
1/7

Google Project Zero

CVE-2021-26855: Microsoft Exchange Server-Side
Request Forgery

googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26855.html

Anthony Weems, Michael Weber, Dallas Kaman

The Basics

Disclosure or Patch Date: March 2 2021

Product: Microsoft Microsoft Exchange Server

Advisory: https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855

Affected Versions: Exchange 2010, 2013, 2016, and 2019 before KB5000871.

First Patched Version: KB5000871

Issue/Bug Report: N/A

Patch CL: N/A

Bug-Introducing CL: N/A

Reporter(s): Volexity, Orange Tsai from DEVCORE research team, and Microsoft Threat
Intelligence Center (MSTIC)

The Code

Proof-of-concept: https://github.com/praetorian-inc/proxylogon-exploit

Exploit sample: N/A

Did you have access to the exploit sample when doing the analysis? No

The Vulnerability

Bug class: Server-Side Request Forgery (SSRF)

Vulnerability details:

Note: This analysis relies upon source code obtained by decompiling the various .NET
assemblies within Microsoft Exchange 2013.

https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2021/CVE-2021-26855.html
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-26855
https://techcommunity.microsoft.com/t5/exchange-team-blog/march-2021-exchange-server-security-updates-for-older-cumulative/ba-p/2192020
https://support.microsoft.com/en-us/topic/description-of-the-security-update-for-microsoft-exchange-server-2019-2016-and-2013-march-2-2021-kb5000871-9800a6bb-0a21-4ee7-b9da-fa85b3e1d23b
https://twitter.com/orange_8361
https://devco.re/
https://github.com/praetorian-inc/proxylogon-exploit


2/7

The Exchange frontend proxy is tricked into sending a request to an arbitrary backend
endpoint authenticated via Kerberos as the Exchange server.

The BEResourceRequestHandler  is used to handle requests for static resources within
/ecp  that pass the IsResourceRequest  check. This function validates that the provided

URL ends with one of many static file extensions (e.g. js, jpg, ico, png, ttf, etc.). Since this
handler is within the frontend, it does not validate the full static file path and therefore a
random filename with a .js  suffix will be sent to this handler.

Requests in the frontend proxy are routed to the backend via "anchor mailboxes" (the
AnchoredRoutingTarget  field within ProxyRequestHandler ). Each resource handler is

responsible for returning an anchor mailbox to describe how its request should be routed.
The BEResourceRequestHandler  uses the following pseudo-code for its routing:

protected override AnchorMailbox ResolveAnchorMailbox() 
{ 
   string cookie = BEResourceRequestHandler.GetBEResouceCookie(base.ClientRequest); 
   if (!string.IsNullOrEmpty(cookie)) 
   { 
       return new ServerInfoAnchorMailbox(BackEndServer.FromString(cookie), this); 
   } 
   return base.ResolveAnchorMailbox(); 
} 

private static string GetBEResouceCookie(HttpRequest httpRequest) 
{ 
   string result = null; 
   HttpCookie httpCookie = httpRequest.Cookies[Constants.BEResource]; 
   if (httpCookie != null) 
   { 
       result = httpCookie.Value; 
   } 
   return result; 
} 

The BEResourceRequestHandler  uses the X-BEResource  cookie to construct a
BackEndServer  and then a ServerInfoAnchorMailbox . Pseudo-code for
BackEndServer  instantiation is shown below:

public static BackEndServer FromString(string input) 
{ 
   string[] array = input.Split(new char[]{'~'}); 
   int version; 
   if (array.Length != 2 || !int.TryParse(array[1], out version)) 
   { 
       throw new ArgumentException("Invalid input value", "input"); 
   } 
   return new BackEndServer(array[0], version); 
} 



3/7

Finally, this anchor mailbox is used within the ProxyRequestHandler 's
GetTargetBackEndServerUrl  function to resolve the actual Uri  to use in the backend

request. Pseudo-code for this method is shown below:

protected virtual Uri GetTargetBackEndServerUrl() 
{ 
   // ... 
   UriBuilder clientUrlForProxy = new UriBuilder(this.ClientRequest.Url); 
   clientUrlForProxy.Scheme = Uri.UriSchemeHttps; 
   clientUrlForProxy.Host = this.AnchoredRoutingTarget.BackEndServer.Fqdn; 
   clientUrlForProxy.Port = 444;
   if (this.AnchoredRoutingTarget.BackEndServer.Version < Server.E15MinVersion) 
   { 
       this.ProxyToDownLevel = true; 
       clientUrlForProxy.Port = 443; 
   } 
   return clientUrlForProxy.Uri; 
} 

