
1/7

March 25, 2021

Web Shell Threat Hunting with Azure Sentinel
techcommunity.microsoft.com/t5/azure-sentinel/web-shell-threat-hunting-with-azure-sentinel/ba-p/2234968

In this blog post we will provide Microsoft Azure Sentinel customers with hunting queries
to investigate possible on-premises Exchange Server exploitation and
identify additional attacker IOCs (Indicators of compromise) such as IP address and User
Agent. These hunting techniques can also be applied to web shell techniques targeting other
web applications.

The techniques we discuss below have been adapted from the June 2020 blog post: Web
shell threat hunting with Azure Sentinel and Microsoft Threat Protection. The previous blog
post analysed an attack against a SharePoint server, however, many of the techniques can
also be applied to Exchange servers since it also uses IIS to host its web interfaces.

Recent vulnerabilities in on-premises Microsoft Exchange servers have led to deployment of
web shells by threat actors. More information on these vulnerabilities can be found in
this MSRC blog, details on threat actor HAFNIUM using these vulnerabilities can be found in
this MSTIC blog. MSRC has also provided guidance for responders, a one-click tool for
remediation and automatic remediation is delivered through Microsoft Defender for
Endpoint.

Our colleagues in Microsoft Defender Threat Intelligence have authored another blog
that provides additional details on use of web shells in attacks taking advantage of the
Exchange Server.

https://techcommunity.microsoft.com/t5/azure-sentinel/web-shell-threat-hunting-with-azure-sentinel/ba-p/2234968
https://techcommunity.microsoft.com/t5/azure-sentinel/web-shell-threat-hunting-with-azure-sentinel-and-microsoft/ba-p/1448065
https://msrc-blog.microsoft.com/2021/03/05/microsoft-exchange-server-vulnerabilities-mitigations-march-2021/
https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
https://msrc-blog.microsoft.com/2021/03/16/guidance-for-responders-investigating-and-remediating-on-premises-exchange-server-vulnerabilities/
https://aka.ms/exchange-threat-intelligence

2/7

The below diagram provides a high-level overview of an attacker leveraging these
vulnerabilities to install a web shell on an Exchange server.

Investigating web shell alerts

Microsoft 365 Defender (M365D) detects web shell installation and execution activity.
Security alerts and incidents generated by M365D can be written to the SecurityAlert table in
Azure Sentinel by enabling the appropriate connector. An example of a web shell installation
alert in the Azure Sentinel SecurityAlert table can be seen below.

https://docs.microsoft.com/en-us/azure/sentinel/connect-microsoft-365-defender

3/7

These alerts can be enriched in Azure Sentinel with new information from other log
sources. When dealing with remote attacks on web application servers, one of the
best enrichment sources available are the web logs that have been generated. In the case
that the application server is Microsoft Exchange the W3CIISLog can be used to enrich
M365D alerts with potential attacker information. Information on collecting IIS logs using the
Log Analytics agent can be found here.

Identifying the Attacker IP
address from Microsoft 365 Defender alerts

The query below extracts alerts from M365D where a web script file has been observed as
part of the alert. In the below example, alerts containing ASP, ASPX, ASMX and ASAX files
will be extracted; these are web script files commonly used by Exchange servers.

After extracting relevant web shell alerts the query will join the alert information with the
W3CIIS log, this allows the query to identify any clients that have accessed the potential
shell file, allowing the potential attacker to be identified. A version of the query below is
already available as an Azure Sentinel detection and can be found here.

let timeWindow = 3d;
//Script file extensions to match on, can be expanded for your environment
let scriptExtensions = dynamic([".asp", ".aspx", ".asmx", ".asax"]);
SecurityAlert
| where TimeGenerated > ago(timeWindow)
| where ProviderName == "MDATP"
//Parse and expand the alert JSON
| extend alertData = parse_json(Entities)
| mvexpand alertData
| where alertData.Type == "file"
//This can be expanded to include more file types
| where alertData.Name has_any(scriptExtensions)
| extend FileName = tostring(alertData.Name), Directory =
tostring(alertData.Directory)
| project TimeGenerated, FileName, Directory
| join (
W3CIISLog
| where TimeGenerated > ago(timeWindow)
| where csUriStem has_any(scriptExtensions)
| extend splitUriStem = split(csUriStem, "/")
| extend FileName = splitUriStem[-1]
| summarize StartTime=min(TimeGenerated), EndTime=max(TimeGenerated) by
AttackerIP=cIP, AttackerUserAgent=csUserAgent, SiteName=sSiteName,
ShellLocation=csUriStem, tostring(FileName)
) on FileName
| project StartTime, EndTime, AttackerIP, AttackerUserAgent, SiteName, ShellLocation

Identifying Exchange Servers & Associated Security Alerts

https://docs.microsoft.com/en-us/azure/azure-monitor/agents/data-sources-iis-logs
https://github.com/Azure/Azure-Sentinel/blob/master/Detections/W3CIISLog/MaliciousAlertLinkedWebRequests.yaml

4/7

Exchange servers can be challenging to identify in default log data; however using data
available in W3CIISLog, Exchange servers can be identified using predictable URI strings
without relying on the hostname or site name.

