Dissecting a RAT. Analysis of the AndroRAT.

@ stratosphereips.org/blog/2021/3/29/dissecting-a-rat-analysis-of-the-androrat

Kamila Babayeva March 31, 2021

This blog post was authored by Kamila Babayeva (@_kamifai_) and Sebastian Garcia
(@eldracote).

The RAT analysis research is part of the Civilsphere Project
(https://www.civilsphereproject.org/), which aims to protect the civil society at risk by
understanding how the attacks work and how we can stop them. Check the webpage for
more information.

This is the fourth blog of a series analyzing the network traffic of Android RATs from our
Android Mischief Dataset [more information here], a dataset of network traffic from Android
phones infected with Remote Access Trojans (RAT). In this blog post we provide the
analysis of the network traffic of the RAT05-AndroRAT [download here]. The previous blogs
analyzed Android Tester RAT, DroidJack RAT, and SpyMax RAT.

RAT Details and Execution Setup

The goal of each of our RAT experiments is to configure and execute the RAT software and
to do every possible action while capturing all traffic and storing all logs. These RAT
captures are functional and used as in real attacks.

1/15

https://www.stratosphereips.org/blog/2021/3/29/dissecting-a-rat-analysis-of-the-androrat
https://www.civilsphereproject.org/
https://www.stratosphereips.org/android-mischief-dataset
https://mcfp.felk.cvut.cz/publicDatasets/Android-Mischief-Dataset/AndroidMischiefDataset_v1/AndroRat.zip
https://www.stratosphereips.org/blog/2020/12/14/ngwqj0h060yv40w1afp51fg7wo9ijy-pzlhk
https://www.stratosphereips.org/blog/2021/1/22/analysis-of-droidjack-v44-rat-network-traffic
https://www.stratosphereips.org/blog/2021/2/26/dissecting-a-rat-analysis-of-the-spymax

The AndroRAT RAT is a software package that contains the controller software and builder
software to create an APK. We executed the builder on a Windows 7 Virtualbox virtual
machine with Ubuntu 20.04 as a host. The Android Application Package (APK) built by the
RAT builder was installed in an Android virtual emulator called Genymotion with Android
version 8.

While performing different actions on the RAT controller (e.g. upload a file, get GPS
location, monitor files, etc.), we captured the network traffic on the Android virtual
emulator. The network traffic from the phone was captured using Emergency VPN.

The details about the network traffic capture are:
e The controller IP address: 147.32.83.234
e The phone IP address: 10.8.0.137

o UTC time of the infection in the capture: 2020-09-10 15:18:00 UTC

Initial Communication and Infection

Once the APK was installed on the phone, it directly tries to establish a TCP connection
with the command and control (C&C) server. To connect, the phone uses the IP address
and the port of the controller specified in the APK. In our case, the IP address of the
controller is 147.32.83.234 and the port is 1337/TCP. The controller IP 147.32.83.234 is the
IP address of a Windows 7 virtual machine in our lab computer, meaning that the IP
address is not connected to any known indicator of compromise (loC). Figure 1 shows the
initial communication from the phone to the C&C.

29447 2020-09-10 15:18:00, 922036 10.8.0.137 36280 147.32.83.234 1337 TCP 66 36280 —~ 1337 [SYN] Seq=6

29448 2020-09-10 15:18:00,922637 147.32.83.234 1337 10.8.0.137 36280 TCP 60 1337 — 36280 [SYN, ACK] !

29449 2020-09-10 15:18:00,924215 10.8.0.137 36280 147.32.83.234 1337 TCP 52 36280 — 1337 [ACK] Seg=1
Figure 1. A 3-way handshake to establish the first connection between the phone and the

C&C.

After establishing the first connection, the phone sends its first packet with some
parameters, such as SIM card operator, phone number, SIM card serial number, IMEI, etc.
Figure 2 displays the packet data in a structured way. It can be seen that the data is sent in
plaintext and the character ‘t’ is used as the delimiters to separate parameters name and
values. From the packet structure in Figure 2,it can also be defined that APK uses the Java
Hashtable class to store and send parameters.

yy-isrjava.util.Hashtable»%!Ja.F
loadFactorl thresholdxp?@
w

2/15

https://www.civilsphereproject.org/emergency-vpn

t Operator t Android

t SimOperator t Android

t SimSerial t 8931027000000000007
t SimCountry t us

t PhoneNumber t 15555218135

t Country t us

t IMEI t 000000000000000

x

Figure 2. The first data packet sent by the phone and an analysis of its structure. The data
is sent in the plain text and the character ‘t’ is used as a field delimiter.