The UriBuilder  implementation in .NET uses simple string concatenation when building
the Uri  string in the last line of GetTargetBackEndServerUrl . For example, if the Host
is set to example.local/endpoint# , then the resulting Uri from this method call might be
https://example.local:443/endpoint#/ecp/favicon.eco . If the Host  header

contains a :  (e.g. to change the destination port to 444 ), the UriBuilder  class
assumes the host must be an IPv6 address and surrounds it with [] . To resolve this issue,
the desired host must be prefixed with an @  symbol, which causes the leading [  to be
treated as a username.

It seems likely that this vulnerability arose due to incorrect assumptions about UriBuilder
validation.

Patch analysis:

The patch adds hostname validation in two locations:



4/7

--- 
a/Microsoft.Exchange.Data.ApplicationLogic/Exchange/Data/ApplicationLogic/Cafe/BackEnd

+++ 
b/Microsoft.Exchange.Data.ApplicationLogic/Exchange/Data/ApplicationLogic/Cafe/BackEnd

@@ -34,7 +34,7 @@ namespace Microsoft.Exchange.Data.ApplicationLogic.Cafe 
       '~' 
   }); 
   int version; 
-   if (array.Length != 2 || !int.TryParse(array[1], out version)) 
+   if (array.Length != 2 || !int.TryParse(array[1], out version) || 
UriHostNameType.Dns != Uri.CheckHostName(array[0])) 
   { 
       throw new ArgumentException("Invalid input value", "input"); 
   } 
--- 
a/Exchange2013/Microsoft.Exchange.FrontEndHttpProxy/HttpProxy/ProxyRequestHandler.cs 
+++ 
b/Exchange2013/Microsoft.Exchange.FrontEndHttpProxy/HttpProxy/ProxyRequestHandler.cs 
@@ -923,7 +923,10 @@ namespace Microsoft.Exchange.HttpProxy 
   try 
   { 
       Uri uri = this.GetTargetBackEndServerUrl(); 
-       bool proxyKerberosAuthentication = this.ProxyKerberosAuthentication; 
+       if (!this.ProxyKerberosAuthentication && !string.Equals(uri.Host, 
this.AnchoredRoutingTarget.BackEndServer.Fqdn, StringComparison.OrdinalIgnoreCase)) 
+       { 
+           throw new HttpException(503, "Service Unavailable"); 
+       } 
       bool flag2 = false; 

Additionally, the patch overrides ShouldBackendRequestBeAnonymous  in
BEResourceRequestHandler  to return true.

Thoughts on how this vuln might have been found (fuzzing, code auditing, variant
analysis, etc.):

It seems plausible that this vulnerability was found through code auditing of the frontend
proxy and reviewing connections between the frontend and backend.

(Historical/present/future) context of bug:

In March 2021, Microsoft published that "multiple 0-day exploits [were] being used to attack
on-premises versions of Microsoft Exchange Server in limited and targeted attacks".
Microsoft credited Volexity for discovering the active exploitation and Volexity published their
analysis on the same day.

The Exploit

https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
https://krebsonsecurity.com/2021/03/microsoft-chinese-cyberspies-used-4-exchange-server-flaws-to-plunder-emails


5/7

(The terms exploit primitive, exploit strategy, exploit technique, and exploit flow are defined
here.)

Exploit strategy (or strategies):

The SSRF allows an attacker to submit arbitrary requests to backend /ecp  endpoints. The
frontend proxy authenticates to the backend via Kerberos as the Exchange server. However,
this user is unlikely to have access provisioned for the application itself. For example, when
attempting to access the DDIService via the SSRF, it responds with the error:

The user "XYZ" isn't assigned to any management roles. 

