
1/27

Security Lab March 29, 2021

Zloader email campaign using MHTML to download and
decrypt XLS

hornetsecurity.com/en/threat-research/zloader-email-campaign-using-mhtml-to-download-and-decrypt-xls/

Summary

Zloader malware (associated with the kev configuration tag) is spreading via malspam
using MIME encapsulation of aggregate HTML documents (MHTML) attachments. These
MHTML files contain a Word document with VBA macros. The VBA macro code downloads
and decrypts a password-protected XLS file, and after that, the XLS file decodes and
executes the Zloader malware embedded within it.

Background

In February 2020, campaigns distributing Zloader ramped up usage of XLM (also known as
Excel 4.0) macros. Detection of this old spreadsheet-based by design self-modifiable macro
code format by anti-virus software is far lower than detection of regular sequential not by
design self-modifiable plain-text VBA macro source code. We already highlighted the abuse
of XLM macros in previous reports, e.g., XLM macros used to spread QakBot or
BazarLoader . However, as detection for XLM macro code has picked up with even Microsoft
adding XLM macro support to AMSI , threat actors continue to evolve.

Starting in January 2021, Hornetsecurity took notice of a new Zloader campaign using
MHTML attachments. MIME encapsulation of aggregate HTML documents (MHTML) is a
web page archive format used to combine multiple files into one. It used base64 encoding
and MIME-boundaries similar to multipart MIME encoding in emails. Microsoft Word can
open documents stored inside MHTML files.

Technical Analysis

The chain of infection of the Zloader MHTML campaign is as follows:

1

5

2

3

4

5

https://www.hornetsecurity.com/en/threat-research/zloader-email-campaign-using-mhtml-to-download-and-decrypt-xls/
https://www.hornetsecurity.com/en/threat-research/qakbot-distributed-by-xlsb-files/
https://www.hornetsecurity.com/en/threat-research/bazarloaders-elaborate-flower-shop-lure/

2/27

We will now outline each step of the attack chain.

Emails

The attack starts with emails.

Januar (first wave)

The first emails were designed and built like purchase invoices.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-chain_en_white.png

3/27

The wording and pretext changed between emails of this campaign. However, the general
“invoicing” theme remained constant.

Initial email attacks were of low volume, the emails templates above have not been used
much.

February

In February, contract pretexts were added to the mix of invoice pretexts.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-email_0101.png
https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-email_0102.png

4/27

At one point, the numero sign (№) was used instead of the number sign (#).

After that, with recent changes to the email template, the campaign’s volume started to
increase sharply.

Targets

The campaign targets international, Canadian, US, and British companies, mainly English-
speaking users.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-email_0201.png
https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-email_0203.png

5/27

However, the time histogram shows that on 2021-02-15, the majority of Zloader MHTML
emails were destined for Canadian recipients.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-bin_owner_country_en_white.png

6/27

The estimated distribution of recipients by industries would suggest a bias towards the
professional services industry, i.e., consultancies, freelancers, funeral homes, law firms, etc.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-time_owner_country_en_white.png

7/27

MHTML documents

The MHTML document’s extension was set to .doc, so Microsoft Word will open the
documents directly.

The smaller January campaign and later February campaign MHTML document’s main
difference is the image instructing the user to “enable content” and “enable editing”, i.e.,
activating macro execution.

The January campaign lure image looks as follows:

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-bin_owner_industry_en_white.png

8/27

The February campaign lure image looks as follows:

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-doc_0101.png

9/27

The MHTML document is an ASCII document featuring multiple MIME-parts.

One MIME-part contains the lure image.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-doc_0201.png
https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-mime_head.png
https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-mime.png

10/27

The other parts contain an application/vnd.ms-officetheme and an application/x-
mso file. Which (in addition to the text/xml files) are used by Microsoft Word to load the
embedded Word document.

The document will automatically execute the macro code on closing the document:

The VBA code uses UserForm objects for obfuscation.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-vba_01.png

11/27

Within the ComboBox objects’ initialization code in the UserForm objects and various other
mechanisms, a download URL and a password are assembled and used within a call to the
VBA function CallByName . This calls the Workbook object’s open function with the
fileName parameter set to the download URL, the Password parameter set to the

assembled password, and the other optional parameters left empty.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-vba_02.png

12/27

The call will cause Word to open Excel and download the encrypted XLS file from the URL
https://findinglala[.]com/down/doc.xls?ekyh_vD91041.z4730435.doc . Excel will

use the provided password to decrypt the document.

The XLS document will use XLM macros to decode and use rundll32.exe to execute an
embedded Zloader payload.

Zloader

Zloader is a fork of the famous Zeus banking Trojan. It is a loader that allows its operator to
load additional malware onto infected devices.

