
1/6

SANS ISC: Jumping into Shellcode - SANS Internet Storm
Center SANS Site Network Current Site SANS Internet
Storm Center Other SANS Sites Help Graduate Degree
Programs Security Training Security Certification
Security Awareness Training Penetration Testing
Industrial Control Systems Cyber Defense Foundations
DFIR Software Security Government OnSite Training
SANS ISC InfoSec Forums

isc.sans.edu/forums/diary/Jumping+into+Shellcode/27256/

Malware analysis is exciting because you never know what you will find. In previous
diaries[1], I already explained why it's important to have a look at groups of interesting
Windows API call to detect some behaviors. The classic example is code injection. Usually, it
is based on something like this:

1. You allocate some memory
 2. You get a shellcode (downloaded, extracted from a specific location like a section, a

resource, ...)
 3. You copy the shellcode in the newly allocated memory region

4. You create a new threat to execute it.

But it's not always like this! Last week, I worked on an incident involving a malicious DLL that
I analyzed. The technique used to execute the shellcode was slightly different and therefore
interesting to describe it here.

The DLL was delivered on the target system with an RTF document. This file contained the
shellcode:

https://isc.sans.edu/forums/diary/Jumping+into+Shellcode/27256/
https://isc.sans.edu/forums/diary/Malware+Triage+with+FLOSS+API+Calls+Based+Behavior/26156

2/6

remnux@remnux:/MalwareZoo/20210318$ rtfdump.py suspicious.rtf
 1 Level 1 c= 3 p=00000000 l= 1619 h= 143; 5 b= 0
u= 539 \rtf1
 2 Level 2 c= 2 p=00000028 l= 91 h= 8; 2 b= 0
u= 16 \fonttbl
 3 Level 3 c= 0 p=00000031 l= 35 h= 3; 2 b= 0
u= 5 \f0
 4 Level 3 c= 0 p=00000056 l= 44 h= 5; 2 b= 0
u= 11 \f1
 5 Level 2 c= 0 p=00000087 l= 33 h= 0; 4 b= 0
u= 2 \colortbl
 6 Level 2 c= 0 p=000000ac l= 32 h= 13; 5 b= 0
u= 5 *\generator
 7 Remainder c= 0 p=00000655 l= 208396 h= 17913; 5 b= 0
u= 182176
 Whitespace = 4878 NULL bytes = 838 Left curly braces = 832 Right curly
braces = 818

This file is completely valid from an RTF format point of view, will open successfully, and
render a fake document. But the attacker appended the shellcode at the end of the file (have
a look at stream 7 which has a larger size and a lot of unexpected characters ("u="). Let's try
to have a look at the shellcode:

remnux@remnux:/MalwareZoo/20210318$ rtfdump.py suspicious.rtf -s 7 | head -20
00000000: 0D 0A 00 6E 07 5D A7 5E 66 D2 97 1F 65 31 FD 7E ...n.].^f...e1.~
00000010: D9 8E 9A C4 1C FC 73 79 F0 0B DA EA 6E 06 C3 03 sy....n...
00000020: 27 7C BD D7 23 84 0B BD 73 0C 0F 8D F9 DF CC E7 '|..#...s.......
00000030: 88 B9 97 06 A2 F9 4D 8C 91 D1 5E 39 A2 F5 9A 7E M...^9...~
00000040: 4C D6 C8 A2 2D 88 D0 C4 16 E6 2B 1C DA 7B DD F7 L...-.....+..{..
00000050: C4 FB 61 34 A6 BE 8E 2F 9D 7D 96 A8 7E 00 E2 E8 ..a4.../.}..~...
00000060: BB A2 D9 53 1C F3 49 81 77 93 30 16 11 9D 88 93 ...S..I.w.0.....
00000070: D2 6C 9D 56 60 36 66 BA 29 3E 73 45 CE 1A BE E3 .l.V`6f.)>sE....
00000080: 5A C7 96 63 E0 D7 DF C9 21 2F 56 81 BD 84 6C 2D Z..c....!/V...l-
00000090: CF 4C 4E BE 90 23 47 DC A7 A9 8E A2 C3 A3 2E D1 .LN..#G.........

It looks encrypted and a brute force of a single XOR encoding was not successful. Let's see
how it works in a debugger.

First, the RTF file is opened to get a handle and its size is fetched with GetFileSize() .
Then, a classic VirtualAlloc() is used to allocate a memory space equal to the size of
the file. Note the "push 40" which means that the memory will contain executable code
(PAGE_EXECUTE_READWRITE):

3/6

Usually, the shellcode is extracted from the file by reading the exact amount of bytes. The
malware jumps to the position of the shellcode start in the file and reads bytes until the EOF.
In this case, the complete RTF file is read then copied into the newly allocated memory:

This is the interesting part of the code which processes the shellcode:

4/6

The first line " mov word ptr ss:[ebp-18], 658 " defines where the shellcode starts in the
memory map. In a loop, all characters are XOR'd with a key that is generated in the function
desktop.70901100 . The next step is to jump to the location of the decoded shellcode:

The address where to jump is based on the address of the newly allocated memory
(0x2B30000) + the offset (658). Let's have a look at this location (0x2B30658):

5/6

Sounds good, we have a NOP sled at this location + the string "MZ". Let's execute the
unconditional JMP:

We reached our shellcode! Note the NOP instructions and also the method used to get the
EIP:

02B30665 | E8 00000000 | call 2B3066A | call $0
02B3066A | 5B | pop ebx |

Now the shellcode will execute and perform the next stages of the infection...

[1] https://isc.sans.edu/forums/diary/Malware+Triage+with+FLOSS+API+Calls+Based+Beha
vior/26156

https://isc.sans.edu/forums/diary/Malware+Triage+with+FLOSS+API+Calls+Based+Behavior/26156

6/6

Xavier Mertens (@xme)
Senior ISC Handler - Freelance Cyber Security Consultant
PGP Key

I will be teaching next: Reverse-Engineering Malware: Malware Analysis Tools and
Techniques - SANS London June 2022
Xme

687 Posts
ISC Handler
Mar 29th 2021

https://keybase.io/xme/key.asc
https://www.sans.org/event/london-june-2022/course/reverse-engineering-malware-malware-analysis-tools-techniques

