The function that specifically performs the unpacking routine in this file is found at the
address 0x414ED0. This function contains a set of three calls to kernel32.Sleep. These are a
basic anti-analysis technique and need to be circumvented to make analysis easier. These
three API function calls are shown in Figure 9 with one of them shown in the disassembler
view.

Figure 9: API Calls to Kernel32.Sleep

In the debugger, the number of milliseconds for each of these Sleeps can be modified to zero
them out. This is shown in Figure 10.

Figure 10: Zero Out Sleeps

After the sleeps are neutralized, the first stage of the unpacker writes the next stub to the
.data section of the module in memory. The call into that code is shown in Figure 11.

https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_09.jpg
https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_10.jpg

8/15

Figure 11: Call into Next Stage of Unpacker

As shown in Figure 12, the destination of this call is in the initialized data section of the
module with the name .data.

Figure 12: Initialized Data Section

The first set of instructions in this next stage is a small loop that decodes the rest of the stub
in place. This loop is highlighted in Figure 13.

Figure 13: Decoding Loop

After the decoding loop has written out the rest of the stub, the resulting instructions are used
to write a YARA rule. The specific instructions used are highlighted in Figure 14.

https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_11.jpg
https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_12.jpg
https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_13.jpg

9/15

Figure 14: Decoded Instructions

The process to write the YARA rule starts with writing out the exact bytes of these
instructions. Here, just the first few instructions are shown, but in the actual process the
whole set of instructions all the way to and including the first function call at 0x43F3EE is
used. The example instructions are the following.

E8 00000000 5B 81EB FD148000 8D83 00108000 8983 CC148000

Next, each of the bytes that are specific to locations in this particular file or values that may
be unique to this instance of the packer are converted into wildcards and jumps. The bytes
that this applies to are shown in red below.

E8 00000000 5B 81EB FD148000 8D83 00108000 8983 CC148000

The resulting byte string with these jumps and wildcards in place is the following.

E8 00 00 00 00 5B 81 EB [4] 8D 83 [4] 89 83 [4] 8D B3 [4] 89 B3 [4]
8B 46 ?? 89 83 [4] 8D B3 [4] 56 8D B3 [4] 56 6A ?? 68 [4] 8D BB [4]
FF D7

The full YARA rule using this byte string is provided at the end of this blog.

Related DLLs

Using the YARA rule written using the process above, a retro-hunt is run in the Titanium
Platform. The results of this are a large set of hundreds of malicious DLLs that are all packed
and utilize the same unpacker stub found in the second stage of the packed SystemBC
sample above. These results in the A1000 are shown in Figure 15. This is a very accurate
YARA rule in that there are zero false positives found in the result set.

https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_14.jpg

10/15

Figure 15: Retro-hunt Results

This is a moderately large set of files, so unpacking each one to determine what malware
family is being delivered would be time consuming. Therefore a strategy for grouping the files
into clusters which can then have representative files analyzed is a good idea. One effective
strategy for this particular data set is to group the files by import hash. Figure 16 shows all
the DLLs that share an import hash in descending size of the groups, but excluding single
member groups.

https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_15.jpg

11/15

Figure 16: Files Grouped by Import Hash

Each cluster can then be examined to determine if the members of a cluster are in fact all
delivering the same unpacked payload. Figure 17 shows one cluster that has two different
detection names according to automation. The fuzzy hash, ssdeep, is also shown as a sanity
check to make sure that the structure of the files in the cluster are nearly the same.