Coarse dynamic analysis

The via rundll32.exe started Zloader process from the XLS document will spawn a
suspended msiexec.exe process and inject code into it.

First, the original DLL running in rundll32.exe starts a msiexec.exe process.

Then, WriteProcessMemory is used to write code into it.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-vba_03.png
https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-processtree.png
https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-msiexec01.png

13/27

Eventually, the Zloader code running in rundll32.exe resumes the thread in the
msiexec.exe process via NtResumeThread and the injected code starts running.

Zloader will then generate a lot of random directories in %APPDATA%\Roaming .

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-msiexec02.png
https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-msiexec03.png

14/27

It then copies the original DLL into one of the folders. To this end, it first reads the original
DLL into memory.

In the next step, data from the DLL is being written back into a new file.

The other folders remain empty but can be used at later points in time to hold additional data.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-msiexec04.png
https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-msiexec05.png
https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-msiexec06.png

15/27

The original DLL is deleted.

Eventually, C2 communication initializes.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-msiexec08a.png
https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-msiexec07.png
https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-msiexec08.png

16/27

Unpacking

The Zloader DLL injected into msiexec.exe can be extracted either automatically via the
open-source CAPE sandbox, manually dumped by breaking on NtResumeThread in the
original rundll32.exe process, then dumping the msiexec.exe process, or semi-
automatically by using a tool such as hollows_hunter (or PE-Sieve).

The following analysis was performed on a Zloader DLL dumped from the msiexec.exe
process.

Obfuscation

The Zloader malware is obfuscated. It makes extensive use of junk code, i.e., adding
program instructions that do not contribute to the program logic with the sole purpose of
complicating analysis. Further, it often calls complicated functions to perform trivial
calculations, making the code appear very complex. For example, the following is a function
that performs the binary AND operation on two parameters. The code is littered with such
junk code.

5

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-msiexec09.png

17/27

Dynamic library, function and string resolution

Functions are dynamically resolved at runtime via a hash lookup. Instead of calling a function
directly, a proxy function returning a pointer to the desired function is called. The following
example shows the function with which Zloader deletes its original file. The function we
named zl_get_func received two parameters, the first is a library ID (0 is ntdll) and the
second is a hash of the function name that should be called.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-zloader_ghidra_junkcode.png

18/27

This is standard practice in modern malware, so no suspicious imports are present in the
binary. It also makes a static analysis more complicated.

Obviously, the hash calculation also uses the previous mentioned junk code obfuscation.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-zloader_ghidra_delete.png

19/27

However, it can be reimplemented in Python as follows.

def zl_hash(func_name):
 func_name = func_name.lower()
 hash = 0
 for c in func_name:
 a = 0 - (hash << 4)
 hash = 0 - (a - ord(c))
 b = 0x647400ac ^ 0x947400ac
 b = hash & (~(b ^ hash))
 if b != 0:
 d = 0x647400ac ^ 0x6b8bff53
 hash = (b >> 0x18) ^ (d & hash)
 return hash

With this function calls can be de-obfuscated.

Strings are XOR encoded with a static repeating ASCII keystream.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-zloader_ghidra_hash.png

20/27

Configuration

The Zloader configuration is RC4 encrypted with a key using only ASCII as keyspace.

The data at the location we labeled zl_encrypted_config can be decoded with the ASCII
string handed as the second parameter to the function we named zl_decrypt_config .
Consequently, the configuration of the Zloader sample will be revealed.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-zloader_ghidra_strings.png
https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-zloader_ghidra_rc4.png

21/27

The configuration contains a botnet name the particular sample is associated with, a
campaign ID (presumably for the threat actors to keep track of infections per campaign), an
RC4 key (used to encrypt and decrypt updated configuration stored in the registry) and last
but not least a list of command and control URLs the malware should connect to for
commands and updates.

We provide an update to the DC3-MWCP script included with the open-source CAPE
sandbox that handles configuration extraction for the analyzed Zloader sample in the
appendix. It helps automating the configuration extraction.

Malware objectives

The configurations of downloaded pieces of Zloader malware associates them with the kev
botnet. The kev ID has been publicly observed since December 2020.

Zloader has been identified as an access vector for Ryuk and Egregor ransomware
deployments. Whether the installments associated with the kev configuration tag are part
of this or a different ransomware operation is currently unknown. However, by the direction
the current threat landscape is moving, it is highly likely the malware is also used to deploy
ransomware.

Conclusion and Countermeasures

Spreading the attack into multiple encoded stages (document in HMTL; payload URL in
UserForm s; download of password-protected XLS; decoding of Zloader payload from

decrypted XLS) shows that much effort was put into evading detection. Even after the
campaign ran for several weeks, the initial MHTML documents still only got 7 out of 61
detections when first scanned on VirusTotal.