The query below extracts the host name from W3CIISLog where a known Exchange URI
path is observed, this provides a list of hostnames that are running Exchange. This list of
host names can then be used to aggregate information from the alerts in
the SecurityAlert table.

W3CIISLog
| where csUriStem has_any("/owa/auth/", "/ecp/healthcheck.htm", "/ews/exchange.asmx")
| summarize by computer=tolower(Computer)
| join kind=leftouter (
SecurityAlert
| extend alertData = parse_json(Entities)
| mvexpand alertData
| where alertData.Type == "host"
| extend computer = iff(isnotempty(alertData.DnsDomain),
tolower(strcat(tostring(alertData.HostName), "." ,
tostring(alertData.DnsDomain))),tolower(tostring(alertData.HostName)))
| summarize Alerts=dcount(SystemAlertId), AlertTimes=make_list(TimeGenerated),
AlertNames=make_list(AlertName) by computer
) on computer
| project ExchangeServer=computer, Alerts, AlertTimes, AlertNames

The results of the query provide insights into whether additional security alerts beyond web
shell alerts have been observed on the host. Following deployment of a web shell it’s highly
likely the threat actor will begin to execute further commands on the server, triggering
additional alerts. In the above example three Exchange servers were observed with security
alerts.

This same technique can be used to locate other web applications within the network that
use common or predictable web paths.

W3CIISLog Analysis

W3CIISLog provides detailed logging on actions performed on Microsoft Internet Information
Servers (IIS). Even when an Endpoint detection alert is not available, it is possible to explore
W3CIISLogs for indicators of compromise. W3CIISLog can also provide additional insights

https://docs.microsoft.com/en-us/azure/azure-monitor/reference/tables/w3ciislog

5/7

into which hosts in the network are web application servers.

Note: As part of the original Microsoft HAFNIUM blog post, several hunting and detection
queries were created to search for artefacts specific to the use of recent vulnerabilities.

Identifying generic exploitation activity

If the URI associated with the vulnerable file on the server is known, a query can be
constructed to identify log entries that match the URI pattern. W3CIIS logging stores the URI
in the column named “csUriStem”, the below query can be used to search for a specific
URI in logs and provide information on which clients have accessed them. Local IP
addresses have been removed.

W3CIISLog
| where TimeGenerated > ago(3d)
| where not(ipv4_is_private(cIP))
//Insert potentially exploited URI here
| where csUriStem =~ "/owa/auth/x.js"
| project TimeGenerated, sSiteName, csMethod, csUriStem, sPort, cIP, csUserAgent

For HAFNIUM attacks observed by MSTIC an indicator feed has been made
available (CSV, JSON). A detection query, that will check for the presence of indicators in
multiple data sources, has also been made available by the Azure Sentinel team.
The detection can be found here, and IOC’s released as feeds by MSTIC can be found in
this directory.

The recent Exchange vulnerabilities do not need to be targeted at a specific file. Analysis of
automated exploitation tools online shows that many randomise the filenames used; this
means that no legitimate user will visit these files as they do not exist on the server. As these
filenames are randomly generated, static string matching cannot be used.

The Kusto “matches_regex” function can be used to perform regular expression matching on
URI’s. The below example extracts events where the URI matches files associated with the
exploitation of CVE-2021-27065 from W3CIISLog.

W3CIISLog
| where TimeGenerated > ago(3d)
| where not(ipv4_is_private(cIP))
| where (csUriStem matches regex @"\/owa\/auth\/[A-Za-z0-9]{1,30}\.js") or (csUriStem
matches regex @"\/ecp\/[A-Za-z0-9]{1,30}\.(js|flt|css)")
| project TimeGenerated, sSiteName, csMethod, csUriStem, sPort, cIP, csUserAgent

https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
https://github.com/Azure/Azure-Sentinel/tree/master/Sample%20Data/Feeds
https://raw.githubusercontent.com/Azure/Azure-Sentinel/master/Sample%20Data/Feeds/MSTICIoCs-ExchangeServerVulnerabilitiesDisclosedMarch2021.csv
https://raw.githubusercontent.com/Azure/Azure-Sentinel/master/Sample%20Data/Feeds/MSTICIoCs-ExchangeServerVulnerabilitiesDisclosedMarch2021.json
https://github.com/Azure/Azure-Sentinel/blob/6af6b23336df36e475786e2fc946cd7fd8c3de35/Detections/MultipleDataSources/ExchangeServerVulnerabilitiesMarch2021IoCs.yaml
https://github.com/Azure/Azure-Sentinel/tree/master/Sample%20Data/Feeds

6/7

The previous queries can be limited when the files being exploited are commonly accessed.
They would produce many candidate attacker IP addresses, making analysis challenging.