After the initial connection by the phone, the command and control server shows the phone
in its interface. Figure 3 displays the C&C interface with the initialization parameters that
were sent by the phone in the first packet.

" Androrat Praject .] (=N

Server Client actions Bulk actions About

IMET Location Phone Number Operator Country SIM Operator SIM Serial STM

il
a
I}

000000000000000 us 16555218135 Android Android 8931027000000000007 us

== ANDRORAT SERVEUR ===

Authors : A.Bertrand, A.Akimov, R.David, P.Junk
Launch at Thu Sep 10 08:17:54 PDT 2020

On port : 1337
Thu Sep 10 08:17:54 PDT 2020 SERVER ol
Thu Sep 10 08:18:00 PDT 2020 Connectio ed, temporary IMEL was assi igned: Oclient
Thu Sep 10 08:18:00 PDT 2020 SERVER o ting for a dient...

Thu Sep 10 08:13:01 PDT 2020 COMNECT command received from 000000000000000

awaiting for a dlient...

Figure 3. The C&C interface panel displays the parameters of the phone after the infection.

C&C Command Packet Structure

3/15

After the first connection the phone is waiting for the C&C command. To send the command
from the C&C, a special panel on the C&C interface should be opened by double-clicking
on the infected device. Figure 4 shows the panel in the C&C interface. When the attacker
using the C&C interface enters this panel, the C&C server sends two commands to the
phone, shown in Figure 5 and Figure 6.

. User GUI of imei : 000000000000000 =] =[]
Options Get Android data Send command Monitoring
{Home !
Informations Client options
- General informations : gt
i Phones :

Phone number = 15555218135

IMEI = 000000000000000

Country = us £ 5MS :

Cperator (name) = Android

Operator (code) = 310260 Needed keywords :

5IM operator name = Android m Server IP @ |147.32.83.234

S5IM operator code = 310270

SIM country =us Server Port : | 1337

5IM serial =8831027000000000007 I:‘Waiteventtoconnect

Save configuration
Wifi inf . Quick actions

- Wifi informations :

I=s available = true

Connected / connecting = true Dawation=

Extra info ="WiredS5ID"

Reason = null Open url:

Browse it

Figure 4. Panel in the C&C interface used to send commands to the phone.

0000 00 00 00 06 00 00 00 06 01 00 00 00 00 00 00 00

0010 79 00 00 01 67

Figure 5. Data of the first packet sent by the C&C when the attacker enters into the panel to

control the phone.

0000 00 00 00 06 00 00 00 06 01 00 00 00 00 00 00 00

0010 1500 00 02 6e

Figure 6. Data of the second packet sent by the C&C when the attacker enters into the

panel to control the phone.

y...g

N

4/15

Since the structure of these packets is not clear, we tried to understand what these
commands mean by reverse engineering the APK that was used to infect the victim’s
phone. The analysis shows that each C&C command is mapped to a single character that
represents this command. The mapping is shown in Figure 7.

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final

short DATA BASIC INFO = ((short) (P_ + 5));
short DATA CALL LOGS = ((short) (P_RE + 15));
short DATA_CONTACTS = ((short) (P_REP + 9));
short DATA_FILE = ((short) (P_REP + 12));

short DATA GPS = ((short) (P_REP + 0));

short DATA_GPS_STREAM = ((short) (P_REP + 1]);
short DATA_LIST_DIR = ((shert) (P_REP + 11));
short DATA MONITOR CALL = ((short) (P_REP + 8));
short DATA MONITOR SMS = ((short) (P REP + 7));
short DATA PICTURE = ((short) (P_REP + 2));
short DATA sMs = ((short) (P _REP + 10));

short DATA_SOUND_STREAM = ((short) (P_REP + 3));
short DATA VIDEO_STREAM = ((short) (P_REP + 4]);
short DEBUG = ©;

short DISCONNECT = 5;

short DO _TOAST = ((short) (P_INST + 8));

short DO VIBRATE = ((short) (P_INST + 23));
short ENVOI_CMD = 3;