As a result, an authentication bypass is also needed to make use of this vulnerability. The
ECP backend exposes an endpoint that is used for authentication between proxied
components. The /ecp/proxyLogon.ecp  endpoint uses request headers and a serialized
XML request body to initialize an EcpIdentity  within the
Microsoft.Exchange.Management.ControlPanel.RbacSettings  class. If a valid user

SID is provided, it creates this identity and sets the ASP.NET_SessionId  and
msExchEcpCanary  cookies needed to authenticate to /ecp . An example request is to
/ecp/proxyLogon.ecp  via the SSRF is shown below:

POST /ecp/favicon.ico HTTP/1.1 
Host: example.local 
Cookie: X-BEResource=@backend.example.local:444/ecp/proxyLogon.ecp#~1941962753; 
msExchLogonMailbox: S-1-5-21-1234567890-123456789-1234567890-500 

<r at="" ln=""><s>S-1-5-21-1234567890-123456789-1234567890-500</s></r> 

HTTP/1.1 241  
Cache-Control: private 
Server: Microsoft-IIS/8.0 
request-id: 00000000-0000-0000-0000-000000000000 
X-CalculatedBETarget: example.local 
X-Content-Type-Options: nosniff 
X-DiagInfo: example 
X-BEServer: example 
X-FEServer: example 
Set-Cookie: ASP.NET_SessionId=11111111-1111-1111-1111-111111111111; path=/; HttpOnly 
Set-Cookie: 
msExchEcpCanary=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
path=/ecp 
Content-Length: 0 

Exploit flow:

The active exploitation in the wild used this SSRF as the starting point for a full remote code
execution chain against Microsoft Exchange. The general exploit flow is as follows:

Leak the backend hostname
Leak a user SID

https://googleprojectzero.blogspot.com/2020/06/a-survey-of-recent-ios-kernel-exploits.html


6/7

Authenticate with proxyLogon via SSRF (CVE-2021-26855)
Use one of three remote code execution vulnerabilities via SSRF (CVE-2021-26857,
CVE-2021-26858, or CVE-2021-27065)

As an example, CVE-2021-27065 has the following flow (all via SSRF):
List OABVirtualDirectory objects via the DDIService
Modify the OABVirtualDirectory to inject ASP code into the ExternalUrl (typically a
webshell)
"Reset" the OABVirtualDirectory, which writes all properties to disk at a user-
controlled path
Access this webshell externally (optionally using the SSRF)

Known cases of the same exploit flow:

There have been other authenticated remote code execution gadgets within Exchange,
such as CVE-2020-16875 and its bypass CVE-2020-171324.
The authentication bypass via proxyLogon appears to be unknown prior to these
exploits.

Part of an exploit chain? This vulnerability was used as part of the observed HAFNIUM
exploitation as described by Microsoft.

The Next Steps

Variant analysis

Areas/approach for variant analysis (and why):

Audit overrides of GetTargetBackEndServerUrl  for similar mistakes in URI routing.
Several request handlers override this method.

Found variants: N/A

Structural improvements

What are structural improvements such as ways to kill the bug class, prevent the introduction
of this vulnerability, mitigate the exploit flow, make this type of vulnerability harder to exploit,
etc.?

Ideas to kill the bug class:

Ideas to mitigate the exploit flow:

Other potential improvements:

0-day detection methods

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2020-16875
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2020-17132
https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/


7/7

What are potential detection methods for similar 0-days? Meaning are there any ideas of
how this exploit or similar exploits could be detected as a 0-day?

Other References

March 2, 2021: HAFNIUM targeting Exchange Servers with 0-day exploits by Microsoft.
This post was the initial public disclosure of in-the-wild exploitation.
March 2, 2021: Operation Exchange Marauder: Active Exploitation of Multiple Zero-Day
Microsoft Exchange Vulnerabilities by Volexity. This post was released concurrently
with the Microsoft disclosure.
March 5, 2021: Proxylogon by DEVCORE, the team who reported the vulnerability to
Microsoft.
March 9, 2021: Reproducing the Microsoft Exchange Proxylogon Exploit Chain by the
authors of this RCA describing the process for reproducing this exploit chain using
publicly available information.

https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/
https://www.volexity.com/blog/2021/03/02/active-exploitation-of-microsoft-exchange-zero-day-vulnerabilities/
https://proxylogon.com/
https://www.praetorian.com/blog/reproducing-proxylogon-exploit/