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-zloader_ghidra_config.png

22/27

The unusual MHTML encoding of the initial Word document can pose problems for security
software unfamiliar with this format. Its initial layer must be parsed differently from
OLE/CDF/OpenXML-based Office documents and being ASCII plain-text may completely
bypass some detections. For network-based protection software, it is impossible to
investigate the intermediary downloaded XLS document with the Zloader payload – because
it is encrypted. Another struggle is the low level of maliciousness of the initial Word
document. While downloads from documents should always be deemed at least suspicious,
in this case, only another Excel document was download. Some business workflows may
require Word documents to download resources from web. Consequently, the observed
behaviour may fly under the radar. Hence, spreading the malicious components (download;
dropper; Zloader malware) over multiple stages can bypass detection for some security
solutions.

Hornetsecurity’s Spam Filtering Solutions and Malware Protection detects and quarantines
the outlined threat. Hornetsecurity’s Advanced Threat Protection extends this protection by
also detecting yet unknown threats.

References

Appendix

DC3-MWCP / CAPE configuration parser

The following DC3-MWCP configuration parser is an update to CAPE’s Zloader parser and
can be used as a drop in replacement (additionally we opened a pull request with the
upstream project):

https://www.hornetsecurity.com/wp-content/uploads/2021/03/20210218-mhtml-vt.png
https://www.hornetsecurity.com/en/services/spam-filter/
https://www.hornetsecurity.com/en/services/advanced-threat-protection/
https://github.com/kevoreilly/CAPEv2/blob/master/modules/processing/parsers/mwcp/Zloader.py

23/27

Copyright (C) 2020 Kevin O'Reilly (kevoreilly@gmail.com)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

from mwcp.parser import Parser
import struct
import string
import pefile
import yara
import re
from Crypto.Cipher import ARC4
import logging
log = logging.getLogger(__name__)

rule_source = '''
rule Zloader
{
 meta:
 author = "kevoreilly"
 description = "Zloader Payload"
 cape_type = "Zloader Payload"
 strings:
 $rc4_init = {31 [1-3] 66 C7 8? 00 01 00 00 00 00 90 90 [0-5] 8? [5-90] 00 01
00 00 [0-15] (74|75)}
 $decrypt_conf = {e8 ?? ?? ?? ?? e8 ?? ?? ?? ?? e8 ?? ?? ?? ?? e8 ?? ?? ?? ??
68 ?? ?? ?? ?? 68 ?? ?? ?? ?? e8 ?? ?? ?? ?? 83 c4 08 e8 ?? ?? ?? ??}
 condition:
 uint16(0) == 0x5A4D and any of them
}

'''
MAX_STRING_SIZE = 32

yara_rules = yara.compile(source=rule_source)

def decrypt_rc4(key, data):
 cipher = ARC4.new(key)
 return cipher.decrypt(data)

def string_from_offset(data, offset):
 string = data[offset : offset + MAX_STRING_SIZE].split(b"\0")[0]
 return string

class Zloader(Parser):

24/27

 DESCRIPTION = 'Zloader configuration parser'
 AUTHOR = 'kevoreilly'

 def run(self):
 filebuf = self.file_object.file_data
 pe = pefile.PE(data=filebuf, fast_load=False)
 image_base = pe.OPTIONAL_HEADER.ImageBase
 matches = yara_rules.match(data=filebuf)
 if not matches:
 return
 for match in matches:
 if match.rule != "Zloader":
 continue
 for item in match.strings:
 if '$decrypt_conf' in item[1]:
 decrypt_conf = int(item[0])+21
 va = struct.unpack("I",filebuf[decrypt_conf:decrypt_conf+4])[0]
 key = string_from_offset(filebuf, pe.get_offset_from_rva(va-image_base))
 data_offset =
pe.get_offset_from_rva(struct.unpack("I",filebuf[decrypt_conf+5:decrypt_conf+9])[0]-
image_base)
 enc_data = filebuf[data_offset:].split(b"\0\0")[0]
 raw = decrypt_rc4(key, enc_data)
 items = list(filter(None, raw.split(b'\x00\x00')))
 self.reporter.add_metadata("other", {"Botnet name":
items[1].lstrip(b'\x00')})
 self.reporter.add_metadata("other", {"Campaign ID": items[2]})
 for item in items:
 item = item.lstrip(b'\x00')
 if item.startswith(b'http'):
 self.reporter.add_metadata("address", item)
 elif len(item) == 16:
 self.reporter.add_metadata("other", {"RC4 key": item})
 return