short ERROR = 1;

short GET_ADV_INFORMATIONS = ((short) (P_INST + 21));

short GET_BASIC_INFO = ((short) (P_INST + 8));
short GET_CALL_LOGS = ((short) (P_INST + 18));
short GET_CONTACTS = ((short) (P_INST + 12));
short GET_FILE = ((short) (P_INST + 15]);
short GET_GPS = ((short) (P_INST + 0));

short GET_GPS_STREAM = ((short) (P_INST + 1));
short GET_PICTURE = ((short) (P_INST + 3));
short GET_PREFERENCE = 21;

short GET_SMS = ((short) (P_INST + 13));

short GET_SOUND_STREAM = ((short) (P_INST + 4));
short GET_VIDEDO STREAM = ((short) (P_INST + 6));
short GIVE CALL = ((short) (P_INST + 18));

int HEADER LENGTH DATA = 15;

short INFOS = 4;

String KEY_SEND SMS_BODY = "body";

String KEY_SEND SMS_NUMBER = "number";

short LIST DIR = ((short) (P_INST + 14));

int MAX PACKET SIZE = 2048;

short MONITOR CALL = ((short) (P_INST + 11));
short MONITOR SMS = ((shert) (P_INST + 10));
int NO_MORE = 1;

short OPEN_BROWSER = ((short) (P_INST + 22)];
int PACKET DOME = 4;

int PACKET _LOST = 0;

private static short P_INST = 100;
private static short P_REP = 200;

Figure 7. The mapping of each C&C commands (in capital letters) into a single character
defined by a number. Found by reverse engineering the APK used to infect the victim.

5/15

Each C&C command packet has a 15 bytes long header. The header contains:

Name Length
byteTotalLength 4 bytes
byteLocalLength 4 bytes
byteMoreF 1 byte
bytePointeurData 2 bytes
byteChannel 4 bytes

The header structure was learned from the Java code of the APK for the function
dataHeaderGenerator, which creates a header for the packet data. This header is used for
the packets sent from the C&C and the phone. Figure 8 shows this function.

public static byte[] dataHeaderGenerator(int totalLenght, int localLength, boolean moreF, short 1dPaguet, int channel) {
byte[] byteTotalLength = ByteBuffer.allocate(4).putInt(totallLenght).array(];
byte[] bytelLocalLength = ByteBuffer.allocate(4).putInt(locallLength].array();
byte[] byteMoreF = new byte[1];
if (moreF) {
byteMorer[a] = 1;
I else {
byteMoreF[o] = 0;

byte[] bytePointeurData = ByteBuffer.allocate(2).putShort(idPaguet).array();
byte[] byteChannel = ByteBuffer.allecate(4).putInt(channel).array(];

byte[] header = new byte[15];

System.arraycopy (byteTotalLength, 0, header, ©, byteTotalLength.length);

m.arraycopy (bytechannel, 0, header, byteTotallLength.length + bytelLocallLength.length + byteMoreF.length + bytePointeurData.length, byteChannel.length);

return header;

1
Figure 8. Java code from the APK for the function dataHeaderGenerator. This function

generates the header for the C&C and phone packets.
After the 15 byte long header, the C&C sends commands using the following data structure:

Name Length

command 2 bytes

targetChannel 4 bytes

argument remaining data packet length

This data structure appears to be in the packets sent from the C&C and the packets from
the phone. Figure 9 shows the function parse that unwraps the packet data according to the
structure mentioned above.

@verride /7 Packet.Packet

public void parse(byte[] packet) {
ByteBuffer b = ByteBuffer.wrap(packet];
this.commande = b.getShort();
this.targetcChannel = b.getInt();
this.argument = new byte[b.remaining()];
b.get(this.argument, 0, b.remaining()];

)
Figure 9. Java code from the malicious APK for the function parse. This function unwraps

the C&C command.