Figure 17: Cluster of Files Sharing One Import Hash

Two Basic Flavors

Among all these files, there are two basic flavors of packing. The payload binary is written to
allocated memory in all cases, but in one case this payload is uncompressed and the other is
compressed. The uncompressed payload can simply be dumped directly and then analyzed.
However, in the case of the compressed payload, one needs to determine the compression

https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_16.jpg
https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_17-1.jpg

12/15

algorithm and then decompress the data before analyzing the resulting binary. This can be
done a few different ways. First, the unpacker itself will decompress the binary and overwrite
the original DLL's module. After that, the DLL can be dumped and analyzed. Alternatively,
one can, as noted earlier, determine the algorithm and decompress the data. However, there
is an easier, more straightforward method using the Titanium Platform. The first step is to
open the DLL in x64dbg and run the executable up to the entry point. From there, one sets a
breakpoint at the return instruction in kernel32.VirtualAlloc. This breakpoint is shown in
Figure 18.

Figure 18: Breakpoint on VirtualAlloc

Once set, run the file until that breakpoint is reached. When execution is on this return
instruction, observe the address of the newly allocated memory in the EAX register. An
example of this is shown in Figure 19 with the address of the newly allocated memory
highlighted.

https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_18.jpg

13/15

Figure 19: Newly Allocated Memory

Once execution has arrived at this point, set one more breakpoint on VirtualProtect. The
reason for waiting until execution is deep into the unpacker stubs before setting the
breakpoint on VirtualProtect is that often there are benign calls to VirtualProtect that one
would need to pass over before even getting to the initial VirtualAlloc, and that can get
tedious.

For each call to VirtualAlloc, follow that new memory address in x64dbg's dump then run to
the next call to VirtualAlloc. Each time examine the new data that is written to the allocated
memory. This is where eventually the payload binary is written to. In the first flavor of
unpacking mentioned above, it will be crystal clear when the MZ magic number along with
the DOS stub appear in the allocated memory. However, the second flavor where the
payload is compressed will also be quite recognizable, if not a bit garbled. An example of this
compressed flavor is shown in Figure 20.

Figure 20: Compressed Payload

https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_19.jpg
https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_20.jpg

14/15

This is where the Titanium Platform comes in handy. Just dump this memory to a file and
upload it to the A1000. After it has been analyzed, navigate to the extracted files and drill into
the extracted file until the payload DLL is revealed. This extracted DLL is shown in Figure 21.

Figure 21: Decompressed Payload

Analysis of all the clusters of DLLs in the retro-hunt results in this manner, along with all the
import hashes with only one file, reveals that this unpacker code has been used to deliver
many malware families over the past year. These families include Ursnif, IceID, DanaBot,
Dridex, Zloader, HanciTor, Valak, and a single example of TrickBot. A full list of file hashes in
clusters by payload malware family is provided below.

IOCs

SystemBC Samples

c1d31fa7484170247564e89c97cc325d1f317fb8c8efe50e4d126c7881adf499

6afe08f542426b9662b84907d35870e9714c2755e1da95ed42db33a37aaf33b9

Mutex

guessHi

Email Address

draskovicnono[@]gmail[.]com

https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_21.jpg

15/15

PDB Path

c:\lawHeart\costforward\pagepushwritten.pdb

YARA Rule

A full list of file hashes in clusters by payload malware family is provided here.

References:

 https://malpedia.caad.fkie.fraunhofer.de/details/win.systembc
 https://news.sophos.com/en-us/2020/12/16/systembc/

 c1d31fa7484170247564e89c97cc325d1f317fb8c8efe50e4d126c7881adf499
 https://en.wikipedia.org/wiki/Program_database

 6afe08f542426b9662b84907d35870e9714c2755e1da95ed42db33a37aaf33b9
 https://ridiculousfish.com/hexfiend/

MORE BLOG ARTICLES

1

2

3

4

5

6

https://blog.reversinglabs.com/hubfs/Blog/packer_code_reuse_figure_22_yara_rules.jpg
https://f.hubspotusercontent10.net/hubfs/3375217/Blog/Related%20DLLs.pdf
https://malpedia.caad.fkie.fraunhofer.de/details/win.systembc
https://news.sophos.com/en-us/2020/12/16/systembc/
https://en.wikipedia.org/wiki/Program_database
https://ridiculousfish.com/hexfiend/