Using the recent Exchange vulnerabilities as an example, Microsoft
has seen malicious automated tools released publicly that are being used to exploit the
Exchange vulnerabilities. These tools are designed to only visit specific URIs on the server
that are required to perform the exploit. This activity differs from normal and legitimate
Administrator or User application browsing activity and if observed should be investigated.

It is possible to craft a query that uses basic statistical analysis to identify instances where a
client has visited a disproportionately high number of exploit-related URI’s when compared to
other URIs on the site., The query below calculates the total number of suspicious
URIs that have been visited by each user, it then calculates the total number of URIs visited
by the user. Where the number of exploit related URIs is a significant proportion of URIs
visited, a result is returned. By default, the query requires over 90% of the URIs visited by
the user to be suspicious.

let timeRange = 7d;
//Calculate number of suspicious URI stems visited by user
W3CIISLog
| where TimeGenerated > ago(timeRange)
| where not(ipv4_is_private(cIP))
| where (csUriStem matches regex @"\/owa\/auth\/[A-Za-z0-9]{1,30}\.js") or (csUriStem
matches regex @"\/ecp\/[A-Za-z0-9]{1,30}\.(js|flt|css)") or (csUriStem =~
"/ews/exchange.asmx")
| extend userHash = hash_md5(strcat(cIP, csUserAgent))
| summarize susCount=dcount(csUriStem), make_list(csUriStem), min(TimeGenerated),
max(TimeGenerated) by userHash, cIP, csUserAgent
| join kind=leftouter (
//Calculate unique URI stems visited by each user
W3CIISLog
| where TimeGenerated > ago(timeRange)
| where not(ipv4_is_private(cIP))
| extend userHash = hash_md5(strcat(cIP, csUserAgent))
| summarize allCount=dcount(csUriStem) by userHash
) on userHash
//Find instances where only a common endpoint was seen
| extend containsDefault = iff(list_csUriStem contains "/ews/exchange.asmx", 1, 0)
//If we only see the common endpoint and nothing else dump it
| extend result = iff(containsDefault == 1, containsDefault+susCount, 0)
| where result != 2
| extend susPercentage = susCount / allCount * 100
| where susPercentage > 90
| project StartTime=min_TimeGenerated, EndTime=max_TimeGenerated, AttackerIP=cIP,
AttackerUA=csUserAgent, URIsVisited=list_csUriStem,
suspiciousPercentage=susPercentage, allUriCount=allCount, suspiciousUriCount=susCount

7/7

While this query is designed to detect recent Exchange exploit activity, it can be easily
adapted to other exploit chains if the pages or URIs used are known.

Rare Client File Access

A previously published hunting query can be used to detect instances where resources on a
server are requested by a single client – a behaviour that should be investigated in the
context of web shell exploits. After the actor creates web shell on the server, it’s likely that
they will be the only user to access the file to complete their intended objective.

Investigating the Attacker

In the previous blog post covering SharePoint exploitation, a Jupyter Notebook Guided
Investigation is provided. This notebook can also be used to investigate on-prem Exchange
compromises within your environment.

The notebook extracts alerts from Microsoft 365 Defender related to web shell activity, these
can then be enriched with information from W3CIIS to identify the attacker IP and User
Agent. The attackers IP and User Agent can be used to hunt through multiple log sources for
potential post-compromise activity.

After the attacker details have been identified, the notebook can be used to locate files that
were accessed by the attacker prior to the web shell being installed. The notebook will
also locate the first instance that the attacker visited the server.

Azure-Sentinel-Notebooks/Guided Investigation - MDE Webshell Alerts.ipynb at master ·
Azure/Azure-Se...

Instructions for getting the notebook up and running can be found in the original blog post,
under the title “Building out the Investigation using Jupyter Notebooks”.

You can stay up to date with the latest information at https://aka.ms/exchangevulns.

https://github.com/Azure/Azure-Sentinel/blob/master/Hunting%20Queries/W3CIISLog/RareClientFileAccess.yaml
https://techcommunity.microsoft.com/t5/azure-sentinel/web-shell-threat-hunting-with-azure-sentinel-and-microsoft/ba-p/1448065#Building%20out%20the%20investigation%20using%20Jupyter%20Notebooks
https://github.com/Azure/Azure-Sentinel-Notebooks/blob/master/Guided%20Investigation%20-%20MDE%20Webshell%20Alerts.ipynb
https://techcommunity.microsoft.com/t5/azure-sentinel/web-shell-threat-hunting-with-azure-sentinel-and-microsoft/ba-p/1448065#Building%20out%20the%20investigation%20using%20Jupyter%20Notebooks
https://aka.ms/exchangevulns