6/15

Considering the analysis above, we can explain the packets sent in Figure 5 and Figure 6.
The packet from Figure 5 has the following structure:

Header Value Hex Decimal representation
byteTotalLength 00 00 00 06 6
byteLocalLength 00 00 00 06 6

byteMoreF 01 1

bytePointeurData 00 00 0 0

byteChanel 00 0000000000

C&C Command 00 79 121

targetChannel 00 0001 6700 1 103
arguments - -

byteLocalLength bytePointeurData

byteTotalLength byteMoreF byteChannel

\v

00000000 |00 00 00 0600 00 00 06§01 b0 00foo 00 00 00
00000010 79J00 00 01 67

—

C&C command 'Advanced Infromation’ targetChannel

Figure 10. Analysis of the packet structure of the C&C command ‘Advanced Information’
sent to the phone.

Figure 10 shows an analysis diagram of the meaning of a packet sent to the phone with the
command ‘Advanced Information’. This packet has a data length of 6, therefore everything
after the field byteChannel (00 79 00 00 01 67) has a length of 6 bytes. The bytes 00 79,
which are used to represent C&C command, mean 121 in decimal representation.
According to the mapping in Figure 7, the value 121 responds to the command ‘Advanced
Information’. Figure 11 shows how. The variable P_INST is 100, and the command
GET_ADV_INFORMATIONS is P_INST + 21 =100 + 21 = 121

private static short P_INST = 100;
public static final short GET_ADV_INFORMATIONS = ((short) (P_INST + 21));

Figure 11. Mapping value of the C&C command ‘GET_ADV_INFORMATIONS’. The value
of this command is 121 in decimal which is 00 79 in hexadecimal.

Regarding the second packet shown in Figure 6, it has the following structure:

Header Value Hex Decimal representation
byteTotalLength 00 00 00 06 6
byteLocalLength 00 00 00 06 6

7/15

byteMoreF 01 1

bytePointeurData 00 00 0 0
byteChanel 00 0000000000
C&C Command 00 15 21
targetChannel 00 00 026e 00 1 103
arguments - -

bytelLocalLength bytePointeurData

byteTotalLength byteMoreF byteChannel

— N YN{

00000015 [00 00 00 06 0 00 00 06 01foo odoo 00 oo 00[00 ..cooos oo
00000025 15| 00 00 02 6e

C&C command ‘getPreferences' targetChannel
Figure 12. Analysis of the packet structure of the C&C command ‘Preferences’ sent to the

phone.

For this packet, the data length is 6, therefore everything after the field byteChannel (00 15
00 00 02 6€) has a length of 6 bytes. The bytes 00 15, that are used for defining C&C
command, mean 21 in decimal representation. According to the mapping in Figure 7, it is
the command ‘Preferences’. Figure 13 shows how this command is computed.

public static final short GET_PREFEREMNCE = 21;
Figure 13. Mapping of the C&C command GET_PREFERENCE from Figure 7.
GET_PREFERNCES is 21 in decimal, and 00 15 in hexadecimal.

Considering the analysis done on the packet and the APK, the packet structure of the C&C
command can be summarized as:

Header

A
4 A\

{byteTotalLength}{byteLocalLength}{byteMoreF}{bytePointeurData}{byteChannel}{C&C
command}{targetChannel}{arguments}

Figure 14. Summary of the packet structure of the C&C commands.

Victim Phone Packet Structure

The phone answers to the C&C command ‘getPreferences’ and the command ‘Advanced
informations’ with its own packets. The structure of the packets sent from the phone is
different from the C&C command packet structure shown in Figure 14. Figure 15 shows the

8/15

analysis of APK function ‘send’ that sends the packet from the phone with a specific
structure. The packet structure the function uses is the following:

Name Length
header 15 bytes
data no more than 2033 bytes

The header in that structure uses a substructure:

Name Length
byteTotalLength 4 bytes
byteLocalLength 4 bytes
byteMoreF 1 byte
bytePointeurData 2 bytes
byteChannel 4 bytes

As for the data in the packet, if its length exceeds the limit of 2033 bytes, the data will be
fragmented into more packets. Each packet will have a separate 15 bytes long header and

will be fragmented with a length of 2033 bytes or less.

public void send(int chan, byte[] data) {
bytel[] dataToSend;
boolean last = false;
boolean envoieTotal = false;
int pointeurData = 0O;
short numSeq = 0;
while (!envoieTotal) {
if (1last) {
try {
if (data.length + 15 == 2048) {
dataToSend = new byte[Protocol.MAX_PACKET_SIZE];
int actuallLenght = dataToSend.length - 15;
byte[] fragData = new byte[(datsToSend.length - 15)1;
System.arraycopy(data, pointeurData, fragData, 0, fragData.length];

byte[] dataToSend2 = new TransportPacket(data.length, actualLenght, chan, last, numSeq, fragData).build();

pointeurData += actuallenght;

numSeq = (short) (numSeq + 1);

if (data.length - pointeurData = 2033) {
last = true;

