
1/21

View all posts by pcsxcetrasupport3 → March 28, 2021

SunCrypt, PowerShell obfuscation, shellcode and
more yara

pcsxcetrasupport3.wordpress.com/2021/03/28/suncrypt-powershell-obfuscation-shellcode-and-more-yara/

This didn’t start as a blog post. It started as a conversation with Hari Charan @grep_security
about something they were looking at called SunCrypt ransomware.

Looking up the name I ran across a couple of interesting blog post, one by Sapphire here
and one by Acronis here . Seeing that this was obfuscated PowerShell it peaked my interest.

Searching for some samples to work with also revealed that you can do a tag search on
tri.age of “family: suncrypt” (without the space)

The PowerShell loader we are going to use here is the one from the Acronis blog post with a
hash of MD5: d87fcd8d2bf450b0056a151e9a116f72 . There are multiple copies on
https://app.any.run/submissions/ for that hash. There are 3 copies on Tri.age here.

Hari Charan @grep_security also pointed me to a couple of open source yara rules to
search for the PowerShell loaders.

This one appears as though it will search for the ransomware binary here and this one will
search for the PowerShell script here .

Let’s take a look at some of the encoding.

https://pcsxcetrasupport3.wordpress.com/2021/03/28/suncrypt-powershell-obfuscation-shellcode-and-more-yara/
https://sapphirex00.medium.com/diving-into-the-sun-suncrypt-a-new-neighbour-in-the-ransomware-mafia-d89010c9df83
https://www.acronis.com/en-us/blog/posts/suncrypt-adopts-attacking-techniques-netwalker-and-maze-ransomware
https://pcsxcetrasupport3.files.wordpress.com/2021/03/searchingforsuncrypt.png
https://app.any.run/submissions/
https://tria.ge/s?q=md5%3Ad87fcd8d2bf450b0056a151e9a116f72
https://github.com/kevoreilly/community/blob/0de1bf900f78aea160a61caf48d7a525695046fb/data/yara/CAPE/SunCrypt.yar#L1
https://github.com/advanced-threat-research/Yara-Rules/blob/master/ransomware/RANSOM_Suncrypt.yar

2/21

If we look at this part it takes 3 values , assembles them , then it base64 decodes to byte.

But it will also do something to the strings before it reassembles them.

We can see the first string is redirected to a function that will read right to left , basically just
reverse the string.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/shellcode.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/byte.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/str-1.png

3/21

If we Look at the second string it is getting a substring of what is there starting at index 16
and taking 2000 characters.

The encoded string is actually 2032 characters long before we get the substring.

The final string is is just another reverse string.

Then we just have a long base 64 string after reassembling the pieces.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/str-2.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/str-2-x.png

4/21

Remember we still have to convert this to byte and it will get loaded into memory using
VirtualAlloc.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/str-3.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/str-4.png

5/21

Looking at the bytes in a hex editor we can not see anything that makes any sense.

The next step is to drop this into CyberChef here and view the assembly.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/sch-1.png
https://gchq.github.io/CyberChef/#recipe=Disassemble_x86('32','Full%20x86%20architecture',16,0,true,true)

6/21

This is also where I hinted on Twitter of a “Somewhat useful tool” which will be on my Github.

If we look down further we see more API calls.

And even further down we see a different type of string building using a “push pop”. I have
not made a tool for that yet.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/cyberchef-2.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/cyberchef-3.png

7/21

Although doing this statically we can not tell for sure how this is used it can give some clues
as to what it will be doing by the API calls.

What started all of this was when I was trying to write a yara rule to find more samples to test
this tool with and look for any outliers that would break it or not be what I was looking for.

I’m still learning yara and this version just looked for the format of the “MOV BYTE PTR”.

I ended up with over 552 hits for this and many false positives. I knew I need to find
something to rule out some of the values that did not return strings or would return either
encoded or garbage looking strings.

After several hours of trial and error I ended up with this.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/cyberchef-4.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/yara-1.png

8/21

That reduced it down to 214 hits. It ended up being shellcode and binary samples that used
that format. I’m sure there are a few more samples in that mix that would be false positives
but it was good enough for what I wanted.

After going thru that exercise I was wanting to try and find a way to let the obfuscated
PowerShell self decode. So I started by looking for a way to just let it reassemble the base64
string and then write that to a file.

The template part is the path variable and the pipe out to file. But you have to remember to
remove the “[Byte[]]” part and the “[System.Convert]::FromBase64String” from each one you
wanted to rebuild and just dump to a text file for further processing of the base64 string.

So I then went back and searched for how to just output to a binary file since that is what we
ultimately wanted anyway..

https://pcsxcetrasupport3.files.wordpress.com/2021/03/yara-2.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/ps-1.png

9/21

The variable for the path can be the same but instead of pipe to write file / text we add the
line with the System IO and make sure we have the variable name the same as in the
extracted PowerShell.

Moving on to the large base64 string.