Indicators of Compromise (IOCs)

Email

Subjects

Agreement information#?[0-9]+

Agreement info#?[0-9]+

Contract info#?[0-9]+

Contract information#?[0-9]+

Payment data#?[0-9]+

Invoicing data#?[0-9]+

Contract data#?[0-9]+

Invoicing information#?[0-9]+

Invoice data#?[0-9]+

25/27

Invoicing details#?[0-9]+

Payment info#?[0-9]+

Invoicing info#?[0-9]+

Agreement data#?[0-9]+

Contract details#?[0-9]+

Invoice information#?[0-9]+

Invoice details#?[0-9]+

Payment information#?[0-9]+

Invoice info#?[0-9]+

Agreement details#?[0-9]+

Payment details#?[0-9]+

Important agreement #?[0-9]+ update

Essential contract No. #?[0-9]+ update

Essential agreement No. #?[0-9]+ documentation

Important contract No. #?[0-9]+ update

Important contract №#?[0-9]+ update

Essential agreement Number #?[0-9]+ update

Necessary contract №#?[0-9]+ update

Important contract № #?[0-9]+ update

Important agreement No. #?[0-9]+ documentation

Important agreement #?[0-9]+ documentation

Necessary agreement Number #?[0-9]+ documentation

Important contract № #?[0-9]+ documentation

Important contract #?[0-9]+ documentation

Important agreement № #?[0-9]+ documentation

Essential contract #?[0-9]+ update

Essential agreement No. #?[0-9]+ update

Necessary agreement Number #?[0-9]+ update

Necessary contract № #?[0-9]+ update

Important agreement Number #?[0-9]+ update

Essential contract No. #?[0-9]+ documentation

Important contract #?[0-9]+ update

Essential agreement #?[0-9]+ update

Necessary agreement № #?[0-9]+ update

Important agreement No. #?[0-9]+ update

Necessary contract Number #?[0-9]+ documentation

Necessary contract No. #?[0-9]+ update

Necessary agreement #?[0-9]+ update

Essential contract Number #?[0-9]+ documentation

Essential contract № #?[0-9]+ documentation

Essential agreement №#?[0-9]+ update

Necessary agreement №#?[0-9]+ update

26/27

Essential contract Number #?[0-9]+ update

Necessary contract No. #?[0-9]+ documentation

Important contract №#?[0-9]+ documentation

Important agreement № #?[0-9]+ update

Essential contract №#?[0-9]+ documentation

Essential contract #?[0-9]+ documentation

Necessary contract №#?[0-9]+ documentation

Necessary agreement #?[0-9]+ documentation

Important contract Number #?[0-9]+ documentation

Necessary contract #?[0-9]+ update

Important agreement №#?[0-9]+ update

Essential contract №#?[0-9]+ update

Essential agreement №#?[0-9]+ documentation

Necessary contract #?[0-9]+ documentation

Important agreement Number #?[0-9]+ documentation

Essential agreement № #?[0-9]+ documentation

Necessary agreement № #?[0-9]+ documentation

Essential agreement Number #?[0-9]+ documentation

Essential contract № #?[0-9]+ update

Necessary contract Number #?[0-9]+ update

Necessary agreement No. #?[0-9]+ update

Essential agreement № #?[0-9]+ update

Essential agreement #?[0-9]+ documentation

Important contract No. #?[0-9]+ documentation

Necessary agreement No. #?[0-9]+ documentation

Important contract Number #?[0-9]+ update

Necessary contract № #?[0-9]+ documentation

Necessary agreement №#?[0-9]+ documentation

Important agreement №#?[0-9]+ documentation

Attachments

The following regular expressions describe the attachment names used in the campaigns:

([a-z]{4,8}_){1,2}[a-z]{4,8}[0-9]+.doc

[A-z0-9][A-z][0-9]+.doc

Hashes

Hashes of publicly available files:

MD5 Filename Description

6743ca84f7e9929c2179238e20934f57 nG772044.doc Zloader MHTML document

27/27

MD5 Filename Description

7a888f899a4850f02bad194bf01daaa7 eU107462.doc Zloader MHTML document

35ee0681eb3076674e01efec565f663b L1978883.doc Zloader MHTML document

25e2cffc5621cab99bd0a36d234c234f QG915014.doc Zloader MHTML document

222cb61e1041f3e4dbdc3493572388e6 dY433632.doc Zloader MHTML document

URLs

https://findinglala[.]com/down/doc.xls?ekyh_vD91041.z4730435.doc

DNS

findinglala[.]com

funkstarnews[.]com

heavenlygem[.]com

2tut[.]com

khalilmouna[.]com