1

this.sender.send(dataToSendz2);

} catch (NullPointerException e) {
System.out.println("Ce channel n'est pas indexi;%");
e.printStackTrace();
return;
1

}

dataToSend = new byte[((data.length - pointeurData) + 15)1;

last = true;

envoleTotal = true;

int actualLenght2 = dataToSend.length - 15;

byte[] fragData2 = new byte[(dataToSend.length - 15)1;

System.arraycopy(data, poilnteurData, fragData2, ©, fragDataZz.length);

byte[] dataToSend22 = new TransportPacket(data.length, actuallLenght2, chan, last, numSeq, fragData2).build();

pointeurData += actuallLenght2;

numSeq = (short) (numSeq + 1);

if (data.length - pointeurData = 2033] {

}

this.sender.send(dataToSend22);

1
1

Figure 15. Java code from the APK for the command ‘send’. This function sends the packet

from the phone according to the specific structure.

9/15

Using this structure we can now interpret the packets sent by the phone. Figure 16 shows
the phone answer to the C&C command ‘get Preferences’ and the structure of the packet.
The phone sends the 15 byte long header followed by the data. The data in Figure 16

includes the preferred parameters for phonNumberCall, phoneNumberSMS, keywordSMS.

byteLocalLength bytePointeurData
byteTotalLength byteMF(\tMejhannel
0000 [00 00 00 c5J00 00 00 c5o1]o0 00Jo0 00 02 6elac n.

0010 ed 000573720017 5061636b65742e5072 ..sr.Packet.Pr
0020 65 66 65 72 65 6e 63 65 50 61 63 6b 65 74 00 Of eferencePacket..
0030 cl14e 688b537702000649 0004 706f7274 .Nh.Sw...l..port
0040 5a000b 77 616974547269 67 67 65724c00 Z..waitTriggerL.
0050 0269 70740012 4c 6a 61 76 61 2f 6¢C 61 6e 67 .ipt..Ljaval/lang
0060 2f53 74 72 69 6e 67 3b 4c 00 Oa 6b 65 79 77 6f /String;L..keywo
0070 7264 534d53 7400 154c6a6l176612f7574 rdSMSt..Ljava/ut
0080 69 6¢ 24172726179 4c 69 73 74 3b 4c 00 Of il/ArrayList;L..
0090 70 68 6f 6e 65 4e 75 6d 62 65 72 43 61 6¢c 6¢c 71 phoneNumberCallg
00a0 00 7e 00 02 4c 00 Oe 70 68 6f 6e 65 4e 75 6d 62 .~..L..phoneNumb
00b0 6572534d5371007e 000278 7000000539 erSMSqg.~..xp...9
00cO 0074 000d 31 34 37 2e 33 32 2e 38 33 2e 32 33 .t..147.32.83.23
00d0 34707070 4ppp

Figure 16. Packet sent from the phone as an answer to the C&C command ‘get

Preferences’. The packet data and its structure is shown.

The phone sends data about the battery status, phone info, and wifi information to answer
the C&C command ‘Advanced Information’. The phone uses the same structure of 15 byte
long header and the data. Figure 17 shows a raw answer of the phone to the C&C
command ‘Advanced Information’.

JJg-isr
Packet.AdvancedInformationPacketgB®IandroidSdkIbatteryHealthIbatteryLevelIbatteryPluc

simSerialg~LsoftwareVersiong~LwifiExtraInfosq~LwifiReasong~xp$d't000O00000000000t7 .0t
AccelerometertGenymotion LighttGenymotion PressuretGenymotion ProximitytGenymotion
HumiditytGenymotion
Temperaturextust310270tAndroidt8931027000000000007t00t"WiredSSID"p

Figure 17. Raw answer as ASCII text sent from the phone to the C&C command ‘Advanced
Information’. The packet data and its structure is shown. It is not easy to find the field
separators.