Using Notepad++ we notice the highlighted area is all 1 section. You may also notice the
extra parameter name right after the join.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/ps-2.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/ps-3.png

10/21

Searching for that value we find it all the way up right after the code for the shellcode
reassembling.

So when we go to use the self decode trick we need from here all of the way to the end of
the highlighted area to be sure we have all of the needed parameters to rebuild the base64
string before it gets decoded to hex/binary data.

Once we drop this into our wrapper and verify we have the proper output name set we can
then just input it into the PowerShell ISE and run it and it will output our binary file for the
next step.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/ps-4.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/powershellise.png

11/21

Now the first four bytes of this output appears to be a length of the remaining bytes in the
output. These will need to be removed for the next step.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/bin-1.png

12/21

Here we see it is a 32 bit binary with a Timestamp of 9/18/2020 although the file was
assembled today in the created date.

If we look at the Unicode strings we can see that file extension strings are not obfuscated or
hashed like the other blog post showed.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/bin-2.png

13/21

One of the next things I was looking for is how to extract the ransom Note.

The other Blog post gives us clues what we are looking for so lets look at the file in a hex
editor.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/bin-3.png

14/21

There is a very distinctive string that begins with “11” as it turn out “0x11” is the xor key.

One of the other samples used 0x13 for the xor key.

If we scroll down to the end we can see clearly where this section will end.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/bin-4.png

15/21

https://pcsxcetrasupport3.files.wordpress.com/2021/03/bin-5.png

16/21

If we keep scrolling down while we still have multiple “11” values we get to this.

If we xor that by 0x11 we get this.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/bin-6.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/bin-7.png

17/21

Next I upped this to Anyrun here because I could not figure out at the time where the ip was
coming from.

One of the last pieces of this puzzle is that it does a post request with some encoded data.

If we look at the data that gets dumped from the packet we see this.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/bin-8.png
https://app.any.run/tasks/361a1a77-b3ab-4d91-8bbf-428c16175953/
https://pcsxcetrasupport3.files.wordpress.com/2021/03/bin-9.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/ws-1.png

18/21

So as a guess I checked to see if it had a single byte xor key and to my surprise it did.

The same one as the rest to decode with, 0x11.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/ws-2.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/findxor.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/ws-3.png

19/21

Does this passed hex value look familiar ? It is from the section where the IP was extracted.

What is it? I do not know. If someone does please let me know.

One other thing while I was not initially able to find the IP, I dropped this into IDA to see if I
could figure out how it worked.

Seeing this ..

And this..

https://pcsxcetrasupport3.files.wordpress.com/2021/03/dnslookup.png

20/21

Was still no help to figure out what was passed.

I’m sure the IDA Experts could tease out the information quick but that is something else I
still need to learn.

While working on this and needing more samples to compare I also wrote a yara rule to
detect the obfuscation format. The open source one will detect the base 64 encoding
method.

This first version will search for substring as a string and only has to be found once since the
value is “11” in the string.

https://pcsxcetrasupport3.files.wordpress.com/2021/03/postrequest.png
https://pcsxcetrasupport3.files.wordpress.com/2021/03/myyar-1.png

21/21

This version will search for the “Substring” string as bytes but allow for multiple possible
values in the start point for the substring.

Well that is pretty much as far I can go on this.

Possible future research.

Set up a vm with Sysmon and PowerShell logging enabled as suggested by Lee Holmes
here and run the sample to see what the logs will show me.

Take a closer look and learn how the encryption works.

Links:

Link to Acronis Blog post
 Link to Sapphire Blog post

Link to Anyrun for the extracted ransomware
 Link to Anyrun for PowerShell sample

 Link to tri.age Search

Link to my Github for Files

Link for open source yara rule for the binary
 Link for open source yara rule for finding the PowerShell script

Link for working with CyberChef Assembly

https://pcsxcetrasupport3.files.wordpress.com/2021/03/myyar-2.png
https://twitter.com/Lee_Holmes/status/1374054110551404546
https://www.acronis.com/en-us/blog/posts/suncrypt-adopts-attacking-techniques-netwalker-and-maze-ransomware
https://sapphirex00.medium.com/diving-into-the-sun-suncrypt-a-new-neighbour-in-the-ransomware-mafia-d89010c9df83
https://app.any.run/tasks/361a1a77-b3ab-4d91-8bbf-428c16175953/
https://app.any.run/tasks/8a42f254-0299-4f42-9da3-4776957f6c65/
https://tria.ge/s?q=md5%3Ad87fcd8d2bf450b0056a151e9a116f72
https://github.com/PCsXcetra/FilesForSunCryptBlogPost
https://github.com/kevoreilly/community/blob/0de1bf900f78aea160a61caf48d7a525695046fb/data/yara/CAPE/SunCrypt.yar#L1
https://github.com/advanced-threat-research/Yara-Rules/blob/master/ransomware/RANSOM_Suncrypt.yar
https://gchq.github.io/CyberChef/#recipe=Disassemble_x86('32','Full%20x86%20architecture',16,0,true,true)