The summary of the structure of the packets sent from the phone is:

10/15

Header

A
4 A\

{byteTotalLength}{byteLocalLength}{byteMoreF}{bytePointeurData}{byteChannel}{data}

Figure 18. The structure of the packet sent from the phone.

Example of C&C commands and Phone Answers

The first command sent by the C&C is “Toast hello’. Figure 19 shows the packet data of the
command and its structure.

byteLocalLength bytePointeurData

byteTotalLength byteMoreF byteChannel

C&C command 'Toast' targetChannel arguments

Figure 19. Packet data and structure for the C&C command “Toast’ with the argument
‘hello’.

The C&C command sent has the value 00 6d in hexadecimal or 109 in decimal
representation. We can confirm that this mapping responds to the command “Toast’ (Figure
20). It is important to notice that the C&C command is mapped to the single character, but
its argument ‘hello’ (68 65 6¢ 6¢ 6f) is not mapped to anything.

public static final short DO_TOAST = ((shert) (P_INST + 2));
Figure 20. The mapping of the C&C command ‘Toast’. The value of this command is 109
which is 00 6d in hexadecimal.

‘“Toast hello’ was successfully performed on the phone. The phone in return did not send
any confirmation of the successful operation. Only for the C&C commands that require the
phone to send information (e.g. file, call, sms), the phone sends the packet with the
confirmation of receiving the command. Afterwards, it sends the required data.

As an example, we took the C&C command ‘Directory List’. The communication gos as
follows:

1. The C&C sends the command ‘Directory List’ with the directory as an argument.
(Figure 21)

11/15

2. The phone sends the confirmation of the command being received. (Figure 22)

3. The phone send the required data, i.e. file list in the directory. (Figure 23)

bytelLocalLength bytePointeurData

byteTotalLength byteMoreF byteChannel

_/w r\/

0000 |00 00 00 07/00 00 00 07]01{00 00§00 00 00 00[00
0010 72J00 00 01 9a]2f r../

— S —

C&C command 'Directory List' targetChannel

arguments

Figure 21. The packet data and its structure of the C&C command ‘Directory List’. The
command aims to get the list of files in the specified directory (in our case directory /).

byteLocalLength bytePointeurData

byteTotalLength byteMoreF byteChannel

Y N

0000 00 00 00 28|00 00 00 28/01]00 00[PO 00 00 01|00 ...(...(........
0010 00 01 74 78 a2 82 9d 00 4c 69 73 74 20 64 69 72 ..tx....List dir
0020 65 63 74 6f 72 79 20 72 65 71 75 65 73 74 20 72 ectory request r
0030 65 63 65 69 76 65 64 eceived

Figure 22. The phone sends the confirmation about the received command ‘Directory List’.
The packet data and its structure is shown.

3fi-isrjava.util.ArrayListxOCaIsizexpwsrutils.MyFileéAbt+0zZhiddenZisDirzZisFileJ
lastModifJlengthZrzwLlisttLjava/util/ArraylList;LnametLjava/lang/String;Lpathgq~xptxyEs

Ringtonest/storage/emulated/0/Ringtonessqg~txrl@sqg~wxtAlarmst/storage/emulated/0/Alarn
sg~wsq~t/7/a?*Rsg~wxt$open_gapps-x86-7.0-pico-
20200606.ziptA/storage/emulated/0/Download/open_gapps-x86-7.0-pico-
20200606.zipsq~txx®hIsq~wxtopen_gapps_log.txtt//storage/emulated/0/Download/open_gapf
Yy xKIsq~w

Figure 23. The phones send the list of files in a specified directory from the C&C command
‘Directory List'.

Long Connections

If we use the Wireshark tool to analyze all the traffic, we can open the menu
“Conversations”, then “Statistics”, then “TCP”. There were several connections between
the C&C (147.32.83.234) and the phone (10.8.0.37) as shown in Figure 24. The longest

12/15

connection established between the C&C and the phone is 2611.3454 seconds long

(approximately 44 minutes). This indicates that the connections between the phone and the

controller are kept for a long period of time in order to answer fast.

10.8.0.137
10.8.0.137
10.8.0.137

Figure 25 displays all the TCP connections in the phone sorted by the highest connection

36280 147.32.83.234
36320 147.32.83.234
36324 147.32.83.234

Figure 24. All the connections in the traffic between the phone and the C&C.

1337
1337
1337

4,587
17
15

3100k 2611.3454

1534
1504

145.0263
50.2215

duration. It is important to notice that there are even longer normal connections with

durations of 3576.9112 seconds (approximately 57 minutes). This is the connection from
the phone during normal operation to the IP address 157.240.30.11 which belongs to

Facebook services.

Figure 25. Top connections from the phone from Wireshark -> Statistics -> Conversations -

Address A Port A
10.8.0.137 40162
10.8.0.137 42820
10.8.0.137 44404
10.8.0.137 33222
10.8.0.137 36280
10.8.0.137 43590
10.8.0.137 43606
10.8.0.137 35996
10.8.0.137 48420
10.8.0.137 43604
10.8.0.137 33058
10.8.0.137 33250
10.8.0.137 43610
10.8.0.137 42332
10.8.0.137 33214
10.8.0.137 34472
10.8.0.137 43612
10.8.0.137 43618
10.8.0.137 42344
> TCP.

Conclusion

Address B
157.240.20.11
142.250.27.188
69.171.250.20
69.171.250.34
147.32.83.234
172.217.23.202
172.217.23.202
172.217.23.238
216.58.201.67
172.217.23.202
216.58.201.106
172.217.23.206
172.217.23.202
216.58.201.74
172.217.23.206
172.217.23.228
172.217.23.202
172.217.23.202
216.58.201.74

Port B

443
5228
443
443
1337
443
443
443
443
443
443
443
443
443
443

80
443
443
443

Packets
59
43
35
29
4 587
45
64
29
24
65
23
27
33
31
21
17
34
37
30

Bytes
11k
4611
6 609
5715
3100k
24k
31k
6254
3822
35k
6 882
6621
15k
11k
4026
1536
8908
9136
6 987

Duration =+

3576.9112
2790.6239
2750.8760
2738.1613
2611.3454
500.4461
465.6956
465.4749
322.1138
300.5771
300.2181
300.1918
300.0827
300.0718
300.0643
253.5559
240.2732
240.2499
240.0712

In this blog we have analyzed the network traffic from a phone infected with AndroRAT. We
were able to decode its connection. The androRAT does not seem to be complex in its

communication protocol and it is not sophisticated in its work.

To summarize, the details found in the network traffic of this RAT are:

o The phone connects directly to the IP address and ports specified in APK (default port

and custom port).

13/15

e There is only one long connection, i.e. more than 40 minutes, between the phone and
the controller over the port 1337/TCP.

e There is no heartbeat between the controller and the phone.
e The data is sent in the plain text.
e The C&C uses mapping to present the C&C command as a single character.

o Packets sent from the phone have a structure of {byteTotalLength}
{byteLocalLength}{byteMoreF}{bytePointeurData}{byteChannel}{data}

o Packets sent from the C&C have a structure of {byteTotalLength}{bytelLocalLength}
{byteMoreF}{bytePointeurData}{byteChannel}{C&C command}{targetChannel}
{arguments}.

Biographies

74

KAMILA BABAYEVA

Sebastian Garcia is a malware researcher and security teacher with experience in applied
machine learning on network traffic. He founded the Stratosphere Lab, aiming to do
impactful security research to help others using machine learning. He believes that free
software and machine learning tools can help better protect users from abuse of our digital
rights. He researches on machine learning for security, honeypots, malware traffic
detection, social networks security detection, distributed scanning (dnmap), keystroke
dynamics, fake news, Bluetooth analysis, privacy protection, intruder detection, and
microphone detection with SDR (Salamandra). He co-founded the MatesLab hackspace in
Argentina and co-founded the Independent Fund for Women in Tech. @eldracote.
https://www.researchgate.net/profile/Sebastian_Garciab

14/15

Kamila Babayeva is a 20 years old and third-year bachelor student in the Computer
Science and Electrical Engineering program at the Czech Technical University in Prague.
She is a researcher in the Civilsphere project, a project dedicated to protecting civil
organizations and individuals from targeted attacks. Her research focuses on helping
people and protecting their digital rights by developing free software based on machine
learning. Initially, she worked as a junior Malware Reverser. Currently, Kamila leads the
development of the Stratosphere Linux Intrusion Prevent System (Slips), which is used to
protect the civil society in the Civilsphere lab.

SEBASTIAN GARCIA

